
Chapter 4: Domain Testing

Chapter 4 Page 1

DOMAIN TESTING:

Domain testing is a software testing technique in which selecting a small number of test cases

from a nearly infinite group of test cases. For testing few applications, Domain specific

knowledge plays a very crucial role.

Domain testing is a type of functional testing and tests the application by feeding interesting

inputs and evaluating its outputs.

At the end of this unit, the student will be able to:

• Understand the concept of domain testing.

• Understand the importance and limitations of domain testing.

• Differentiate ugly and nice domains.

• Know the properties of ugly and nice domains.

• Learn the domain testing strategy for different dimension domains.

• Identify the problems due to the incompatibility of domains and ranges in interface

testing.

DOMAINS AND PATHS:

INTRODUCTION:

Domain:

In mathematics, domain is a set of possible values of an independent variable or the variables of

a function. Programs as input data classifiers: domain testing attempts to determine whether the

classification is or is not correct. Domain testing can be based on specifications or equivalent

implementation information. If domain testing is based on specifications, it is a functional test

technique. If domain testing is based implementation details, it is a structural test technique.

For example, you're doing domain testing when you check extreme values of an input

variable.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 2

All inputs to a program can be considered as if they are numbers. For example, a character string

can be treated as a number by concatenating bits and looking at them as if they were a binary

integer. This is the view in domain testing, which is why this strategy has a mathematical flavor.

THE MODEL: The following figure is a schematic representation of domain testing.

Figure 4.1: Schematic Representation of Domain Testing.

o Before doing whatever it does, a routine must classify the input and set it moving

on the right path.

o An invalid input (e.g., value too big) is just a special processing case called

'reject'.

o The input then passses to a hypothetical subroutine rather than on calculations.

o In domain testing, we focus on the classification aspect of the routine rather than

on the calculations.

o Structural knowledge is not needed for this model - only a consistent, complete

specification of input values for each case.

o We can infer that for each case there must be atleast one path to process that case.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 3

A DOMAIN IS A SET:

o An input domain is a set.

o If the source language supports set definitions (E.g. PASCAL set types and C

enumerated types) less testing is needed because the compiler does much of it for

us.

o Domain testing does not work well with arbitrary discrete sets of data objects.

o Domain for a loop-free program corresponds to a set of numbers defined over the

input vector.

DOMAINS, PATHS AND PREDICATES:

o In domain testing, predicates are assumed to be interpreted in terms of input

vector variables.

o If domain testing is applied to structure, then predicate interpretation must be

based on actual paths through the routine - that is, based on the implementation

control flowgraph.

o Conversely, if domain testing is applied to specifications, interpretation is based

on a specified data flowgraph for the routine; but usually, as is the nature of

specifications, no interpretation is needed because the domains are specified

directly.

o For every domain, there is at least one path through the routine.

o There may be more than one path if the domain consists of disconnected parts or

if the domain is defined by the union of two or more domains.

o Domains are defined their boundaries. Domain boundaries are also where most

domain bugs occur.

o For every boundary there is at least one predicate that specifies what numbers

belong to the domain and what numbers don't.

For example, in the statement IF x>0 THEN ALPHA ELSE BETA we know that

numbers greater than zero belong to ALPHA processing domain(s) while zero and

smaller numbers belong to BETA domain(s).

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 4

o A domain may have one or more boundaries - no matter how many variables

define it.

For example, if the predicate is x2 + y2 < 16, the domain is the inside of a circle

of radius 4 about the origin. Similarly, we could define a spherical domain with

one boundary but in three variables.

o Domains are usually defined by many boundary segments and therefore by many

predicates. i.e. the set of interpreted predicates traversed on that path (i.e., the

path's predicate expression) defines the domain's boundaries.

A DOMAIN CLOSURE:

o A domain boundary is closed with respect to a domain if the points on the

boundary belong to the domain.

o If the boundary points belong to some other domain, the boundary is said to be

open.

o Figure 4.2 shows three situations for a one-dimensional domain - i.e., a domain

defined over one input variable; call it x

o The importance of domain closure is that incorrect closure bugs are frequent

domain bugs. For example, x >= 0 when x > 0 was intended.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 5

Figure 4.2: Open and Closed Domains.

