

UNIT – III: Data Link layer

To provide service to the network layer, the data link layer must use the service

provided to it by the physical layer. What the physical layer does is accept a raw bit stream

and attempt to deliver it to the destination. This bit stream is not guaranteed to be error free.

The number of bits received may be less than, equal to, or more than the number of bits

transmitted, and they may have different values. It is up to the data link layer to detect and, if

necessary, correct errors. The usual approach is for the data link layer to break the bit stream

up into discrete frames and compute the checksum for each frame. When a frame arrives at

the destination, the checksum is recomputed. If the newly computed checksum is different

from the one contained in the frame, the data link layer knows that an error has

occurred and takes steps to deal with it.

 Breaking the bit stream up into frames is more difficult than it at first appears.

One way to achieve this framing is to insert time gaps between frames, much like the spaces

between words in ordinary text. However, networks rarely make any guarantees about

timing, so it is possible these gaps might be squeezed out or other gaps might be inserted

during transmission. Since it is too risky to count on timing to mark the start and end of each

frame, other methods have been devised. We will look at four methods:

1. Character count.

2. Flag bytes with byte stuffing.

3. Starting and ending flags, with bit stuffing.

4. Physical layer coding violations.

The first framing method uses a field in the header to specify the number of characters in

the frame. When the data link layer at the destination sees the character count, it knows

how many characters follow and hence where the end of the frame is. This technique is shown

in Fig.3.1(a) for four frames of sizes 5, 5, 8, and 8 characters, respectively.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Fig.3.1 A character stream. (

The trouble with this algorithm

example, if the character count of

destination will get out of syn

frame. Even if the checksum

still has no way of telling wh

asking for a retransmission do

many characters to skip over to

character count method is rare

The second framing method

by having each frame start and

bytes were different, but in re

byte, as both the starting and

the receiver ever loses synchr

the current frame. Two consec

next one.

(a) Without errors. (b) With one error.

hm is that the count can be garbled by a tr

ount of 5 in the second frame of Fig. 3.1(

nchronization and will be unable to locat

 is incorrect so the destination knows that

where the next frame starts. Sending a frame

does not help either, since the destination

r to get to the start of the retransmission.

ely used anymore.

 gets around the problem of resynchroni

nd end with special bytes. In the past, the

ecent years most protocols have used the s

 ending delimiter, as shown in Fig. 3.2(a) a

ronization, it can just search for the flag b

ecutive flag bytes indicate the end of one

transmission error. For

. 3.1(b) becomes a 7, the

te the start of the next

that the frame is bad, it

me back to the source

on does not know how

on. For this reason, the

ronization after an error

the starting and ending

same byte, called a flag

as FLAG. In this way, if

byte to find the end of

 frame and start of the

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Fig. 3.2 (a) A frame delimite

and after byte stuffing.

A serious problem occurs with

or floating-point numbers, are b

pattern occurs in the data. This

solve this problem is to have

just before each ''accidental''

removes the escape byte bef

called byte stuffing or character

one in the data by the absence

Of course, the next question is:

data? The answer is that it, to

part of an escape sequence, wh

ed by flag bytes (b) Four examples of by

with this method when binary data, such

re being transmitted. It may easily happen

This situation will usually interfere with the

ve the sender's data link layer insert a spec

 flag byte in the data. The data link layer

fore the data are given to the network la

ter stuffing. Thus, a framing flag byte can

e or presence of an escape byte before it.

t question is: What happens if an escape byte occurs in the midd

too, is stuffed with an escape byte. Thus, an

whereas a doubled one indicates that a sin

yte sequences before

such as object programs

 that the flag byte's bit

the framing. One way to

cial escape byte (ESC)

r on the receiving end

ayer. This technique is

 be distinguished from

rs in the middle of the

ny single escape byte is

single escape occurred

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

naturally in the data. Some ex

delivered after de stuffing is ex

The byte-stuffing scheme depict

PPP protocol that most home

provider.

