
Chapter 2: Flow Graphs and Path Testing

Introduction:

In this section we will look in detail about four specification-based or black box

techniques. These techniques are needed to design test cases. The specification based

technique of use case testing also shall be covered.

Test analysts and technical test analysts lay major attention to design, implement

and execute tests using various testing techniques. Specification-based techniques are

one of such techniques. Specification-based techniques are popular by more refined

names like behavior-based techniques or Black Box test design techniques. These

techniques can be used for any level of test activity. These are used by both test

analysts and technical test analysts, but exploited mainly by the test analysts.

“Code is designed and developed from the software requirements”

Specifications (SRS) documents are the primary input documents, likewise

specification-based test techniques too are based upon the test conditions & test cases

derived from the SRS documents.

We can make our specifications that can be in the form of text documents,

pictures, models, compilation of features, or any other document which could help us in

understanding as to what we expect from the software & how it is going to accomplish

that.

Test coverage is represented by the percentage of the specified items addressed

by the designed tests. Coverage of all the specified items does not necessarily indicate

complete test coverage, but it does indicate that we have addressed what was

specified. For further coverage, we may need to look for additional information.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Fig 1: Specification Based Test Design Techniques

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

•

•

•

•

Basic

Path T

Definit

P

algorithm

granular

• The Spe

• The Dat

• There ar

Exampl

Fig 2: S

• Path Te

selecting

s conce

Testing:

tion:

Path Testin

m and NOT

rity.

ecifications

ta is defined

re no defec

e:

Sample Exa

esting is th

g a set of

epts of p

ng is a str

T based on

are accura

d and acces

cts that exis

mple for Pa

he name gi

test paths

path test

ructural tes

n the specif

ate

ssed prope

st in the sys

ath Testing

iven to a f

s through t

ting:

sting meth

fications. It

erly

stem other t

family of te

the progra

hod based

can be ap

than those

est techniq

m. If the s

on the s

pplied at dif

that affect

ques based

set of path

ource cod

fferent leve

control flow

d on judicio

hs are pro

e or

els of

w

ously

perly

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

chosen, then we have achieved some measure of test thoroughness. For example, pick

enough paths to assure that every source statement has been executed at least once.

• Path testing techniques are the oldest of all structural test techniques.

• Path testing is most applicable to new software for unit testing. It is a structural

technique.

• It requires complete knowledge of the program's structure.

• It is most often used by programmers to unit test their own code.

• The effectiveness of path testing rapidly deteriorates as the size of the software

aggregate under test increases.

Path Testing Techniques:

Control Flow Graph (CFG)

The Program is converted into Flow graphs by representing the code into nodes,

regions and edges.

Decision to Decision path (D-D)

The CFG can be broken into various Decision to Decision paths and then

collapsed into individual nodes.

Independent (basis) paths

Independent path is a path through a DD-path graph which cannot be

reproduced from other paths by other methods.

Path Testing Concepts:

• Path is a sequence of statements starting at an entry, junction or decision and ending at

another, or possibly the same junction or decision or an exit point.

• Link is a single process (block) in between two nodes.

• Node is a junction or decision.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• Segment is a sequence of links. A path consists of many segments.

• Path segment is a succession of consecutive links that belongs to the same path.

(3,4,5)

• Length of a path is measured by # of links in the path or # of nodes traversed.

• Name of a path is the set of the names of the nodes along the path. (1,2,3 4,5, 6),

(1,2,3,4, 5,6,7, 5,6,7, 5,6)

• Path-Testing Path is an “entry to exit” path through a processing block

Predicates:

The logical function evaluated at a decision is called Predicate. The direction taken

at a decision depends on the value of decision variable. Some examples are: A>0,

x+y>=90.......

Path Predicate:

A predicate associated with a path is called a Path Predicate. For example, "x is

greater than zero", "x+y>=90", "w is either negative or equal to 10 is true" is a sequence

of predicates whose truth values will cause the routine to take a specific path.

Multiway branches:

The path taken through a multi-way branch such as a computed GOTO's, case

statement, or jump tables cannot be directly expressed in TRUE/FALSE terms.

Although, it is possible to describe such alternatives by using multi valued logic, an

expedient (practical approach) is to express multi-way branches as an equivalent set of

if..then..else statements.

For example a three way case statement can be written as: If case=1 DO A1 ELSE

(IF Case=2 DO A2 ELSE DO A3 ENDIF) ENDIF.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Inputs:

In testing, the word input is not restricted to direct inputs, such as variables in a

subroutine call, but includes all data objects referenced by the routine whose values are

fixed prior to entering it. For example, inputs in a calling sequence, objects in a data

structure, values left in registers, or any combination of object types. The input for a

particular test is mapped as a one dimensional array called as an Input Vector.

Predicate interpretation:

 The simplest predicate depends only on input variables. For example if x1,x2 are

inputs, the predicate might be x1+x2>=7, given the values of x1 and x2 the direction

taken through the decision is based on the predicate is determined at input time and

does not depend on processing.

Another example, assume a predicate x1+y>=0 that along a path prior to reaching

this predicate we had the assignment statement y=x2+7. Although our predicate

depends on processing, we can substitute the symbolic expression for y to obtain an

equivalent predicate x1+x2+7>=0.

The act of symbolic substitution of operations along the path in order to express the

predicate solely in terms of the input vector is called predicate interpretation. Sometimes

the interpretation may depend on the path; for example,

 INPUT X

 ON X GOTO A, B, C, ...

 A: Z := 7 @ GOTO HEM

 B: Z := -7 @ GOTO HEM

 C: Z := 0 @ GOTO HEM

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 HEM: DO SOMETHING

 THEN: IF Y + Z > 0 GOTO ELL ELSE GOTO EMM

The predicate interpretation at HEN depends on the path we took through the first

multi way branch. It yields for the three cases respectively, if Y+7>0, Y-7>0, Y>0. The

path predicates are the specific form of the predicates of the decisions along the

selected path after interpretation.

INDEPENDENCE OF VARIABLES AND PREDICATES:

 The path predicates take on truth values based on the values of input variables,

either directly or indirectly. If a variable's value does not change as a result of

processing, that variable is independent of the processing. If the variable's value can

change as a result of the processing, the variable is process dependent.

 A predicate whose truth value can change as a result of the processing is said to

be process dependent and one whose truth value does not change as a result of the

processing is process independent. Process dependence of a predicate does not

always follow from dependence of the input variables on which that predicate is based.

Correlation of Variables and Predicates:

Two variables are correlated if every combination of their values cannot be

independently specified. Variables whose values can be specified independently without

restriction are called uncorrelated. A pair of predicates whose outcomes depend on one

or more variables in common are said to be correlated predicates.

 For example, the predicate X==Y is followed by another predicate X+Y == 8. If we

select ‘X’ and ‘Y’ values to satisfy the first predicate, we might have forced the 2nd

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

predicate's truth value to change. Every path through a routine is achievable only if all

the predicates in that routine are uncorrelated.

Path Predicate Expressions:

 A path predicate expression is a set of Boolean expressions, all of which must be

satisfied to achieve the selected path.

 Example:

X1+3X2+17>=0

 X3=17

 X4-X1>=14X2

 Any set of input values that satisfy all of the conditions of the path predicate

expression will force the routine to the path. Sometimes a predicate can have an OR in

it.

 Example:

 A: X5 > 0

 B: X1 + 3X2 + 17 >= 0

 C: X3 = 17

 D: X4 - X1 >= 14X2

 E: X6 < 0

 B: X1 + 3X2 + 17 >= 0

 C: X3 = 17

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 D: X4 - X1 >= 14X2

 Boolean algebra notation to denote the Boolean expression:

 ABCD+EBCD=(A+E)BCD

Predicate Coverage:

 Compound Predicate: Predicates of the form A OR B, A AND B and more

complicated Boolean expressions are called as compound predicates.

 Sometimes even a simple predicate becomes compound after interpretation.

Example: the predicate if (x=17) whose opposite branch is if x.NE.17 which is equivalent

to x>17 . Or. X<17.

 Predicate coverage is achieving of all possible combinations of truth values

corresponding to the selected path have been explored under some test.

 As achieving the desired direction at a given decision could still hide bugs in the

associated predicates.

Path Sensitizing:

• We want to select and test enough paths to achieve a satisfactory notion of test

completeness such as C1+C2.

• Extract the programs control flow graph and select a set of tentative covering paths.

• For any path in that set, interpret the predicates along the path as needed to

express them in terms of the input vector. In general individual predicates are

compound or may become compound as a result of interpretation.

• Trace the path through, multiplying the individual compound predicates to achieve a

Boolean expression such as

(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• Multiply out the expression to achieve a sum of products form:

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJKL

• Each product term denotes a set of inequalities that if solved will yield an input

vector that will drive the routine along the designated path.

• Solve any one of the inequality sets for the chosen path and you have found a set

of input values for the path.

• If you can find a solution, then the path is achievable.

• If you can’t find a solution to any of the sets of inequalities, the path is un

achievable.

• The act of finding a set of solutions to the path predicate expression is called PATH

SENSITIZATION.

o HEURISTIC PROCEDURES FOR SENSITIZING PATHS:

• This is a workable approach, instead of selecting the paths without considering how

to sensitize, attempt to choose a covering path set that is easy to sensitize and pick

hard to sensitize paths only as you must to achieve coverage.

• Identify all variables that affect the decision.

• Classify the predicates as dependent or independent.

• Start the path selection with un correlated, independent predicates.

• If coverage has not been achieved using independent uncorrelated predicates,

extend the path set using correlated predicates.

• If coverage has not been achieved extend the cases to those that involve

dependent predicates.

• Last, use correlated, dependent predicates.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Path I

• Path

achie

• Co-in

desir

Instrume

 instrumen

eved by the

ncidental C

red outcom

entation

ntation is w

e intended p

Correctness

e for wrong

Fig 3: P

n:

what we h

path.

s: The coin

g reason.

ath sensiti

have to do

ncidental co

izing

o to confirm

orrectness

m that the

stands for

e outcome

r achieving

was

g the

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

T

input va

Therefor

coverag

would b

outcome

The typ

Interpr

• An

reco

etc.

• If we

to c

inte

• The

fact

The above f

lue (X = 16

re, the tes

e. For exa

be the sam

e was achie

pes of ins

retive Tra

interpretive

ords the int

e run the te

confirm the

nded path.

e trouble wi

, the typica

F

figure is an

6), yields th

sts chosen

ample, the f

me. Path Ins

eved by the

strument

ace Progr

e trace pro

termediate

ested routin

outcome

th traces is

al trace pro

Fig 4: Coinc

n example o

he same ou

n this way

five cases

strumentati

e intended p

tation me

ram:

gram is on

values of

ne under a

and, furthe

s that they

ogram prov

idental Cor

of a routine

utcome (Y =

 will not t

could be t

ion is what

path.

ethods in

ne that exe

all calculat

trace, then

ermore, to

give us fa

vides so m

rrectness

e that, for t

= 2) no ma

tell us wh

totally jumb

t we have

clude:

ecutes ever

tions, the s

 we have a

confirm tha

r more info

much inform

the (unfortu

tter which c

ether we

bled and st

to do to c

ry stateme

statement la

all the inform

at it was a

ormation th

mation that

unately) cho

case we se

have achie

till the outc

confirm tha

nt in order

abels trave

mation we n

achieved by

an we nee

confirming

osen

elect.

eved

come

t the

r and

ersed

need

y the

ed. In

g the

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

path

han

Traver

• A sim

mark

• Nam

• Instru

• The

if the

We i

middle o

outcome

Two Li

• The

mark

h from its m

d to confirm

rsal Marke

mple and e

ker.

me every link

ument the l

succession

ere are no b

intended to

of the m lin

es will be th

ink Marke

solution to

kers per link

massive ou

m the path.

er or Link

effective fo

k by a lowe

links so tha

n of letters p

bugs, exact

Fig 5

o traverse

nk, we go to

he same an

er Method

o the prob

k: one at th

utput dump

k Marker:

rm of instr

er case lette

at the link's

produced in

ly correspo

5: Single Link

the ikm pa

o process

nd we won't

d:

blem of sin

e beginning

is more w

:

umentation

er.

name is rec

n going from

ond to the p

k Marker Instr

ath, but bec

B. If coinci

t know abou

ngle link m

g of each lin

work than si

n is called

corded whe

m the routin

path name.

rumentation

cause of a

dental corr

ut the bug.

marker met

nk and on a

imulating th

a traversal

en the link i

ne's entry to

a rampaging

rectness is

hod is to

at the end.

he compute

 marker or

is executed

o its exit sho

g GOTO in

against us

implement

er by

r link

d.

ould,

n the

s, the

 two

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

• The two link markers now specify the path name and confirm both the beginning and

end of the link.

Link Counter:

 A less disruptive (and less informative) instrumentation method is based on

counters.

• Path testing based on structure is a powerful unit-testing tool. With suitable

interpretation, it can be used for system Instead of a unique link name to be pushed into

a string when the link is traversed; we simply increment a link counter. We now confirm

that the path length is as expected. The same problem that led us to double link

markers also leads us to the double link counter functional tests.

• The objective of path testing is to execute enough tests to assure that, as a minimum,

C1 + C2 have been achieved.

• Select paths as deviations from the normal paths, starting with the simplest, most

familiar and most direct paths from the entry to the exit. Add paths as needed to achieve

coverage.

• Add paths to cover extreme cases for loops and combinations of loops: no looping,

once, twice, one less than the maximum, the maximum. Attempt forbidden cases.

• Find path-sensitizing input-data sets for each selected path. If a path is unachievable,

choose another path that will also achieve coverage. But first ask yourself why

seemingly sensible cases lead to unachievable paths.

• Use instrumentation and tools to verify the path and to monitor coverage.

• Incorporate the notion of coverage (especially C2) into all reviews and inspections.

Make the ability to achieve C2 a major review agenda item.

• Design test cases and path from the design flow graph or PDL specification but

sensitize paths from the code as part of desk checking. Do covering test case designs

either prior to coding or concurrently with coding.

• Document all tests and expected test results as copiously as you would document code.

Put test suites under the same degree of configuration control used for the software it

tests. Treat each path like a subroutine. Predict and document the outcome for the

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

stated inputs and the path trace (or name by links). Also document any significant

environmental factors and preconditions.

• Your tests must be reproducible so that they can serve a diagnostic purpose if they

reveal a bug. An undocumented test cannot be reproduced. Automate test execution.

• Be creatively stupid when conducting tests. Every deviation from the predicted outcome

or path must be explained. Every deviation must lead to either a test change, a code

change, or a conceptual change.

• A test that reveals a bug has succeeded, not failed.

Application of Path Testing

Path testing methods are mainly used in unit testing. However to create an

environment in order to provide required inputs and also to receive the outputs from

such units, we need to do test harness in order to create environment with required test

stubs and test drivers.

In order to perform testing in sub routines that need to be integrated, we have to

think about paths within the sub routine; then to achieve test coverage both statement

coverage (C1) and branch coverage (C2) we need to create control flow graph, arrive

at equivalent predicate notation representation, list predicate paths, identify predicate,

identify predicate values for each of identified paths and finally select appropriate input

values that would result in required predicate values and their by execute corresponding

path.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