DOMAIN DIMENSIONALITY:

o Every input variable adds one dimension to the domain.

o One variable defines domains on a number line.

o Two variables define planar domains.

o Three variables define solid domains.

o Every new predicate slices through previously defined domains and cuts them in

half.

o Every boundary slices through the input vector space with a dimensionality which

is less than the dimensionality of the space.

o Thus, planes are cut by lines and points, volumes by planes, lines and points and

n-spaces by hyperplanes.

BUG ASSUMPTION:

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 6

o The bug assumption for the domain testing is that processing is okay but the

domain definition is wrong.

o An incorrectly implemented domain means that boundaries are wrong, which may

in turn mean that control flow predicates are wrong.

o Many different bugs can result in domain errors. Some of them are:

Domain Errors:

 Double Zero Representation: In computers or Languages that have a

distinct positive and negative zero, boundary errors for negative zero are

common.

 Floating point zero check: A floating point number can equal zero only if

the previous definition of that number set it to zero or if it is subtracted

from it self or multiplied by zero. So the floating point zero check to be

done against a epsilon value.

 Contradictory domains: An implemented domain can never be

ambiguous or contradictory, but a specified domain can. A contradictory

domain specification means that at least two supposedly distinct domains

overlap.

 Ambiguous domains: Ambiguous domains mean that union of the

domains is incomplete. That is there are missing domains or holes in the

specified domains. Not specifying what happens to points on the domain

boundary is a common ambiguity.

 Overspecified Domains: The domain can be overloaded with so many

conditions that the result is a null domain. Another way to put it is to say

that the domain's path is unachievable.

 Boundary Errors: Errors caused in and around the boundary of a domain.

Example, boundary closure bug, shifted, tilted, missing, extra boundary.

 Closure Reversal: A common bug. The predicate is defined in terms of

>=. The programmer chooses to implement the logical complement and

incorrectly uses <= for the new predicate; i.e., x >= 0 is incorrectly

negated as x <= 0, thereby shifting boundary values to adjacent domains.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 7

 Faulty Logic: Compound predicates (especially) are subject to faulty

logic transformations and improper simplification. If the predicates define

domain boundaries, all kinds of domain bugs can result from faulty logic

manipulations.

RESTRICTIONS TO DOMAIN TESTING:Domain testing has restrictions, as do other

testing techniques. Some of them include:

o Co-incidental Correctness: Domain testing isn't good at finding bugs for which

the outcome is correct for the wrong reasons. If we're plagued by coincidental

correctness we may misjudge an incorrect boundary. Note that this implies

weakness for domain testing when dealing with routines that have binary

outcomes (i.e., TRUE/ FALSE)

o Representative Outcome: Domain testing is an example of partition testing.

Partition-testing strategies divide the program's input space into domains such that

all inputs within a domain are equivalent (not equal, but equivalent) in the sense

that any input represents all inputs in that domain. If the selected input is shown to

be correct by a test, then processing is presumed correct, and therefore all inputs

within that domain are expected (perhaps unjustifiably) to be correct. Most test

techniques, functional or structural, fall under partition testing and therefore make

this representative outcome assumption. For example, x2 and 2x are equal for x =

2, but the functions are different. The functional differences between adjacent

domains are usually simple, such as x + 7 versus x + 9, rather than x2 versus 2x.

o Simple Domain Boundaries and Compound Predicates: Compound predicates

in which each part of the predicate specifies a different boundary are not a

problem: for example, x >= 0 AND x < 17, just specifies two domain boundaries

by one compound predicate. As an example of a compound predicate that

specifies one boundary, consider: x = 0 AND y >= 7 AND y <= 14. This predicate

specifies one boundary equation (x = 0) but alternates closure, putting it in one or

the other domain depending on whether y < 7 or y > 14. Treat compound

predicates with respect because they’re more complicated than they seem.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 8

o Functional Homogeneity of Bugs: Whatever the bug is, it will not change the

functional form of the boundary predicate. For example, if the predicate is ax >=

b, the bug will be in the value of a or b but it will not change the predicate to ax

>= b, say.

o Linear Vector Space: Most papers on domain testing, assume linear boundaries -

not a bad assumption because in practice most boundary predicates are linear.

o Loop Free Software: Loops are problematic for domain testing. The trouble with

loops is that each iteration can result in a different predicate expression (after

interpretation), which means a possible domain boundary change.

NICE AND UGLY DOMAINS:

o Where do these domains come from?

Domains are and will be defined by an imperfect iterative process aimed at

achieving (user, buyer, voter) satisfaction.

o Implemented domains can't be incomplete or inconsistent. Every input will be

processed (rejection is a process), possibly forever. Inconsistent domains will be

made consistent.

o Conversely, specified domains can be incomplete and/or inconsistent. Incomplete

in this context means that there are input vectors for which no path is specified,

and inconsistent means that there are at least two contradictory specifications over

the same segment of the input space.

o Some important properties of nice domains are: Linear, Complete, Systematic,

Orthogonal, Consistently closed, Convex and Simply connected.

o To the extent that domains have these properties domain testing is easy as testing

gets.

o The bug frequency is lesser for nice domain than for ugly domains.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 9

Figure 4.3: Nice Two-Dimensional Domains.

LINEAR AND NON LINEAR BOUNDARIES:

o Nice domain boundaries are defined by linear inequalities or equations.

o The impact on testing stems from the fact that it takes only two points to

determine a straight line and three points to determine a plane and in general n+1

points to determine a n-dimensional hyper plane.

o In practice more than 99.99% of all boundary predicates are either linear or can be

linearized by simple variable transformations.

COMPLETE BOUNDARIES:

o Nice domain boundaries are complete in that they span the number space from

plus to minus infinity in all dimensions.

o Figure 4.4 shows some incomplete boundaries. Boundaries A and E have gaps.

o Such boundaries can come about because the path that hypothetically corresponds

to them is unachievable, because inputs are constrained in such a way that such

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 10

values can't exist, because of compound predicates that define a single boundary,

or because redundant predicates convert such boundary values into a null set.

o The advantage of complete boundaries is that one set of tests is needed to confirm

the boundary no matter how many domains it bounds.

o If the boundary is chopped up and has holes in it, then every segment of that

boundary must be tested for every domain it bounds.

Figure 4.4: Incomplete Domain Boundaries.

SYSTEMATIC BOUNDARIES:

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 11

o Systematic boundary means that boundary inequalities related by a simple

function such as a constant.

o In Figure 4.3 for example, the domain boundaries for u and v differ only by a

constant. We want relations such as

where fi is an arbitrary linear function, X is the input vector, ki and c are constants,

and g (i,c) is a decent function over i and c that yields a constant, such as k + ic.

o The first example is a set of parallel lines, and the second example is a set of

systematically (e.g., equally) spaced parallel lines (such as the spokes of a wheel,

if equally spaced in angles, systematic).

o If the boundaries are systematic and if you have one tied down and generate tests

for it, the tests for the rest of the boundaries in that set can be automatically

generated.

ORTHOGONAL BOUNDARIES:

o Two boundary sets U and V (See Figure 4.3) are said to be orthogonal if every

inequality in V is perpendicular to every inequality in U.

o If two boundary sets are orthogonal, then they can be tested independently

o In Figure 4.3 we have six boundaries in U and four in V. We can confirm the

boundary properties in a number of tests proportional to 6 + 4 = 10 (O(n)). If we

tilt the boundaries to get Figure 4.5, we must now test the intersections. We've

gone from a linear number of cases to a quadratic: from O(n) to O(n2).

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 12

Figure 4.5: Tilted Boundaries.

Figure 4.6: Linear, Non-orthogonal Domain Boundaries.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 13

o Actually, there are two different but related orthogonality conditions. Sets of

boundaries can be orthogonal to one another but not orthogonal to the coordinate

axes (condition 1), or boundaries can be orthogonal to the coordinate axes

(condition 2).

CLOSURE CONSISTENCY:

o Figure 4.6 shows another desirable domain property: boundary closures are

consistent and systematic.

o The shaded areas on the boundary denote that the boundary belongs to the domain

in which the shading lies - e.g., the boundary lines belong to the domains on the

right.

o Consistent closure means that there is a simple pattern to the closures - for

example, using the same relational operator for all boundaries of a set of parallel

boundaries.

CONVEX:

o A geometric figure (in any number of dimensions) is convex if you can take two

arbitrary points on any two different boundaries, join them by a line and all points

on that line lie within the figure.

o Nice domains are convex; dirty domains aren't.

o You can smell a suspected concavity when you see phrases such as: ". . . except if

. . .," "However . . .," ". . . but not. . . ." In programming, it's often the buts in the

specification that kill you.

SIMPLY CONNECTED:

o Nice domains are simply connected; that is, they are in one piece rather than

pieces all over the place interspersed with other domains.

o Simple connectivity is a weaker requirement than convexity; if a domain is

convex it is simply connected, but not vice versa.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 14

o Consider domain boundaries defined by a compound predicate of the (boolean)

form ABC. Say that the input space is divided into two domains, one defined by

ABC and, therefore, the other defined by its negation .

o For example, suppose we define valid numbers as those lying between 10 and 17

inclusive. The invalid numbers are the disconnected domain consisting of

numbers less than 10 and greater than 17.

o Simple connectivity, especially for default cases, may be impossible.

UGLY DOMAINS:

o Some domains are born ugly and some are uglified by bad specifications.

o Every simplification of ugly domains by programmers can be either good or bad.

o Programmers in search of nice solutions will "simplify" essential complexity out

of existence. Testers in search of brilliant insights will be blind to essential

complexity and therefore miss important cases.

o If the ugliness results from bad specifications and the programmer's simplification

is harmless, then the programmer has made ugly good.

o But if the domain's complexity is essential (e.g., the income tax code), such

"simplifications" constitute bugs.

o Nonlinear boundaries are so rare in ordinary programming that there's no

information on how programmers might "correct" such boundaries if they're

essential.

AMBIGUITIES AND CONTRADICTIONS:

o Domain ambiguities are holes in the input space.

o The holes may lie with in the domains or in cracks between domains.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 15

Figure 4.7: Domain Ambiguities and Contradictions.

o Two kinds of contradictions are possible: overlapped domain specifications and

overlapped closure specifications

o Figure 4.7c shows overlapped domains and Figure 4.7d shows dual closure

assignment.

SIMPLIFYING THE TOPOLOGY:

o The programmer's and tester's reaction to complex domains is the same - simplify

o There are three generic cases: concavities, holes and disconnected pieces.

o Programmers introduce bugs and testers misdesign test cases by: smoothing out

concavities (Figure 4.8a), filling in holes (Figure 4.8b), and joining disconnected

pieces (Figure 4.8c).

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 16

Figure 4.8: Simplifying the topology.

RECTIFYING BOUNDARY CLOSURES:

o If domain boundaries are parallel but have closures that go every which way (left,

right, left, . . .) the natural reaction is to make closures go the same way (see

Figure 4.9).

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 17

Figure 4.9: Forcing Closure Consistency.

DOMAIN TESTING:

DOMAIN TESTING STRATEGY: The domain-testing strategy is simple, although possibly

tedious (slow).

1. Domains are defined by their boundaries; therefore, domain testing concentrates

test points on or near boundaries.

2. Classify what can go wrong with boundaries, then define a test strategy for each

case. Pick enough points to test for all recognized kinds of boundary errors.

3. Because every boundary serves at least two different domains, test points used to

check one domain can also be used to check adjacent domains. Remove redundant

test points.

4. Run the tests and by posttest analysis (the tedious part) determine if any

boundaries are faulty and if so, how.

5. Run enough tests to verify every boundary of every domain.

DOMAIN BUGS AND HOW TO TEST FOR THEM:

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 18

o An interior point (Figure 4.10) is a point in the domain such that all points within

an arbitrarily small distance (called an epsilon neighborhood) are also in the

domain.

o A boundary point is one such that within an epsilon neighborhood there are

points both in the domain and not in the domain.

o An extreme point is a point that does not lie between any two other arbitrary but

distinct points of a (convex) domain.

Figure 4.10: Interior, Boundary and Extreme points.

o An on point is a point on the boundary.

o If the domain boundary is closed, an off point is a point near the boundary but in

the adjacent domain.

o If the boundary is open, an off point is a point near the boundary but in the

domain being tested; see Figure 4.11. You can remember this by the acronym

COOOOI: Closed Off Outside, Open Off Inside.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 19

Figure 4.11: On points and Off points.

o Figure 4.12 shows generic domain bugs: closure bug, shifted boundaries, tilted

boundaries, extra boundary and missing boundary.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 20

Figure 4.12: Generic Domain Bugs.

