
Introduction to Kernel 

D. Balakrishna, 
Research Associate, IIIT-H 

 

In this article we are going to learn about Linux kernel source code and then further 

explore the Linux kernel and cross compile Linux kernel source code for ARM devices. Here we 

are using Arndale 5250 development board.  

The linux kernel is the heart of Desktop system or embedded systems. The kernel is 

responsible for memory allocation, process and thread creation, memory management and 

scheduling and communication between hardware and peripheral devices. The Linux kernel is 

one of the components of a system, which also requires libraries and applications to provide 

features to end users. The initial development of Linux kernel was done by Linus Torvalds in 

1990’s and he has been able to create a large and dynamic developer and user community around 

linux.  Linux can be referred as in two ways one is “Linux” and other is “GNU/Linux”, the 

reason behind this is Linux is the kernel of an operating system and the wide range of 

applications that make operating system useful are the GNU software. The GNU software tools 

are like compiler, editors, variety of shells, utilities and other development tools are exist outside 

of the kernel. The figure1 shows the fundamental architecture of Linux operating system. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



 

Figure1: Architecture of Linux operating system 

 
The top of the architecture is the user space. This is where the user applications are 

executed. Bottom of the architecture is the kernel space where the Linux kernel exists. There is 

also the GNU C Library (glibc). This provides the system call interface that connects user space 

to the kernel space and provides the mechanism to transition between the user space applications 

to the kernel space. This is important because the kernel and user application occupy different 

protected address spaces. And while each user space process occupies its own virtual address 

space, the kernel occupies a single address space. The Linux kernel can be further divided into 

three levels. At the top is the system call interface, which implements the basic functions such as 

read and writes.  Below the system call interface is the kernel code, which can be more 

accurately defined as the architecture-independent kernel code. This code is common to all of the 

processor architectures supported by Linux. At bottom is the architecture dependent code, mostly 

called a BSP (Board Support Package). This code serves as the processor and platform specific 

code for the given architecture.  Linux is also a dynamic kernel, supporting the addition and 

removal of software components on the fly. These are called dynamically loadable kernel 

modules, and they can be inserted at the boot time when they are needed or at any time by the 

user. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



Linux kernel key features:

• Linux can be easy to program. It is open source and many useful resources 

the internet and you can learn from existing code.

• It is easily portable and more hardware sup

• Scalability. It can run on supercomputer as well as small tiny devices.

• Stability and reliability.

• Security.  

• Modularity. 

The linux kernel key roles are 

I/O. Provide a set of portable, architecture and hardware independent APIs to allow user 

applications and libraries to use the hardware resources and handle concurrent accesses and 

usage of hardware resources form different applications.

space through pseudo file systems also called as virtual file system. 

applications to see directories and files that do not exist on any real 

updated on the fly by the kernel.

• Proc: usually mounted on /proc 

processes and memory management parameters.

• Sysfs: usually mounted on /sys

Linux kernel key features: 

Linux can be easy to program. It is open source and many useful resources 

the internet and you can learn from existing code. 

is easily portable and more hardware support. It runs on the most 

Scalability. It can run on supercomputer as well as small tiny devices.

Stability and reliability. 

roles are to manage all the hardware resources like CPU, Memory 

Provide a set of portable, architecture and hardware independent APIs to allow user 

applications and libraries to use the hardware resources and handle concurrent accesses and 

usage of hardware resources form different applications. The kernel information available in user 

space through pseudo file systems also called as virtual file system. Pseudo

applications to see directories and files that do not exist on any real storage;

y by the kernel. The two most important file systems are  

Proc: usually mounted on /proc – it contain operating system related information like 

processes and memory management parameters. 

Sysfs: usually mounted on /sys 

Figuere2: Linux kernel in the system. 

Linux can be easy to program. It is open source and many useful resources available on 

most of the architecture. 

