
 

 

UNIT – III: Data Link layer 
 

To provide service to the network layer, the data link layer must use the service 

provided to it by the physical layer. What the physical layer does is accept a raw bit stream 

and attempt to deliver it to the destination. This bit stream is not guaranteed to be error free. 

The number of bits received may be less than, equal to, or more than the number of bits 

transmitted, and they may have different values. It is up to the data link layer to detect and, if 

necessary, correct errors. The usual approach is for the data link layer to break the bit stream 

up into discrete frames and compute the checksum for each frame. When a frame arrives at 

the destination, the checksum is recomputed. If the newly computed checksum is different 

from the one contained in the frame, the data link  layer knows  that  an  error has  

occurred  and  takes  steps  to  deal  with it. 

  Breaking the bit stream up into frames is more difficult than it at first appears. 

One way to achieve this framing is to insert time gaps between frames, much like the spaces 

between words in ordinary text. However, networks rarely make any guarantees about 

timing, so it is possible these gaps might be squeezed out or other gaps might be inserted 

during transmission. Since it is too risky to count on timing to mark the start and end of each 

frame, other methods have been devised. We will look at four methods: 

1. Character count. 

2. Flag bytes with byte stuffing. 

3. Starting and ending flags, with bit stuffing. 

4. Physical layer coding violations. 

 

The first framing method uses a field in the header to specify the number of characters in 

the frame. When the data link layer at the destination sees the character count, it knows 

how many characters follow and hence where the end of the frame is. This technique is shown 

in Fig.3.1(a) for four frames of sizes 5, 5, 8, and 8 characters, respectively. 
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Fig.3.1  A character stream. (
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With bit stuffing, the boundary between two frames can be unambiguously recognized by 

the flag pattern. Thus, if the receiver loses track of where it is, all it has to do is scan the 

input for flag sequences, since they can only occur at frame boundaries and never within the 

data. The last method of framing is only applicable to networks in which the encoding on the 

physical medium contains some redundancy. For example, some LANs encode 1 bit of data by 

using 2 physical bits. Normally, a 1 bit is a high-low pair and a 0 bit is a low-high pair. The 

scheme means that every data bit has a transition in the middle, making it easy for the 

receiver to locate the bit boundaries. The combinations high-high and low-low are not used 

for data but are used for delimiting frames in some protocols. 

As a final note on framing, many data link protocols use combination of a character 

count with one of the other methods for extra safety. When a frame arrives, the count field is 

used to locate the end of the frame. Only if the appropriate delimiter is present at that 

position and the checksum is correct is the frame accepted as valid. Otherwise, the input 

stream is scanned for the next delimiter. 

3.2 Error correction and detection at the data link layer. 

3.2.1 Error-Correcting Codes: 

  Network designers have developed two basic strategies for dealing with errors. One 

way is to include enough redundant information along with each block of data sent, to enable 

the receiver to deduce what the transmitted data must have been. The other way is to include 

only enough redundancy to allow the receiver to deduce that an error occurred, but not 

which error, and have it request a retransmission. The former strategy uses error-correcting 

codes and the latter uses error-detecting codes. The use of error-correcting codes is often 

referred to as forward error correction. 

  Each of these techniques occupies a different ecological niche. On channels that are 

highly reliable, such as fiber, it is cheaper to use an error detecting code and just 

retransmit the occasional block found to be faulty. However, on channels such as wireless 

links that make many errors, it is better to add enough redundancy to each block for the 

receiver to be able to figure out what the original block was, rather than relying on a 

retransmission, which itself may be in error. 
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  To understand how errors can be handled, it is necessary to look closely at what an 

error really is. Normally, a frame consists of m data (i.e., message) bits and r redundant, or 

check, bits. Let the total length be n (i.e., n = m + r). An n-bit unit containing data and check 

bits is often referred to as an n-bit codeword. 

  Given any two code words, say, 10001001 and 10110001, it is possible to determine 

how many corresponding bits differ. In this case, 3 bits differ. To determine how many 

bits differ, just exclusive OR the two code words and count the number of 1 bits in the result, 

for example: 

 The number of bit positions in which two code words differ is called the Hamming distance. 

Its significance is that if two codewords are a Hamming distance d apart, it will require d 

single-bit errors to convert one into the other. 

  In most data transmission applications, all 2m possible data messages are legal, but 

due to the way the check bits are computed, not all of the 2n possible codewords are used. 

Given the algorithm for computing the check bits, it is possible to construct a complete list of 

the legal codewords, and from this list find the two codewords whose Hamming distance 

is minimum. This distance is the Hamming distance of the complete code. The error-detecting 

and error correcting properties of a code depend on its Hamming distance. To detect d errors, 

you need a distance d + 1 code because with such a code there is no way that d single-bit 

errors can change a valid codeword into another valid codeword. When the receiver sees an 

invalid codeword, it can tell that a transmission error has occurred. Similarly, to correct d 

errors, you need a distance 2d + 

  1 code because that way the legal codewords are so far apart that even with d 

changes, the original codeword is still closer than any other codeword, so it can be uniquely 

determined. As a simple example of an error-detecting code, consider a code in which a 

single parity b appended to the data. The parity bit is chosen so that the number of 1 bits in 

the codeword is even (or odd). For example, when 1011010 is sent in even parity, a bit is 

added to the end to make it 10110100. With odd parity 1011010 becomes 10110101. A code 

with a single parity bit has a distance 2, since any single-bit error produces a codeword with 

the wrong parity. It can be used to detect single errors. 
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As  a  simple  example  of  an  error-correcting  code,  consider  a  code  with  only  four  valid 

codewords: 0000000000, 0000011111, 1111100000, and 1111111111 

This code has a distance 5, which means that it can correct double errors. If the 

codeword 

 

0000000111 arrives, the receiver knows that the original must have been 0000011111. If, 

however, a triple error changes 0000000000 into 0000000111, the error will not be corrected 

properly. 

  Imagine that we want to design a code with m message bits and r check bits that will 

allow all single errors to be corrected. Each of the 2m legal messages has n illegal codewords 

at a distance 1 from it. These are formed by systematically inverting each of the n bits in the 

n-bit codeword formed from it. Thus, each of the 2m legal messages requires n + 1 bit patterns 

dedicated to it. Since the total number of bit patterns is 2n, we must have (n + 1)2m ≤ 2n. 

  Using n = m + r, this requirement becomes (m + r + 1) ≤ 2r. Given m, this puts a lower 

limit on the number of check bits needed to correct single errors. This theoretical lower limit 

can, in fact, be achieved using a method due to Hamming (1950). 

  The bits of the codeword are numbered consecutively, starting with bit 1 at the left 

end, bit 2 to its immediate right, and so on. The bits that are powers of 2 (1, 2, 4, 8, 16, etc.) 

are check bits. The rest (3, 5, 6, 7, 9, etc.) are filled up with the m data bits. Each check bit 

forces the parity of some collection of bits, including itself, to be even (or odd). A bit may be 

included in several parity computations. To see which check bits the data bit in position k 

contributes to, rewrite k as a sum of powers of 2.For example, 11 = 1 + 2 + 8 and 29 = 1 + 4 + 8 

+ 16. A bit is checked by just those check bits occurring in its expansion (e.g., bit 11 is checked 

by bits 1, 2, and 8). When a codeword arrives, the receiver initializes a counter to zero. It 

then examines each check bit, k (k = 1, 2, 4, 8 ...), to see if it has the correct parity. If not, the 

receiver adds k to the counter. If the counter is zero after all the check bits have been 

examined (i.e., if they were all correct), the codeword is accepted as valid. If the counter is 

nonzero, it contains the number of the incorrect bit. For example, if check bits 1, 2, and 8 are 

in error, the inverted bit is 11, because it is the only one checked by bits 1, 2, and 8. Figure 4.1 
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codes, it would be hard to get anything through. However, over copper wire or fiber, the 

error rate is much lower, so error detection and retransmission is usually more efficient 

there for dealing with the occasional error. As a simple example, consider a channel on which 

errors are isolated and the error rate is 10-6 per bit. Let the block size be 1000 bits. To 

provide error correction for 1000-bit blocks, 10 check bits are needed; a megabit of data 

would require 10,000 check bits. To merely detect a block with a single 1-bit error, one parity 

bit per block will suffice. Once every 1000 blocks, an extra block (1001 bits) will have to be 

transmitted. The total overhead for the error detection + retransmission method is only 2001 

bits per megabit of data, versus 10,000 bits for a Hamming code. 

If a single parity bit is added to a block and the block is badly garbled by a long burst error, 

the probability that the error will be detected is only 0.5, which is hardly acceptable. 

The odds can be improved considerably if each block to be sent is regarded as rectangular 

matrix n bits wide and k bits high, as described above. A parity bit is computed separately for 

each column and affixed to the matrix as the last row. The matrix is then transmitted one 

row at a time. When the block arrives, the receiver checks all the parity bits. If any one of 

them is wrong, the receiver requests a retransmission of the block. Additional retransmissions 

are requested as needed until an entire block is received without any parity errors. This 

method can detect a single burst of length n, since only 1 bit per column will be changed. A 

burst of length n + 1 will pass undetected, however, if the first bit is inverted, the last bit is 

inverted, and all the other bits are correct. (A burst error does not imply that all the bits are 

wrong; it just implies that at least the first and last are wrong.) If the block is badly garbled 

by a long burst or by multiple shorter bursts, the probability that any of the n columns will 

have the correct parity, by accident, is 0.5, so the probability of a bad block being accepted 

when it should not be is 2-n. Although the above scheme  may sometimes  be  adequate,  in  

practice,  another  method  is  in  widespread  use:  the polynomial code, also known as a CRC 

(Cyclic Redundancy Check). 

Polynomial codes are based upon treating bit strings as representations of polynomials with 

coefficients of 0 and 1 only. A k-bit frame is regarded as the coefficient list for a 

polynomial with k terms, ranging from xk-1 to x0. Such a polynomial is said to be of degree k - 
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1. The high order (leftmost) bit is the coefficient of xk-1; the next bit is the coefficient of xk-

2, and so on. For example, 110001 has 6 bits and thus represent a six-term polynomial with 

coefficients 1, 

1, 0, 0, 0, and 1: x5 + x4 + x0. 

  Polynomial arithmetic is done modulo 2, according to the rules of algebraic field 

theory. There are no carries for addition or borrows for subtraction. Both addition and 

subtraction are identical to exclusive OR. For example: Long division is carried out the same 

way as it is in binary except that the subtraction is done modulo 2, as above. A divisor is said 

''to go into'' a dividend if the dividend has as many bits as the divisor. When the polynomial 

code method is employed, the sender and receiver must agree upon a generator polynomial, 

G(x), in advance. Both the high- and low-order bits of the generator must be 1. To compute 

the checksum for some frame with m bits, corresponding to the polynomial M(x), the frame 

must be longer than the generator polynomial. The idea is to append a checksum to the end of 

the frame in such a way that the polynomial represented by the checksummed frame is 

divisible by G(x). When the receiver gets the checksummed frame, it tries dividing it by G(x). 

If there is a remainder, there has been a transmission error. 

The algorithm for computing the checksum is as follows: 

 

1. Let r be the degree of G(x). Append r zero bits to the low-order end of the frame so it now 

contains m + r bits and corresponds to the polynomial xr M(x). 

2. Divide the bit string corresponding to G(x) into the bit string corresponding to xr M(x), 

using modulo 2 division. 

3. Subtract the remainder (which is always r or fewer bits) from the bit string corresponding 

to xr 

 

M(x) using modulo 2 subtractions. The result is the checksummed frame to be transmitted. 

Call its polynomial T(x). 

Figure illustrates the calculation for a frame 1101011011 using the generator G(x) = x4 + x+ 1. 
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Fig.5.1. Calg.5.1. Calculation of the polynomial code checksum
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3.3 Elementary Data Link Layer Protocols 

3.3.1 An Unrestricted Simplex Protocol: 

  As an initial example we will consider a protocol that is as simple as it can be. Data 

are transmitted in one direction only. Both the transmitting and receiving network layers 

are always ready. Processing time can be ignored. Infinite buffer space is available. And best 

of all, the communication channel between the data link layers never damages or loses 

frames. This thoroughly unrealistic protocol, which we will nickname ''utopia'' . 

  The protocol consists of two distinct procedures, a sender and a receiver. The 

sender runs in the data  link  layer  of  the  source  machine,  and  the  receiver  runs  in  the  

data  link  layer  of  the destination machine. No sequence numbers or acknowledgements 

are used here, so MAX_SEQ is not needed. The only event type possible is frame_arrival (i.e., 

the arrival of an undamaged frame). 

  The sender is in an infinite while loop just pumping data out onto the line as fast as 

it can. The body of the loop consists of three actions: go fetch a packet from the (always 

obliging) network layer, construct an outbound frame using the variable s, and send the 

frame on its way. Only the info field of the frame is used by this protocol, because the other 

fields have to do with error and flow control and there are no errors or flow control 

restrictions here. The receiver is equally simple. Initially, it waits for something to happen, 

the only possibility being the arrival of an undamaged frame. Eventually, the frame arrives 

and the procedure wait_for_event returns, with event set to frame_arrival (which is ignored 

anyway). The call to from_physical_layer removes the newly arrived frame from the 

hardware buffer and puts it in the variable r, where the receiver code can get at it. Finally, 

the data portion is passed on to the network layer, and the data link layer settles back to 

wait for the next frame, effectively suspending itself until the frame arrives. 

3.3.2 A Simplex Stop-and-Wait Protocol: 

  The main problem we have to deal with here is how to prevent the sender from 

flooding the receiver with data faster than the latter is able to process them. In essence, if 

the receiver requires a time Δt to execute from_physical_layer plus to_network_layer, the 
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sender must transmit at an average rate less than one frame per time Δt. Moreover, if we 

assume that no automatic buffering and queuing are done within the receiver's hardware, 

the sender must never transmit a new frame until the old one has been fetched by 

from_physical_layer, lest the new one overwrite the old one. In certain restricted 

circumstances (e.g., synchronous transmission and a receiving data link layer fully 

dedicated to processing the one input line), it might be possible for the sender to simply 

insert a delay into protocol 1 to slow it down sufficiently to keep from swamping the 

receiver. However, more usually, each data link layer will have several lines to attend to, and 

the time interval between a frame arriving and its being processed may vary considerably. 

If the network designers can calculate the worst-case behavior of the receiver, they can 

program the sender to transmit so slowly that even if every frame suffers the maximum 

delay, there will be no overruns. The trouble with this approach is that it is too conservative. 

It leads to a bandwidth utilization that is far below the optimum, unless the best and 

worst cases are almost the same (i.e., the variation in the data link layer's reaction time is 

small). 

A more general solution to this dilemma is to have the receiver provide feedback to 

the sender. After having passed a packet to its network layer, the receiver sends a little 

dummy frame back to the sender which, in effect, gives the sender permission to transmit 

the next frame. After having sent a frame, the sender is required by the protocol to bide its 

time until the little dummy (i.e., acknowledgement) frame arrives. Using feedback from the 

receiver to let the sender know when it may send more data is an example of the flow 

control mentioned earlier. 

Protocols in which the sender sends one frame and then waits for an 

acknowledgement before proceeding are called stop-and-wait. 

3.3.3 A Simplex Protocol for a Noisy Channel: 

Protocols in which the sender waits for a positive acknowledgement before 

advancing to the next data item are often called PAR (Positive Acknowledgement with 

Retransmission) or ARQ (Automatic Repeat request). Like protocol 2, this one also 

transmits data only in one direction. 
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