TESTING ONE DIMENSIONAL DOMAINS:

o Figure 4.13 shows possible domain bugs for a one-dimensional open domain

boundary.

o The closure can be wrong (i.e., assigned to the wrong domain) or the boundary (a

point in this case) can be shifted one way or the other, we can be missing a

boundary, or we can have an extra boundary.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 21

Figure 4.13: One Dimensional Domain Bugs, Open Boundaries.

o In Figure 4.13a we assumed that the boundary was to be open for A. The bug

we're looking for is a closure error, which converts > to >= or < to <= (Figure

4.13b). One test (marked x) on the boundary point detects this bug because

processing for that point will go to domain A rather than B.

o In Figure 4.13c we've suffered a boundary shift to the left. The test point we used

for closure detects this bug because the bug forces the point from the B domain,

where it should be, to A processing. Note that we can't distinguish between a shift

and a closure error, but we do know that we have a bug.

o Figure 4.13d shows a shift the other way. The on point doesn't tell us anything

because the boundary shift doesn't change the fact that the test point will be

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 22

processed in B. To detect this shift we need a point close to the boundary but

within A. The boundary is open, therefore by definition, the off point is in A

(Open Off Inside).

o The same open off point also suffices to detect a missing boundary because what

should have been processed in A is now processed in B.

o To detect an extra boundary we have to look at two domain boundaries. In this

context an extra boundary means that A has been split in two. The two off points

that we selected before (one for each boundary) does the job. If point C had been

a closed boundary, the on test point at C would do it.

o For closed domains look at Figure 4.14. As for the open boundary, a test point on

the boundary detects the closure bug. The rest of the cases are similar to the open

boundary, except now the strategy requires off points just outside the domain.

Figure 4.14: One Dimensional Domain Bugs, Closed Boundaries.

TESTING TWO DIMENSIONAL DOMAINS:

o Figure 4.15 shows possible domain boundary bugs for a two-dimensional domain.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 23

o A and B are adjacent domains and the boundary is closed with respect to A, which

means that it is open with respect to B.

Figure 4.15: Two Dimensional Domain Bugs.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 24

o For Closed Boundaries:

1. Closure Bug: Figure 4.15a shows a faulty closure, such as might be

caused by using a wrong operator (for example, x >= k when x > k was

intended, or vice versa). The two on points detect this bug because those

values will get B rather than A processing.

2. Shifted Boundary: In Figure 4.15b the bug is a shift up, which converts

part of domain B into A processing, denoted by A'. This result is caused

by an incorrect constant in a predicate, such as x + y >= 17 when x + y >=

7 was intended. The off point (closed off outside) catches this bug. Figure

4.15c shows a shift down that is caught by the two on points.

3. Tilted Boundary: A tilted boundary occurs when coefficients in the

boundary inequality are wrong. For example, 3x + 7y > 17 when 7x + 3y >

17 was intended. Figure 4.15d has a tilted boundary, which creates

erroneous domain segments A' and B'. In this example the bug is caught

by the left on point.

4. Extra Boundary: An extra boundary is created by an extra predicate. An

extra boundary will slice through many different domains and will

therefore cause many test failures for the same bug. The extra boundary in

Figure 4.15e is caught by two on points, and depending on which way the

extra boundary goes, possibly by the off point also.

5. Missing Boundary: A missing boundary is created by leaving a boundary

predicate out. A missing boundary will merge different domains and will

cause many test failures although there is only one bug. A missing

boundary, shown in Figure 4.15f, is caught by the two on points because

the processing for A and B is the same - either A or B processing.

PROCEDURE FOR TESTING: The procedure is conceptually is straight forward. It can be

done by hand for two dimensions and for a few domains and practically impossible for more than

two variables.

24. Identify input variables.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 25

25. Identify variable which appear in domain defining predicates, such as control flow

predicates.

26. Interpret all domain predicates in terms of input variables.

27. For p binary predicates, there are at most 2p combinations of TRUE-FALSE

values and therefore, at most 2p domains. Find the set of all non null domains. The

result is a boolean expression in the predicates consisting a set of AND terms

joined by OR's. For example ABC+DEF+GHI Where the capital letters

denote predicates. Each product term is a set of linear inequality that defines a

domain or a part of a multiply connected domains.

28. Solve these inequalities to find all the extreme points of each domain using any of

the linear programming methods.

DOMAIN AND INTERFACE TESTING

• INTRODUCTION:

o Recall that we defined integration testing as testing the correctness of the interface

between two otherwise correct components.

o Components A and B have been demonstrated to satisfy their component tests,

and as part of the act of integrating them we want to investigate possible

inconsistencies across their interface.

o Interface between any two components is considered as a subroutine call.

o We're looking for bugs in that "call" when we do interface testing.

o Let's assume that the call sequence is correct and that there are no type

incompatibilities.

o For a single variable, the domain span is the set of numbers between (and

including) the smallest value and the largest value. For every input variable we

want (at least): compatible domain spans and compatible closures (Compatible

but need not be Equal).

DOMAINS AND RANGE:

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 26

o The set of output values produced by a function is called the range of the

function, in contrast with the domain, which is the set of input values over which

the function is defined.

o For most testing, our aim has been to specify input values and to predict and/or

confirm output values that result from those inputs.

o Interface testing requires that we select the output values of the calling routine i.e.

caller's range must be compatible with the called routine's domain.

o An interface test consists of exploring the correctness of the following mappings:

o caller domain --> caller range (caller unit test)

o caller range --> called domain (integration test)

o called domain --> called range (called unit test)

CLOSURE COMPATIBILITY:

o Assume that the caller's range and the called domain spans the same numbers - for

example, 0 to 17.

o Figure 4.16 shows the four ways in which the caller's range closure and the

called's domain closure can agree.

o The thick line means closed and the thin line means open. Figure 4.16 shows the

four cases consisting of domains that are closed both on top (17) and bottom (0),

open top and closed bottom, closed top and open bottom, and open top and

bottom.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 27

Figure 4.16: Range / Domain Closure Compatibility.

o Figure 4.17 shows the twelve different ways the caller and the called can disagree

about closure. Not all of them are necessarily bugs. The four cases in which a

caller boundary is open and the called is closed (marked with a "?") are probably

not buggy. It means that the caller will not supply such values but the called can

accept them.

Figure 4.17: Equal-Span Range / Domain Compatibility Bugs.

• SPAN COMPATIBILITY:

o Figure 4.18 shows three possibly harmless span incompatibilities.

Figure 4.18: Harmless Range / Domain Span incompatibility bug (Caller

Span is smaller than Called).

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 28

o In all cases, the caller's range is a subset of the called's domain. That's not

necessarily a bug.

o The routine is used by many callers; some require values inside a range and some

don't. This kind of span incompatibility is a bug only if the caller expects the

called routine to validate the called number for the caller.

o Figure 4.19a shows the opposite situation, in which the called routine's domain

has a smaller span than the caller expects. All of these examples are buggy.

Figure 4.19: Buggy Range / Domain Mismatches

o In Figure 4.19b the ranges and domains don't line up; hence good values are

rejected, bad values are accepted, and if the called routine isn't robust enough, we

have crashes.

o Figure 4.19c combines these notions to show various ways we can have holes in

the domain: these are all probably buggy.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Chapter 4: Domain Testing

Chapter 4 Page 29

INTERFACE RANGE / DOMAIN COMPATIBILITY TESTING:

o For interface testing, bugs are more likely to concern single variables rather than

peculiar combinations of two or more variables.

o Test every input variable independently of other input variables to confirm

compatibility of the caller's range and the called routine's domain span and

closure of every domain defined for that variable.

o There are two boundaries to test and it's a one-dimensional domain; therefore, it

requires one on and one off point per boundary or a total of two on points and two

off points for the domain - pick the off points appropriate to the closure

(COOOOI).

o Start with the called routine's domains and generate test points in accordance to

the domain-testing strategy used for that routine in component testing.

o Unless you're a mathematical whiz you won't be able to do this without tools for

more than one variable at a time.

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