Scalability. It can run on supercomputer as well as small tiny devices. 

manage all the hardware resources like CPU, Memory and 

Provide a set of portable, architecture and hardware independent APIs to allow user 

applications and libraries to use the hardware resources and handle concurrent accesses and 

The kernel information available in user 

Pseudo file systems allow 

storage; they are created and 

 

it contain operating system related information like 

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



 

Major subsystems of the Linu

The Figure3 shows some major components of the L

 

Figure3: Major components of Linux kernel

 

System call interface 

• It is the main interface between the user space and kernel space. 

• It is architecture dependent, even 

• There are more than 300 system calls that provide the main kernel services, like File 

operations, networking operations, inter process communication, memory management, 

process management, threads, etc.

• It is stable over time, only new system calls to be added by the kernel developers.

Major subsystems of the Linux kernel 

s some major components of the Linux kernel. 

Figure3: Major components of Linux kernel 

It is the main interface between the user space and kernel space.  

It is architecture dependent, even within the same processor family.

There are more than 300 system calls that provide the main kernel services, like File 

operations, networking operations, inter process communication, memory management, 

, threads, etc. 

It is stable over time, only new system calls to be added by the kernel developers.

 

the same processor family. 

There are more than 300 system calls that provide the main kernel services, like File 

operations, networking operations, inter process communication, memory management, 

It is stable over time, only new system calls to be added by the kernel developers. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



• This system call interface is wrapped by the C library, and user space applications never 

make a system call directly but rather use the corresponding C library function. 

• The system call interface implementation in ./linux/kernel and architecture dependent 

portions in ./linux/arch. 

 

Process management 

• Process management is focused on the execution of processes. 

• In the user space these are called process. 

• In the kernel space these are called threads and represent an individual virtualization of 

the process like CPU registers, data segment, stack segment and thread code. 

• The kernel provides an application program interface (API) through system call interface 

to create new process using fork, exec, POSIX (portable operating system interface) 

functions, to stop a process kill and exit functions and to communicate and synchronizing 

between them is signal and posix mechanisms. 

• The process management is also responsible for sharing CPU between the active threads. 

The kernel implements a novel scheduling algorithm that operates in constant time, 

regardless of the number of threads waiting for the CPU. 

 

Memory management 

• Linux provides abstractions over 4KB buffers, such as the slab allocator. This memory 

management scheme uses 4KB buffers as its base, but then allocates structures from 

within, keeping track of which pages are full, partially used, and empty.  

• Supporting multiple users of memory, there are times when the available memory can be 

exhausted. For this reason, pages can be moved out of memory and onto the disk. This 

process is called swapping because the pages are swapped from memory onto the hard 

disk.  

• The memory management sources in ./linux/mm. 

 

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



Virtual File System (VFS)

• The virtual file system

interface abstraction for file systems. The VFS provides a switching layer between the 

system call interface and the file system supported by

 

• At the top of the virtual file system is a common API abstraction of functions such as 

open, close, read and write.

• At the bottom of the virtual file system are the file system abstractions that define 

the upper layer functions are implements.

• Below the file system layer is buffer cache which provides a common set of functions to 

the file system layer independent of any file system. This caching layer optimizes access 

to the physical devices by keeping data 

• Below the buffer cache are the device drivers which implement the interface for the 

particular physical device.

Virtual File System (VFS) 

The virtual file system is an important aspect in the Linux kernel; it provides a common 

interface abstraction for file systems. The VFS provides a switching layer between the 

system call interface and the file system supported by the kernel. 

Figure4: Virtual File System 

 

At the top of the virtual file system is a common API abstraction of functions such as 

open, close, read and write. 

At the bottom of the virtual file system are the file system abstractions that define 

upper layer functions are implements. 

Below the file system layer is buffer cache which provides a common set of functions to 

the file system layer independent of any file system. This caching layer optimizes access 

to the physical devices by keeping data around for a short time. 

Below the buffer cache are the device drivers which implement the interface for the 

particular physical device. 

inux kernel; it provides a common 

interface abstraction for file systems. The VFS provides a switching layer between the 

 

At the top of the virtual file system is a common API abstraction of functions such as 

At the bottom of the virtual file system are the file system abstractions that define how 

Below the file system layer is buffer cache which provides a common set of functions to 

the file system layer independent of any file system. This caching layer optimizes access 

Below the buffer cache are the device drivers which implement the interface for the 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



• The system call interface implementation in ./linux/fs 

Network Stack 

• The network stack follows a layered architecture modeled after protocols themselves. The 

internet protocol is the core network layer protocol that sits below the transport protocol, 

above transport control protocol is the socket layer which is invoked through system call 

interface. 

• The sockets layer is the standard API to the networking subsystem and provides a user 

interface to a variety of networking protocols. 

• The system call interface implementation in ./linux/net 

Device Drivers 

• The vast majority of the source code in the Linux kernel exists in device drivers that 

make a particular hardware device usable.  

• The Linux source tree provides a drivers subdirectory that is further divided by the 

various devices that are supported, such as Bluetooth, I2C, serial, and so on. 

• The device driver sources implementation in ./linux/drivers. 

 

Supported Hardware Architectures  

The ./linux/arch subdirectory defines the architecture dependent portion of the kernel source 

contained in a number of subdirectories that are specific to the architecture.  

• 32 bit architectures with MMU and without MMU, gcc support.  

Examples: arm, avr32, mips, microblaze – (arch/subdirectories) 

• 64 bit architectures 

Examples: arm64, alpha – (32/64 bit architectures) 

 

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



Linux versioning scheme and development process 

         The versioning system of Linux kernel tells about two types of kernel one is stable kernel 

which is fully developed and ready to use and it is almost bugs free, and second one is unstable 

source which is under development. 

• Stable branch will be every 2 or 3 years. It identified by an even middle number. For 

example 1.0.x, 2.0.x, 3.0.x. 

• Development branch is to integrate new functionalities and major changes. Identified by 

an odd middle number. For example 1.1.x, 2.1.x, 3.1.x.  

• These development versions can be stable version after some time. 

It is easy to identify what kernel version we are using. The first few lines of the top level 

makefile in the kernel source tree give details regarding the kernel version as shown in below. 

VERSION = 3 

PATCHLEVEL = 4 

SUBLEVEL = 5 

EXTRAVERSION = 

NAME = Saber-toothed Squirrel 

 

$ cat /proc/version – it will give the following output with kernel version. 

Linux version 3.11.0-26-generic (buildd@komainu) (gcc version 4.6.3 (Ubuntu/Linaro 4.6.3-

1ubuntu5) ) #45~precise1-Ubuntu SMP Tue Jul 15 04:02:35 UTC 2014 

 

Linux kernel source  

             The official versions of the Linux Kernel sources released by Linua Torvalds are 

available at http:/www.kernel.org/. Many chip vendors supply their own kernel sources focusing 

on hardware support. The kernel sources are available from http://kernel.org/pub/linux/kernel as 

complete kernel sources and patches. Using git tool we can download the kernel source from 

internet. 

  $ git clone git://android.git.linaro.org/device/samsung/manta.git 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



  $ cd manta 

  $ git checkout -b linaro_android_4.4.2 origin/linaro_android_4.4.2 

 

Linux kernel size 

• Linux 3.10 source 

o Raw size – 573 MB 

o gzip compressed tar archive – 105MB 

o bzip2 compressed tar archive – 83MB 

o xz compressed tar archive – 69MB 

• These sources are includes so many device drivers, many protocols and support for many 

architectures. The linux core which memory management and scheduler are very small. 

o drivers/ -- 49.4% 

o arch/ -- 21.9% 

o fs/ -- 6.% 

o include/ -- 4.7% 

o sound/ -- 4.4% 

o documentation/ -- 4% 

o net/ -- 3.9% 

o firmware/ -- 1.0% 

o tools/ -- 0.9% 

o scripts/ -- 0.5% 

o mm/ -- 0.5% 

o lib/ -- 0.4% 

o block/ -- 0.2% 

o kernel/ -- 1.0% 

Download linux kernel source and uncompress it. 

http://www.kernel.org/pub/linux/kernel/v3.x/linux-3.10.9.tar.xz 

tar -xvf linux-3.10.9.tar.xz 

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



Kernel configuration 

The kernel configuration and build system is based on multiple Make files. All Makefiles 

inside the sub directories in kernel source interacts with the main Makefile which is present in 

the top directory of the kernel source tree. Interaction between all make files takes place using 

the make tool, which parses the Makefile, through various targets, defining which action should 

be done like configuration, compilation, installation, etc. The kernel contains thousands of device 

drivers, network protocols, file systems, other configurable devices and thousands of options are 

available that are used to selectively compile parts of the kernel source code. The kernel 

configuration is the process of defining the set of options with which you can compile your own 

kernel source. The configuration for the specific target is stored in the .config file at the root of 

kernel source. 

The .config file looks like as shown in below 

# Automatically generated file; DO NOT EDIT. 

# Linux/arm 3.8.0-rc4 Kernel Configuration 

# 

CONFIG_ARM=y 

CONFIG_ARM_RUNTIME_PATCH=y 

CONFIG_SYS_SUPPORTS_APM_EMULATION=y 

CONFIG_GENERIC_GPIO=y 

CONFIG_HAVE_PROC_CPU=y 

CONFIG_NO_IOPORT=y 

CONFIG_STACKTRACE_SUPPORT=y 

CONFIG_HAVE_LATENCYTOP_SUPPORT=y 

CONFIG_LOCKDEP_SUPPORT=y 

CONFIG_TRACE_IRQFLAGS_SUPPORT=y 

CONFIG_RWSEM_GENERIC_SPINLOCK=y 

CONFIG_ARCH_HAS_CPUFREQ=y 

CONFIG_GENERIC_HWEIGHT=y 

CONFIG_GENERIC_CALIBRATE_DELAY=y 

CONFIG_NEED_DMA_MAP_STATE=y 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



CONFIG_VECTORS_BASE=0xffff0000 

CONFIG_ARM_PATCH_PHYS_VIRT=y 

CONFIG_ARM_RUNTIME_PATCH_TEST=y 

CONFIG_GENERIC_BUG=y 

CONFIG_DEFCONFIG_LIST="/lib/modules/$UNAME_RELEASE/.config" 

CONFIG_HAVE_IRQ_WORK=y 

CONFIG_BUILDTIME_EXTABLE_SORT=y 

# 

# General setup 

# 

# CONFIG_EXPERIMENTAL is not set 

CONFIG_BROKEN_ON_SMP=y 

CONFIG_INIT_ENV_ARG_LIMIT=32 

CONFIG_CROSS_COMPILE="" 

CONFIG_LOCALVERSION="" 

CONFIG_LOCALVERSION_AUTO=y 

CONFIG_HAVE_KERNEL_GZIP=y 

CONFIG_HAVE_KERNEL_LZMA=y 

CONFIG_HAVE_KERNEL_XZ=y 

CONFIG_HAVE_KERNEL_LZO=y 

CONFIG_KERNEL_GZIP=y 

# CONFIG_KERNEL_LZMA is not set 

# CONFIG_KERNEL_XZ is not set 

# CONFIG_KERNEL_LZO is not set 

CONFIG_DEFAULT_HOSTNAME="(none)" 

CONFIG_SWAP=y 

# CONFIG_SYSVIPC is not set 

# CONFIG_FHANDLE is not set 

CONFIG_HAVE_GENERIC_HARDIRQS=y 

# Multiple platform selection 

# 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



# CPU Core family selection 

# 

# CONFIG_ARCH_MULTI_V6 is not set 

CONFIG_ARCH_MULTI_V7=y 

CONFIG_ARCH_MULTI_V6_V7=y 

# CONFIG_ARCH_MULTI_CPU_AUTO is not set 

# CONFIG_ARCH_MVEBU is not set 

# CONFIG_ARCH_BCM is not set 

# CONFIG_KEYBOARD_GPIO_POLLED is not set 

# CONFIG_ARCH_HIGHBANK is not set 

# CONFIG_ARCH_MXC is not set 

# CONFIG_ARCH_SOCFPGA is not set 

# CONFIG_ARCH_SUNXI is not set 

CONFIG_ARCH_VEXPRESS=y 

# 

# Versatile Express platform type 

# 

CONFIG_ARCH_VEXPRESS_CORTEX_A5_A9_ERRATA=y 

# CONFIG_ARCH_VEXPRESS_CA9X4 is not set 

CONFIG_PLAT_VERSATILE_CLCD=y 

CONFIG_PLAT_VERSATILE_SCHED_CLOCK=y 

# CONFIG_ARCH_VT8500 is not set 

# CONFIG_ARCH_ZYNQ is not set 

CONFIG_PLAT_VERSATILE=y 

CONFIG_ARM_TIMER_SP804=y 

CONFIG_ARCH_FLATMEM_ENABLE=y 

CONFIG_ARCH_DISCONTIGMEM_ENABLE=y 

# 

# Processor Type 

# 

CONFIG_CPU_V7=y 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



CONFIG_CPU_32v6K=y 

CONFIG_CPU_32v7=y 

CONFIG_CPU_ABRT_EV7=y 

CONFIG_CPU_PABRT_V7=y 

CONFIG_CPU_CACHE_V7=y 

CONFIG_CPU_CACHE_VIPT=y 

CONFIG_CPU_COPY_V6=y 

CONFIG_CPU_TLB_V7=y 

CONFIG_CPU_HAS_ASID=y 

CONFIG_CPU_CP15=y 

CONFIG_CPU_CP15_MMU=y 

# 

# Boot options 

# 

# CONFIG_S3C_BOOT_WATCHDOG is not set 

# CONFIG_S3C_BOOT_ERROR_RESET is not set 

CONFIG_S3C_BOOT_UART_FORCE_FIFO=y 

CONFIG_S3C_LOWLEVEL_UART_PORT=2 

CONFIG_SAMSUNG_CLKSRC=y 

CONFIG_SAMSUNG_IRQ_VIC_TIMER=y 

CONFIG_SAMSUNG_IRQ_UART=y 

CONFIG_SAMSUNG_GPIOLIB_4BIT=y 

CONFIG_S3C_GPIO_CFG_S3C24XX=y 

CONFIG_S3C_GPIO_CFG_S3C64XX=y 

CONFIG_S3C_GPIO_PULL_UPDOWN=y 

CONFIG_S5P_GPIO_DRVSTR=y 

CONFIG_SAMSUNG_GPIO_EXTRA=0 

CONFIG_S3C_GPIO_SPACE=0 

CONFIG_S3C_GPIO_TRACK=y 

CONFIG_S3C_ADC=y 

CONFIG_S3C_DEV_ADC=y 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



# CONFIG_S3C_DEV_ADC1 is not set 

CONFIG_S3C_DEV_HSMMC2=y 

CONFIG_S3C_DEV_HSMMC3=y 

# CONFIG_S5P_DEV_MSHC is not set 

CONFIG_S3C_DEV_HWMON=y 

CONFIG_S3C_DEV_I2C1=y 

CONFIG_S3C_DEV_I2C2=y 

CONFIG_S3C_DEV_I2C3=y 

CONFIG_S3C_DEV_I2C4=y 

CONFIG_S3C_DEV_I2C5=y 

CONFIG_S3C_DEV_I2C7=y 

CONFIG_EXYNOS_DEV_SS_UDC=y 

CONFIG_S3C_DEV_WDT=y 

CONFIG_S3C_DEV_RTC=y 

CONFIG_SAMSUNG_DEV_ADC=y 

CONFIG_SAMSUNG_DEV_PWM=y 

CONFIG_SAMSUNG_DEV_BACKLIGHT=y 

CONFIG_S3C24XX_PWM=y 

CONFIG_S3C_PL330_DMA=y 

# CONFIG_DMA_M2M_TEST is not set 

# 

# MMC/SD slot setup 

# 

# SELECT SYNOPSYS CONTROLLER INTERFACE DRIVER 

# 

CONFIG_EXYNOS5_DEV_DWMCI2=y 

# 

# