Graduate Aptitude Test in Engineering

N. 4.4.4				
Notations : 1.Options shown in gree	en color and with	✓ icon are correct		
2.Options shown in red				
z.opdons snown in red	color and with "	icon are incorrect.		
Question Paper Name: Number of Questions: Total Marks:	MA: MA 65 100.0	ATHEMATICS 1st Feb shift2		
Wrong answer for Mo	CQ will result in neg	ative marks, (-1/3) for 1 ma	ark Questions and ((-2/3) for 2 marks Questions.
Number of Questions: Section Marks:		General Ar 10 15.0	otitude	
Q.1 to Q.5 carry 1 ma	ark each & Q.6 to Q	.10 carry 2 marks each.		
Question Number: 1 Questi Choose the appropriate v sentence: Apparent lifelessness		f the four options given dormant life.	below, to comple	te the following
(A) harbours	(B) leads to	(C) supports	(D) affects	(
Options: 1. ✓ A 2. ※ B 3. ※ C 4. ※ D				
Question Number : 2 Questi Fill in the blank with the		rase.		
That boy from the town	was a	in the sleepy village	t.	
(A) dog out of herd		(B) sheep from the heap		
(C) fish out of water		(D) bird from the flock		
Options: 1. * A 2. * B				

Question Number: 3 Question Type: MCQ

4. 🗱 D

Choose the statement where underlined word is used correctly.

- (A) When the teacher eludes to different authors, he is being elusive.
- (B) When the thief keeps eluding the police, he is being elusive.
- (C) Matters that are difficult to understand, identify or remember are allusive.
- (D) Mirages can be <u>allusive</u>, but a better way to express them is illusory.

Options:

- 1. * A
- 2. 🗸 B
- 3. **%** C
- 4. * D

Question Number: 4 Question Type: MCQ

Tanya is older than Eric.

Cliff is older than Tanya.

Eric is older than Cliff.

If the first two statements are true, then the third statement is:

- (A) True
- (B) False
- (C) Uncertain
- (D) Data insufficient

Options:

- 1. 🗱 A
- 2. 🖋 B
- 3. **%** C
-
- 4. 🏶 D

Question Number: 5 Question Type: MCQ

Five teams have to compete in a league, with every team playing every other team exactly once, before going to the next round. How many matches will have to be held to complete the league round of matches?

- (A) 20
- (B) 10

(C) 8

(D) 5

Options:

- 1. 🗱 A
- 2. 🗸 B
- 3 🛎 0
- 4. 🗱 D

Question Number : 6 Question Type : MCQ

Select the appropriate option in place of underlined part of the sentence.

Increased productivity necessary reflects greater efforts made by the employees.

- (A) Increase in productivity necessary
- (B) Increase productivity is necessary
- (C) Increase in productivity necessarily
- (D) No improvement required

Options:

- 1. 🗱 A
- 2. **%** B
- 3. **√** C
- 4. × D

Question Number: 7 Question Type: MCQ

Given below are two statements followed by two conclusions. Assuming these statements to be true, decide which one logically follows.

Statements:

- No manager is a leader.
- II. All leaders are executives.

Conclusions:

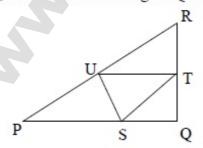
- No manager is an executive.
- No executive is a manager.
- (A) Only conclusion I follows.
- (B) Only conclusion II follows.
- (C) Neither conclusion I nor II follows.
- (D) Both conclusions I and II follow.

Options:

- 1. 🏁 A
- 2. X B
- 3. 🗸 C
- 4. * D

Question Number: 8 Question Type: NAT

In the given figure angle Q is a right angle, PS:QS = 3:1, RT:QT = 5:2 and PU:UR = 1:1. If area of triangle QTS is 20 cm^2 , then the area of triangle PQR in cm^2 is _____.



Question Number: 9 Question Type: MCQ

Right triangle PQR is to be constructed in the xy - plane so that the right angle is at P and line PR is parallel to the x-axis. The x and y coordinates of P, Q, and R are to be integers that satisfy the inequalities: $-4 \le x \le 5$ and $6 \le y \le 16$. How many different triangles could be constructed with these properties?

(A) 110

(B) 1,100

(C) 9,900

(D) 10,000

Options:

- 1. 🏁 A
- 2. **%** B
- 3. **√** C
- 4. * D

Question Number: 10 Question Type: MCQ

A coin is tossed thrice. Let X be the event that head occurs in each of the first two tosses. Let Y be the event that a tail occurs on the third toss. Let Z be the event that two tails occur in three tosses. Based on the above information, which one of the following statements is TRUE?

(A) X and Y are not independent

(B) Y and Z are dependent

(C) Y and Z are independent

(D) X and Z are independent

Options:

- 1. 🏁 A
- 2. 🗸 B
- 3. X C
- 4. × D

Mathematics

Number of Questions:

55

Section Marks:

85.0

Q.11 to Q.35 carry 1 mark each & Q.36 to Q.65 carry 2 marks each.

Question Number: 11 Question Type: NAT

Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map defined by

T(x, y, z, w) = (x + z, 2x + y + 3z, 2y + 2z, w).

Then the rank of T is equal to _____

Correct Answer:

3

Question Number: 12 Question Type: NAT

Let M be a 3×3 matrix and suppose that 1, 2 and 3 are the eigenvalues of M. If

$$M^{-1} = \frac{M^2}{\alpha} - M + \frac{11}{\alpha} I_3$$

for some scalar $\alpha \neq 0$, then α is equal to _____

Correct Answer:

6

Question Number: 13 Question Type: NAT

Let M be a 3 \times 3 singular matrix and suppose that 2 and 3 are eigenvalues of M. Then the number of linearly independent eigenvectors of $M^3 + 2M + I_3$ is equal to _____

Correct Answer:

3

Question Number: 14 Question Type: NAT

Let M be a 3×3 matrix such that $M \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix}$ and suppose that $M^3 \begin{pmatrix} 1 \\ -1/2 \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$ for some $\alpha, \beta, \gamma \in \mathbb{R}$. Then $|\alpha|$ is equal to _____

Correct Answer:

27

Question Number: 15 Question Type: MCQ

Let $f:[0,\infty)\to\mathbb{R}$ be defined by

$$f(x) = \int_0^x \sin^2(t^2) dt.$$

Then the function f is

- (A) uniformly continuous on [0, 1) but NOT on $(0, \infty)$
- (B) uniformly continuous on (0, ∞) but NOT on [0, 1)
- (C) uniformly continuous on both [0, 1) and $(0, \infty)$
- (D) neither uniformly continuous on [0,1) nor uniformly continuous on $(0,\infty)$

Options:

Question Number: 16 Question Type: NAT

- Consider the power series $\sum_{n=0}^{\infty} a_n z^n$, where $a_n = \begin{cases} \frac{1}{3^n} & \text{if } n \text{ is even} \\ \frac{1}{5^n} & \text{if } n \text{ is odd.} \end{cases}$
- The radius of convergence of the series is equal to _____

3

Question Number: 17 Question Type: NAT

Let
$$C = \{z \in \mathbb{C} : |z - i| = 2\}$$
. Then $\frac{1}{2\pi} \oint_C \frac{z^2 - 4}{z^2 + 4} dz$ is equal to _____

Correct Answer:

_

Question Number: 18 Question Type: NAT

Let
$$X \sim B(5, \frac{1}{2})$$
 and $Y \sim U(0,1)$. Then $\frac{P(X+Y \leq 2)}{P(X+Y \geq 5)}$ is equal to

Correct Answer:

6

Question Number: 19 Question Type: NAT

Let the random variable X have the distribution function

$$F(x) = \begin{cases} \frac{0}{x} & \text{if } x < 0 \\ \frac{x}{2} & \text{if } 0 \le x < 1 \\ \frac{3}{5} & \text{if } 1 \le x < 2 \\ \frac{1}{2} + \frac{x}{8} & \text{if } 2 \le x < 3 \\ 1 & \text{if } x \ge 3. \end{cases}$$

Then $P(2 \le X < 4)$ is equal to _____

Correct Answer:

0.4

Question Number: 20 Question Type: NAT

Let X be a random variable having the distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{1}{4} & \text{if } 0 \le x < 1 \\ \frac{1}{3} & \text{if } 1 \le x < 2 \\ \frac{1}{2} & \text{if } 2 \le x < \frac{11}{3} \\ 1 & \text{if } x \ge \frac{11}{3}. \end{cases}$$

Then E(X) is equal to _____

Correct Answer:

2.25

Question Number: 21 Question Type: MCQ

In an experiment, a fair die is rolled until two sixes are obtained in succession. The probability that the experiment will end in the fifth trial is equal to

$$(A) \frac{125}{65}$$

(B)
$$\frac{150}{6^5}$$

(C)
$$\frac{175}{6^5}$$

(D)
$$\frac{200}{6^5}$$

Options:

Question Number: 22 Question Type: MCQ

Let $x_1 = 2.2$, $x_2 = 4.3$, $x_3 = 3.1$, $x_4 = 4.5$, $x_5 = 1.1$ and $x_6 = 5.7$ be the observed values of a random sample of size 6 from a $U(\theta - 1, \theta + 4)$ distribution, where $\theta \in (0, \infty)$ is unknown. Then a maximum likelihood estimate of θ is equal to

(A) 1.8

(B) 2.3

(C) 3.1

(D) 3.6

Options:

Question Number: 23 Question Type: MCQ

Let $\Omega = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 < 1\}$ be the open unit disc in \mathbb{R}^2 with boundary $\partial\Omega$. If u(x,y) is the solution of the Dirichlet problem

$$u_{xx} + u_{yy} = 0$$
 in Ω
 $u(x,y) = 1 - 2 y^2$ on $\partial \Omega$,

then $u\left(\frac{1}{2},0\right)$ is equal to

$$(A) - 1$$

(B)
$$\frac{-1}{4}$$

(C)
$$\frac{1}{4}$$

Options:

- 1. 🏁 A
- 2. X B
- 3. 🎺 C
- 4. × D

Question Number: 24 Question Type: NAT

Let $c \in \mathbb{Z}_3$ be such that $\frac{\mathbb{Z}_2[X]}{\langle X^2 + c X + 1 \rangle}$ is a field. Then c is equal to

Correct Answer:

2

Question Number: 25 Question Type: MCQ

Let $V = C^1[0, 1]$, $X = (C[0, 1], \| \|_{\infty})$ and $Y = (C[0, 1], \| \|_{2})$. Then V is

- (A) dense in X but NOT in Y
- (B) dense in Y but NOT in X
- (C) dense in both X and Y
- (D) neither dense in X nor dense in Y

Options:

- 1. 🏁 A
- 2. 🏶 B
- 3. **✔** C
- 4. * D

Question Number: 26 Question Type: NAT

Let $T: (C[0,1], \| \|_{\infty}) \to \mathbb{R}$ be defined by $T(f) = \int_0^1 2x f(x) dx$ for all $f \in C[0,1]$. Then $\|T\|$ is equal to _____

Correct Answer:

1

Question Number: 27 Question Type: MCQ

Let τ_1 be the usual topology on \mathbb{R} . Let τ_2 be the topology on \mathbb{R} generated by

 $\mathcal{B} = \{[a,b) \subset \mathbb{R}: -\infty < a < b < \infty\}$. Then the set $\{x \in \mathbb{R}: 4 \sin^2 x \le 1\} \cup \{\frac{\pi}{2}\}$ is

- (A) closed in (\mathbb{R}, τ_1) but NOT in (\mathbb{R}, τ_2)
- (B) closed in (\mathbb{R}, τ_2) but NOT in (\mathbb{R}, τ_1)
- (C) closed in both (\mathbb{R}, τ_1) and (\mathbb{R}, τ_2)
- (D) neither closed in (\mathbb{R}, τ_1) nor closed in (\mathbb{R}, τ_2)

Options:

- 1. 38 A
- 2. 🏶 B
- 3. 🗸 C
- 4. 🗱 D

Question Number: 28 Question Type: MCQ

Let *X* be a connected topological space such that there exists a non-constant continuous function $f: X \to \mathbb{R}$, where \mathbb{R} is equipped with the usual topology. Let $f(X) = \{f(x) : x \in X\}$. Then

- (A) X is countable but f(X) is uncountable
- (B) f(X) is countable but X is uncountable
- (C) both f(X) and X are countable
- (D) both f(X) and X are uncountable

Options:

- 1. 🏁 A
- 2. 🗱 B
- 3. X C
- 4. 🖋 D

Question Number: 29 Question Type: MCQ

Let d_1 and d_2 denote the usual metric and the discrete metric on \mathbb{R} , respectively.

Let $f: (\mathbb{R}, d_1) \to (\mathbb{R}, d_2)$ be defined by $f(x) = x, x \in \mathbb{R}$. Then

- (A) f is continuous but f^{-1} is NOT continuous
- (B) f^{-1} is continuous but f is NOT continuous
- (C) both f and f^{-1} are continuous
- (D) neither f nor f^{-1} is continuous

Options:

- 1. 🛎 A
- 2. 🗸 B
- 3. 🏶 C
- 4. * D

Question Number: 30 Question Type: NAT

If the trapezoidal rule with single interval [0, 1] is exact for approximating the integral $\int_0^1 (x^3 - c x^2) dx$, then the value of c is equal to _____

1.5

Question Number: 31 Question Type: NAT

Suppose that the Newton-Raphson method is applied to the equation $2x^2 + 1 - e^{x^2} = 0$ with an initial approximation x_0 sufficiently close to zero. Then, for the root x = 0, the order of convergence of the method is equal to _____

Correct Answer:

1

Question Number: 32 Question Type: NAT

The minimum possible order of a homogeneous linear ordinary differential equation with real constant coefficients having $x^2 \sin(x)$ as a solution is equal to ______

Correct Answer:

6

Question Number: 33 Question Type: MCQ

The Lagrangian of a system in terms of polar coordinates (r, θ) is given by

$$L = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - m g r (1 - \cos(\theta)),$$

where m is the mass, g is the acceleration due to gravity and \dot{s} denotes the derivative of s with respect to time. Then the equations of motion are

(A)
$$2\ddot{r} = r\dot{\theta}^2 - g(1 - \cos(\theta)), \frac{d}{dt}(r^2\dot{\theta}) = -g r \sin(\theta)$$

(B)
$$2\ddot{r} = r\dot{\theta}^2 + g(1 - \cos(\theta)), \frac{d}{dt}(r^2\dot{\theta}) = -gr\sin(\theta)$$

(C)
$$2\ddot{r} = r\dot{\theta}^2 - g(1 - \cos(\theta)), \frac{d}{dt}(r^2\dot{\theta}) = gr\sin(\theta)$$

(D)
$$2\ddot{r} = r\dot{\theta}^2 + g(1 - \cos(\theta)), \frac{d}{dt}(r^2\dot{\theta}) = gr\sin(\theta)$$

Options:

Question Number: 34 Question Type: NAT

If y(x) satisfies the initial value problem

$$(x^2 + y)dx = x dy, y(1) = 2,$$

then y(2) is equal to

6

Question Number: 35 Question Type: NAT

It is known that Bessel functions $J_n(x)$, for $n \ge 0$, satisfy the identity

$$e^{\frac{x}{2}(t-\frac{1}{t})} = J_0(x) + \sum_{n=1}^{\infty} J_n(x) \left(t^n + \frac{(-1)^n}{t^n}\right)$$

for all t > 0 and $x \in \mathbb{R}$. The value of $J_0\left(\frac{\pi}{3}\right) + 2\sum_{n=1}^{\infty} J_{2n}\left(\frac{\pi}{3}\right)$ is equal to _____

Correct Answer:

1

Question Number: 36 Question Type: MCQ

Let X and Y be two random variables having the joint probability density function

$$f(x,y) = \begin{cases} 2 & \text{if } 0 < x < y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Then the conditional probability $P\left(X \le \frac{2}{3} \mid Y = \frac{3}{4}\right)$ is equal to

(A)
$$\frac{5}{9}$$

(B)
$$\frac{2}{3}$$

(C)
$$\frac{7}{9}$$

(D)
$$\frac{8}{9}$$

Options:

Question Number: 37 Question Type: NAT

Let $\Omega = (0,1]$ be the sample space and let $P(\cdot)$ be a probability function defined by

$$P((0,x]) = \begin{cases} \frac{x}{2} & \text{if } 0 \le x < \frac{1}{2} \\ x & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Then $P\left(\left\{\frac{1}{2}\right\}\right)$ is equal to _____

Correct Answer:

Question Number: 38 Question Type: NAT

Let X_1, X_2 and X_3 be independent and identically distributed random variables with $E(X_1) = 0$ and $E(X_1^2) = \frac{15}{4}$. If $\psi : (0, \infty) \to (0, \infty)$ is defined through the conditional expectation

$$\psi(t) = E(X_1^2 \mid X_1^2 + X_2^2 + X_3^2 = t), \ t > 0 \; ,$$

then $E(\psi((X_1 + X_2)^2))$ is equal to _____

Correct Answer:

2.5

Question Number: 39 Question Type: NAT

Let $X \sim \text{Poisson}(\lambda)$, where $\lambda > 0$ is unknown. If $\delta(X)$ is the unbiased estimator of $g(\lambda) = e^{-\lambda}(3\lambda^2 + 2\lambda + 1)$, then $\sum_{k=0}^{\infty} \delta(k)$ is equal to _____

Correct Answer:

9

Question Number: 40 Question Type: NAT

Let $X_1, ..., X_n$ be a random sample from $N(\mu, 1)$ distribution, where $\mu \in \{0, \frac{1}{2}\}$. For testing the null hypothesis $H_0: \mu = 0$ against the alternative hypothesis $H_1: \mu = \frac{1}{2}$, consider the critical region

$$R = \left\{ (x_1, x_2, ..., x_n) : \sum_{i=1}^n x_i > c \right\},\,$$

where c is some real constant. If the critical region R has size 0.025 and power 0.7054, then the value of the sample size n is equal to

Correct Answer:

25

Question Number: 41 Question Type: MCQ

Let X and Y be independently distributed central chi-squared random variables with degrees of freedom $m \ (\ge 3)$ and $n \ (\ge 3)$, respectively. If $E\left(\frac{X}{Y}\right) = 3$ and m + n = 14, then $E\left(\frac{Y}{X}\right)$ is equal to

(A)
$$\frac{2}{7}$$

(B)
$$\frac{3}{7}$$

(C)
$$\frac{4}{7}$$

(D)
$$\frac{5}{7}$$

Options:

Question Number: 42 Question Type: NAT

Let $X_1, X_2, ...$ be a sequence of independent and identically distributed random variables with

$$P(X_1 = 1) = \frac{1}{4}$$
 and $P(X_1 = 2) = \frac{3}{4}$. If $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, for $n = 1, 2, ...$, then

 $\lim_{n\to\infty} P(\overline{X}_n \le 1.8)$ is equal to _____

Correct Answer:

1

Question Number: 43 Question Type: MCQ

Let $u(x,y) = 2f(y)\cos(x-2y)$, $(x,y) \in \mathbb{R}^2$, be a solution of the initial value problem

$$2u_x + u_y = u$$

$$u(x, 0) = \cos(x).$$

Then f(1) is equal to

(A)
$$\frac{1}{2}$$

(B)
$$\frac{e}{2}$$

(D)
$$\frac{3e}{2}$$

Options:

Question Number: 44 Question Type: NAT

Let u(x,t), $x \in \mathbb{R}$, $t \ge 0$, be the solution of the initial value problem

$$u_{tt} = u_{xx}$$

$$u(x, 0) = x$$

$$u_t(x, 0) = 1.$$

Then u(2,2) is equal to _____

Correct Answer:

4

Question Number: 45 Question Type: NAT

Let $W = \text{Span}\left\{\frac{1}{\sqrt{2}}(0,0,1,1), \frac{1}{\sqrt{2}}(1,-1,0,0)\right\}$ be a subspace of the Euclidean space \mathbb{R}^4 . Then the square of the distance from the point (1,1,1,1) to the subspace W is equal to _____

Correct Answer:

Question Number: 46 Question Type: NAT

Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear map such that the null space of T is

$$\{(x, y, z, w) \in \mathbb{R}^4 : x + y + z + w = 0\}$$

and the rank of $(T-4I_4)$ is 3. If the minimal polynomial of T is $x(x-4)^{\alpha}$,

then α is equal to

Correct Answer:

Question Number: 47 Question Type: MCQ

Let M be an invertible Hermitian matrix and let $x, y \in \mathbb{R}$ be such that $x^2 < 4y$. Then

- (A) both $M^2 + x M + y I$ and $M^2 x M + y I$ are singular
- (B) $M^2 + x M + y I$ is singular but $M^2 x M + y I$ is non-singular
- (C) $M^2 + x M + y I$ is non-singular but $M^2 x M + y I$ is singular
- (D) both $M^2 + x M + y I$ and $M^2 x M + y I$ are non-singular

Options:

- 1. 风 A
- 3 B
- 3. * C
- 4. 🗸 D

Question Number: 48 Question Type: MCQ

Let $G = \{e, x, x^2, x^3, y, xy, x^2y, x^3y\}$ with o(x) = 4, o(y) = 2 and $xy = yx^3$. Then the number of elements in the center of the group G is equal to

(A) 1

(D) 8

Options:

- 1. 🗱 A
- 2. 🖋 B
- 3. X C
- 4. * D

Question Number: 49 Question Type: NAT

The number of ring homomorphisms from $\mathbb{Z}_2 \times \mathbb{Z}_2$ to \mathbb{Z}_4 is equal to

Correct Answer:

Question Number: 50 Question Type: MCQ

Let $p(x) = 9x^5 + 10x^3 + 5x + 15$ and $q(x) = x^3 - x^2 - x - 2$ be two polynomials in $\mathbb{Q}[x]$. Then, over \mathbb{Q} ,

- (A) p(x) and q(x) are both irreducible
- (B) p(x) is reducible but q(x) is irreducible
- (C) p(x) is irreducible but q(x) is reducible
- (D) p(x) and q(x) are both reducible

Options:

- 1. 🏁 A
- 2. 🏶 B
- 3. 🗸 C.
- 4. × D

Question Number: 51 Question Type: NAT

Consider the linear programming problem

Maximize 3x + 9y, subject to $2y - x \le 2$ $3y - x \ge 0$ $2x + 3y \le 10$

 $x, y \geq 0$.

Then the maximum value of the objective function is equal to

Correct Answer:

24

Question Number: 52 Question Type: MCQ

Let $S = \{(x, \sin \frac{1}{x}) : 0 < x \le 1\}$ and $T = S \cup \{(0,0)\}$. Under the usual metric on \mathbb{R}^2 ,

- (A) S is closed but T is NOT closed
- (B) T is closed but S is NOT closed
- (C) both S and T are closed
- (D) neither S nor T is closed

Options:

- 1. 🏶 A
- 2. X B
- 3. X C
- 4. 🗸 D

Question Number: 53 Question Type: MCQ

Let
$$H = \left\{ (x_n) \in \ell_2 : \sum_{n=1}^{\infty} \frac{x_n}{n} = 1 \right\}$$
. Then H

(A) is bounded

(B) is closed

(C) is a subspace

(D) has an interior point

Options:

- 1. * A
- 2. 🖋 B

- 3 % 0
- 4. * D

Question Number: 54 Question Type: MCQ

Let *V* be a closed subspace of $L^2[0,1]$ and let $f,g \in L^2[0,1]$ be given by f(x) = x and $g(x) = x^2$. If $V^{\perp} = \text{Span} \{f\}$ and Pg is the orthogonal projection of g on V, then $(g - Pg)(x), x \in [0,1]$, is

- (A) $\frac{3}{4}x$
- (B) $\frac{1}{4}x$
- (C) $\frac{3}{4}x^2$
- (D) $\frac{1}{4}x^2$

Options:

- 1. 🖋 A
- 2 **%** B
- 3. **%** C
- 4. 🏶 D

Question Number: 55 Question Type: NAT

Let p(x) be the polynomial of degree at most 3 that passes through the points (-2, 12), (-1, 1), (0,2) and (2, -8). Then the coefficient of x^3 in p(x) is equal to _____

Correct Answer:

-2

Question Number: 56 Question Type: NAT

If, for some $\alpha, \beta \in \mathbb{R}$, the integration formula

$$\int_0^2 p(x)dx = p(\alpha) + p(\beta)$$

holds for all polynomials p(x) of degree at most 3, then the value of $3(\alpha - \beta)^2$ is equal to _____

Correct Answer:

4

Question Number: 57 Question Type: NAT

Let y(t) be a continuous function on $[0, \infty)$ whose Laplace transform exists. If y(t) satisfies

$$\int_0^t (1-\cos(t-\tau)) y(\tau) d\tau = t^4,$$

then y(1) is equal to

Correct Answer:

Question Number: 58 Question Type: NAT

Consider the initial value problem

$$x^2y'' - 6y = 0$$
, $y(1) = \alpha$, $y'(1) = 6$.

If $y(x) \to 0$ as $x \to 0^+$, then α is equal to _____

Correct Answer:

2

Question Number: 59 Question Type: MCQ

Define $f_1, f_2: [0,1] \to \mathbb{R}$ by

$$f_1(x) = \sum_{n=1}^{\infty} \frac{x \sin(n^2 x)}{n^2}$$
 and $f_2(x) = \sum_{n=1}^{\infty} x^2 (1 - x^2)^{n-1}$

Then

- (A) f_1 is continuous but f_2 is NOT continuous
- (B) f_2 is continuous but f_1 is NOT continuous
- (C) both f₁ and f₂ are continuous
- (D) neither f₁ nor f₂ is continuous

Options:

Question Number: 60 Question Type: NAT

Consider the unit sphere $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ and the unit normal vector $\hat{n} = (x, y, z)$ at each point (x, y, z) on S. The value of the surface integral

$$\iint_{S} \left\{ \left(\frac{2x}{\pi} + \sin(y^{2}) \right) x + \left(e^{z} - \frac{y}{\pi} \right) y + \left(\frac{2z}{\pi} + \sin^{2} y \right) z \right\} d\sigma$$

is equal to

Correct Answer:

•

Question Number: 61 Question Type: NAT

Let $D = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 1000, 1 \le y \le 1000\}$. Define

$$f(x,y) = \frac{xy}{2} + \frac{500}{x} + \frac{500}{y}.$$

Then the minimum value of f on D is equal to

150

Question Number: 62 Question Type: MCQ

Let $\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$. Then there exists a non-constant analytic function f on \mathbb{D} such that for all n = 2, 3, 4, ...

(A) $f\left(\frac{\sqrt{-1}}{n}\right) = 0$

(B) $f\left(\frac{1}{n}\right) = 0$

(C) $f\left(1 - \frac{1}{n}\right) = 0$

(D) $f\left(\frac{1}{2} - \frac{1}{n}\right) = 0$

Options:

- 1. 🏶 A
- 2. **¾** B
- 3. 🗸 C
- 4. 🗱 D

Question Number: 63 Question Type: NAT

Let $\sum_{n=-\infty}^{\infty} a_n z^n$ be the Laurent series expansion of $f(z) = \frac{1}{2z^2-13z+15}$ in the annulus $\frac{3}{2} < |z| < 5$. Then $\frac{a_1}{a_2}$ is equal to _____

Correct Answer:

5

Question Number: 64 Question Type: NAT

The value of $\frac{i}{4-\pi} \int_{|z|=4} \frac{dz}{z \cos(z)}$ is equal to _____

Correct Answer:

2

Question Number: 65 Question Type: MCQ

Suppose that among all continuously differentiable functions y(x), $x \in \mathbb{R}$, with y(0) = 0 and $y(1) = \frac{1}{2}$, the function $y_0(x)$ minimizes the functional

$$\int_0^1 (e^{-(y'-x)} + (1+y)y') dx.$$

Then $y_0\left(\frac{1}{2}\right)$ is equal to

(A) 0

(B) $\frac{1}{8}$

(C) $\frac{1}{4}$

(D) $\frac{1}{2}$

Options:

1. 🏁 A

4. × D

