
Module 2: GNU Tools and Compilation Process

Introduction to GCC and History

The original GNU C Compiler is developed by Richard Stallman in 1984 to create a

complete UNIX like operating systems as free software. GCC is referred as “GNU C Compiler”

to support many programming languages such as objective C, C++, Java, FORTRAN and Ada.

GCC is portable and run in many operating systems. It is available on all UNIX operating

systems and ported to windows by Cygwin and MinGW. GCC is also a cross compiler for

producing executables for different platforms.

GCC is a key component of “GNU Tool chain” for developing applications as well as operating

systems. The GNU Tool chain includes:

• GNU Compiler Collection (GCC): A compiler tool that supports many programming

languages like C/C++, Java and etc...

• GNU Make: An automation tool for compiling and building applications.

• GNU Binutils: A tool of binary utility tools which include linker and assembler.

• GNU Debugger (GDB).

• GNU Autotools: A build system including Autoconf, Autoheader, Automake and

Libtools.

• GNU Bison.

Types of GCC versions:

• The first version of GCC is released in 1987.

• The second version of GCC is released in 1992 which supports C++.

• The third version is released in 2001 which incorporates Experimental GNU compiler

System with improve optimization.

• The fourth version is released in 2005.

• The fifth version is released in 2015.

Installing GCC:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

GCC is included by default in all UNIX operating systems and for windows install Cygwin GCC

or MinGW GCC.

Cygwin: Cygwin is a UNIX like environment and command line interface for windows. Cygwin

is a huge and includes most of the UNIX tools, utilities and Bash shell.

MinGW GCC: Minimalist GNU for Windows is the collection of GNU Compiler Collection

and GNU Banalities for use in windows. It also includes the Minimal System, which is basically

a Bourne shell.

In Linux Environment:

 gcc –v option which displays the gcc version using in our computer.

In windows Environment:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Cygwin:

 gcc --version

gcc (GCC) 4.6.3

MinGW:

 gcc --version

gcc (GCC) 4.6.3

Help: We can read more information about GCC using help manual and man pages that is using

‘help’ and ‘man’ option.

 gcc –help

 man gcc

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Reading man pages using command line will be difficult, so we can generate a text file using

command:

 man gcc | col –b >gcc_help.txt -- it will generate a gcc_help text file in your

current directory.

Getting started

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Now we will write small code and compile using gcc compilers. Now onwards we are going to

use Linux environment only. The GNU C and C++ compilers are gcc and g++ respectively. The

below is the simple C code to print “Hello World”.

1. The C program is Hello.c

2. Compile Hello.c using gcc compiler.

 gcc Hello.c

3. Run the executable generated by above program. The default executable generated in

Linux environment is “a.out”.

 ./a.out displays the output “Hello World” in terminal.

In bash shell, the default path does not include the current working directory. Hence we need to

include the current path using “./” in the command line, when executing the output file in the

command line. Instead of depending default name for executable we can assign our own name

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

while compiling using, ‘-o’ option in the command. ‘-o’ is “output file” which holds the output

data.

 gcc Hello.c -o Hello This will compile the source code “Hello.c” and generate

the executable as “Hello”. Now we can run the “Hello” executable.

 “./Hello”

Verbose Mode: By using option ‘-v’ we can see the detailed compilation process.

 gcc –v Hello.c –o Hello – It will provide the compilation process on the display, so

that we can see what is going on while compiling the source code like which gcc

version they using, target system, shared libraries and etc.

GCC Compilation Process:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

GCC compiler compiles a program into executable in four steps. GCC provided a provision so

that we can compile the source file step by step compilation.

Figure1: Step by step compilation process

In the next section we will take one example program and compile them in each step and see the

output file generated at each step. The following is the example source code addition of two

numbers. In next section we are going to compile the source code step by step compilation

process and we will observe how the source code is converted into executable followed by each

step.

//add.c

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Step by Step Compilation:

1. Pre-processing: The first step of the compilation process is the source code is passed

through Preprocessor, which includes the headers files (#include) and expands the macros

(#define) used in our program. The resultant intermediate file is “add.i” which contains

the expanded source code. The preprocessor takes the source code “add.c” and expands

this code and gives “add.i” and this “add.i” is passed to compiler for further compilation.

 gcc –E add.c –o add.i

-E invokes the preprocessor.

 gcc –E –v add.c –o add.i verbose mode – Displays the information of gcc

compiler, machine architecture and so on.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

2. Compilation: The compiler compiles the preprocessed source code into assembly code

for specific processor.

The ‘-s’ option specifies to produce assembly code, instead of object code. The resultant

assembly file is “add.s”

 gcc –S add.i –o add.s

-s invokes the compiler.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

//add.s -- assembly file

 gcc –S–v add.c –o add.i verbose mode

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

3. Assembly: The assembler converts the assembly code into machine code in the object

file “add.o”. The object file is a binary file which is understands by machine.

 gcc –c add.s –o add.o

-c invokes the assembler.

//add.o – object file

4. Linker: The linker links the object code with library code to produce an executable file

“add”.

 gcc add.o –o add

 gcc –v add.0 add

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• “add” is the output executable file generated by the compiler. By running this executable

the output will be displayed on the console.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