A major disadvantage of using

characters. Not all character

characters. As networks developed;

in the framing mechanism beca

developed to allow arbitrary si

The new technique allows

allows character codes with an

frame begins and ends with a

sender's data link layer encounte

bit into the outgoing bit strea

escape byte is stuffed into the out

When the receiver sees five c

de stuffs (i.e., deletes) the 0 bi

layer in both computers, so is

this flag is transmitted as 011111010 but stor

Figure 3.3 Bit stuffing. (a) The

as they are stored in the receive

xamples are shown in Fig. 3.3(b). In all cas

xactly the same as the original byte sequen

picted in Fig. 3.3 is a slight simplification

home computers use to communicate with

using this framing method is that it is closely t

ter codes use 8-bit characters. For example,

loped; the disadvantages of embedding the

ecame more and more obvious, so a new

sized characters.

ows data frames to contain an arbitrary num

n arbitrary number of bits per character. I

a special bit pattern, 01111110 (in fact, a fla

ounters five consecutive 1s in the data, it auto

eam. This bit stuffing is analogous to byte

o the outgoing character stream before a flag by

onsecutive incoming 1 bits, followed by a

bit. Just as byte stuffing is completely trans

is bit stuffing. If the user data contain the fl

s 011111010 but stored in the receiver's memor

 original data. (b) The data as they appear on

iver's memory after destuffing.

ses, the byte sequence

nce.

 of the one used in the

with their Internet service

y tied to the use of 8-bit

e, UNICODE uses 16-bit

e character code length

w technique had to be

y number of bits and

It works like this. Each

ag byte). Whenever the

utomatically stuffs a 0

te stuffing, in which an

yte in the data.

y a 0 bit, it automatically

nsparent to the network

flag pattern, 01111110,

ry as 01111110.

on the line. (c) The data

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

With bit stuffing, the boundary between two frames can be unambiguously recognized by

the flag pattern. Thus, if the receiver loses track of where it is, all it has to do is scan the

input for flag sequences, since they can only occur at frame boundaries and never within the

data. The last method of framing is only applicable to networks in which the encoding on the

physical medium contains some redundancy. For example, some LANs encode 1 bit of data by

using 2 physical bits. Normally, a 1 bit is a high-low pair and a 0 bit is a low-high pair. The

scheme means that every data bit has a transition in the middle, making it easy for the

receiver to locate the bit boundaries. The combinations high-high and low-low are not used

for data but are used for delimiting frames in some protocols.

As a final note on framing, many data link protocols use combination of a character

count with one of the other methods for extra safety. When a frame arrives, the count field is

used to locate the end of the frame. Only if the appropriate delimiter is present at that

position and the checksum is correct is the frame accepted as valid. Otherwise, the input

stream is scanned for the next delimiter.

3.2 Error correction and detection at the data link layer.

3.2.1 Error-Correcting Codes:

 Network designers have developed two basic strategies for dealing with errors. One

way is to include enough redundant information along with each block of data sent, to enable

the receiver to deduce what the transmitted data must have been. The other way is to include

only enough redundancy to allow the receiver to deduce that an error occurred, but not

which error, and have it request a retransmission. The former strategy uses error-correcting

codes and the latter uses error-detecting codes. The use of error-correcting codes is often

referred to as forward error correction.

 Each of these techniques occupies a different ecological niche. On channels that are

highly reliable, such as fiber, it is cheaper to use an error detecting code and just

retransmit the occasional block found to be faulty. However, on channels such as wireless

links that make many errors, it is better to add enough redundancy to each block for the

receiver to be able to figure out what the original block was, rather than relying on a

retransmission, which itself may be in error.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 To understand how errors can be handled, it is necessary to look closely at what an

error really is. Normally, a frame consists of m data (i.e., message) bits and r redundant, or

check, bits. Let the total length be n (i.e., n = m + r). An n-bit unit containing data and check

bits is often referred to as an n-bit codeword.

 Given any two code words, say, 10001001 and 10110001, it is possible to determine

how many corresponding bits differ. In this case, 3 bits differ. To determine how many

bits differ, just exclusive OR the two code words and count the number of 1 bits in the result,

for example:

 The number of bit positions in which two code words differ is called the Hamming distance.

Its significance is that if two codewords are a Hamming distance d apart, it will require d

single-bit errors to convert one into the other.

 In most data transmission applications, all 2m possible data messages are legal, but

due to the way the check bits are computed, not all of the 2n possible codewords are used.

Given the algorithm for computing the check bits, it is possible to construct a complete list of

the legal codewords, and from this list find the two codewords whose Hamming distance

is minimum. This distance is the Hamming distance of the complete code. The error-detecting

and error correcting properties of a code depend on its Hamming distance. To detect d errors,

you need a distance d + 1 code because with such a code there is no way that d single-bit

errors can change a valid codeword into another valid codeword. When the receiver sees an

invalid codeword, it can tell that a transmission error has occurred. Similarly, to correct d

errors, you need a distance 2d +

 1 code because that way the legal codewords are so far apart that even with d

changes, the original codeword is still closer than any other codeword, so it can be uniquely

determined. As a simple example of an error-detecting code, consider a code in which a

single parity b appended to the data. The parity bit is chosen so that the number of 1 bits in

the codeword is even (or odd). For example, when 1011010 is sent in even parity, a bit is

added to the end to make it 10110100. With odd parity 1011010 becomes 10110101. A code

with a single parity bit has a distance 2, since any single-bit error produces a codeword with

the wrong parity. It can be used to detect single errors.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

As a simple example of an error-correcting code, consider a code with only four valid

codewords: 0000000000, 0000011111, 1111100000, and 1111111111

This code has a distance 5, which means that it can correct double errors. If the

codeword

0000000111 arrives, the receiver knows that the original must have been 0000011111. If,

however, a triple error changes 0000000000 into 0000000111, the error will not be corrected

properly.

 Imagine that we want to design a code with m message bits and r check bits that will

allow all single errors to be corrected. Each of the 2m legal messages has n illegal codewords

at a distance 1 from it. These are formed by systematically inverting each of the n bits in the

n-bit codeword formed from it. Thus, each of the 2m legal messages requires n + 1 bit patterns

dedicated to it. Since the total number of bit patterns is 2n, we must have (n + 1)2m ≤ 2n.

 Using n = m + r, this requirement becomes (m + r + 1) ≤ 2r. Given m, this puts a lower

limit on the number of check bits needed to correct single errors. This theoretical lower limit

can, in fact, be achieved using a method due to Hamming (1950).

 The bits of the codeword are numbered consecutively, starting with bit 1 at the left

end, bit 2 to its immediate right, and so on. The bits that are powers of 2 (1, 2, 4, 8, 16, etc.)

are check bits. The rest (3, 5, 6, 7, 9, etc.) are filled up with the m data bits. Each check bit

forces the parity of some collection of bits, including itself, to be even (or odd). A bit may be

included in several parity computations. To see which check bits the data bit in position k

contributes to, rewrite k as a sum of powers of 2.For example, 11 = 1 + 2 + 8 and 29 = 1 + 4 + 8

+ 16. A bit is checked by just those check bits occurring in its expansion (e.g., bit 11 is checked

by bits 1, 2, and 8). When a codeword arrives, the receiver initializes a counter to zero. It

then examines each check bit, k (k = 1, 2, 4, 8 ...), to see if it has the correct parity. If not, the

receiver adds k to the counter. If the counter is zero after all the check bits have been

examined (i.e., if they were all correct), the codeword is accepted as valid. If the counter is

nonzero, it contains the number of the incorrect bit. For example, if check bits 1, 2, and 8 are

in error, the inverted bit is 11, because it is the only one checked by bits 1, 2, and 8. Figure 4.1

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

shows some 7-bit ASCII chara

Remember that the data are found

Fig.4.1. Use of a Hamming co

 Hamming codes can

be used to permit Hamming c

words is arranged as a matri

transmitted one codeword at a t

be transmitted one column at

been sent, the second colum

arrives at the receiver, the matrix

length k occurs, at most 1 bi

Hamming code can correct on

method uses kr check bits to

length k or less.

3.2.2 Error-Detecting Codes:

 Error-correcting codes

and error prone when compa

racters encoded as 11-bit code words using

found in bit positions 3, 5, 6, 7, 9, 10, and 11.

ode to correct burst errors

 only correct single errors. However, the

codes to correct burst errors. A sequence

a matrix, one codeword per row. Normally

a time, from left to right. To correct burst e

t a time, starting with the leftmost column.

mn is sent, and so on, as indicated in Fig

the matrix is reconstructed, one column at a ti

it in each of the k code words will have

ne error per codeword, so the entire block

 make blocks of km data bits immune to a

s:

s are widely used on wireless links, which

ared to copper wire or optical fibers. Wit

using a Hamming code.

nd 11.

there is a trick that can

 of k consecutive code

y, the data would be

errors, the data should

mn. When all k bits have

g.4.1. When the frame

ime. If a burst error of

 been affected, but the

e block can be restored. This

mune to a single burst error of

h are notoriously noisy

thout error-correcting

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

codes, it would be hard to get anything through. However, over copper wire or fiber, the

error rate is much lower, so error detection and retransmission is usually more efficient

there for dealing with the occasional error. As a simple example, consider a channel on which

errors are isolated and the error rate is 10-6 per bit. Let the block size be 1000 bits. To

provide error correction for 1000-bit blocks, 10 check bits are needed; a megabit of data

would require 10,000 check bits. To merely detect a block with a single 1-bit error, one parity

bit per block will suffice. Once every 1000 blocks, an extra block (1001 bits) will have to be

transmitted. The total overhead for the error detection + retransmission method is only 2001

bits per megabit of data, versus 10,000 bits for a Hamming code.

If a single parity bit is added to a block and the block is badly garbled by a long burst error,

the probability that the error will be detected is only 0.5, which is hardly acceptable.

The odds can be improved considerably if each block to be sent is regarded as rectangular

matrix n bits wide and k bits high, as described above. A parity bit is computed separately for

each column and affixed to the matrix as the last row. The matrix is then transmitted one

row at a time. When the block arrives, the receiver checks all the parity bits. If any one of

them is wrong, the receiver requests a retransmission of the block. Additional retransmissions

are requested as needed until an entire block is received without any parity errors. This

method can detect a single burst of length n, since only 1 bit per column will be changed. A

burst of length n + 1 will pass undetected, however, if the first bit is inverted, the last bit is

inverted, and all the other bits are correct. (A burst error does not imply that all the bits are

wrong; it just implies that at least the first and last are wrong.) If the block is badly garbled

by a long burst or by multiple shorter bursts, the probability that any of the n columns will

have the correct parity, by accident, is 0.5, so the probability of a bad block being accepted

when it should not be is 2-n. Although the above scheme may sometimes be adequate, in

practice, another method is in widespread use: the polynomial code, also known as a CRC

(Cyclic Redundancy Check).

Polynomial codes are based upon treating bit strings as representations of polynomials with

coefficients of 0 and 1 only. A k-bit frame is regarded as the coefficient list for a

polynomial with k terms, ranging from xk-1 to x0. Such a polynomial is said to be of degree k -

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

1. The high order (leftmost) bit is the coefficient of xk-1; the next bit is the coefficient of xk-

2, and so on. For example, 110001 has 6 bits and thus represent a six-term polynomial with

coefficients 1,

1, 0, 0, 0, and 1: x5 + x4 + x0.

 Polynomial arithmetic is done modulo 2, according to the rules of algebraic field

theory. There are no carries for addition or borrows for subtraction. Both addition and

subtraction are identical to exclusive OR. For example: Long division is carried out the same

way as it is in binary except that the subtraction is done modulo 2, as above. A divisor is said

''to go into'' a dividend if the dividend has as many bits as the divisor. When the polynomial

code method is employed, the sender and receiver must agree upon a generator polynomial,

G(x), in advance. Both the high- and low-order bits of the generator must be 1. To compute

the checksum for some frame with m bits, corresponding to the polynomial M(x), the frame

must be longer than the generator polynomial. The idea is to append a checksum to the end of

the frame in such a way that the polynomial represented by the checksummed frame is

divisible by G(x). When the receiver gets the checksummed frame, it tries dividing it by G(x).

If there is a remainder, there has been a transmission error.

The algorithm for computing the checksum is as follows:

1. Let r be the degree of G(x). Append r zero bits to the low-order end of the frame so it now

contains m + r bits and corresponds to the polynomial xr M(x).

2. Divide the bit string corresponding to G(x) into the bit string corresponding to xr M(x),

using modulo 2 division.

3. Subtract the remainder (which is always r or fewer bits) from the bit string corresponding

to xr

M(x) using modulo 2 subtractions. The result is the checksummed frame to be transmitted.

Call its polynomial T(x).

Figure illustrates the calculation for a frame 1101011011 using the generator G(x) = x4 + x+ 1.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Fig.5.1. Calg.5.1. Calculation of the polynomial code checksum

m

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

3.3 Elementary Data Link Layer Protocols

3.3.1 An Unrestricted Simplex Protocol:

 As an initial example we will consider a protocol that is as simple as it can be. Data

are transmitted in one direction only. Both the transmitting and receiving network layers

are always ready. Processing time can be ignored. Infinite buffer space is available. And best

of all, the communication channel between the data link layers never damages or loses

frames. This thoroughly unrealistic protocol, which we will nickname ''utopia'' .

 The protocol consists of two distinct procedures, a sender and a receiver. The

sender runs in the data link layer of the source machine, and the receiver runs in the

data link layer of the destination machine. No sequence numbers or acknowledgements

are used here, so MAX_SEQ is not needed. The only event type possible is frame_arrival (i.e.,

the arrival of an undamaged frame).

 The sender is in an infinite while loop just pumping data out onto the line as fast as

it can. The body of the loop consists of three actions: go fetch a packet from the (always

obliging) network layer, construct an outbound frame using the variable s, and send the

frame on its way. Only the info field of the frame is used by this protocol, because the other

fields have to do with error and flow control and there are no errors or flow control

restrictions here. The receiver is equally simple. Initially, it waits for something to happen,

the only possibility being the arrival of an undamaged frame. Eventually, the frame arrives

and the procedure wait_for_event returns, with event set to frame_arrival (which is ignored

anyway). The call to from_physical_layer removes the newly arrived frame from the

hardware buffer and puts it in the variable r, where the receiver code can get at it. Finally,

the data portion is passed on to the network layer, and the data link layer settles back to

wait for the next frame, effectively suspending itself until the frame arrives.

3.3.2 A Simplex Stop-and-Wait Protocol:

 The main problem we have to deal with here is how to prevent the sender from

flooding the receiver with data faster than the latter is able to process them. In essence, if

the receiver requires a time Δt to execute from_physical_layer plus to_network_layer, the

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

sender must transmit at an average rate less than one frame per time Δt. Moreover, if we

assume that no automatic buffering and queuing are done within the receiver's hardware,

the sender must never transmit a new frame until the old one has been fetched by

from_physical_layer, lest the new one overwrite the old one. In certain restricted

circumstances (e.g., synchronous transmission and a receiving data link layer fully

dedicated to processing the one input line), it might be possible for the sender to simply

insert a delay into protocol 1 to slow it down sufficiently to keep from swamping the

receiver. However, more usually, each data link layer will have several lines to attend to, and

the time interval between a frame arriving and its being processed may vary considerably.

If the network designers can calculate the worst-case behavior of the receiver, they can

program the sender to transmit so slowly that even if every frame suffers the maximum

delay, there will be no overruns. The trouble with this approach is that it is too conservative.

It leads to a bandwidth utilization that is far below the optimum, unless the best and

worst cases are almost the same (i.e., the variation in the data link layer's reaction time is

small).

A more general solution to this dilemma is to have the receiver provide feedback to

the sender. After having passed a packet to its network layer, the receiver sends a little

dummy frame back to the sender which, in effect, gives the sender permission to transmit

the next frame. After having sent a frame, the sender is required by the protocol to bide its

time until the little dummy (i.e., acknowledgement) frame arrives. Using feedback from the

receiver to let the sender know when it may send more data is an example of the flow

control mentioned earlier.

Protocols in which the sender sends one frame and then waits for an

acknowledgement before proceeding are called stop-and-wait.

3.3.3 A Simplex Protocol for a Noisy Channel:

Protocols in which the sender waits for a positive acknowledgement before

advancing to the next data item are often called PAR (Positive Acknowledgement with

Retransmission) or ARQ (Automatic Repeat request). Like protocol 2, this one also

transmits data only in one direction.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

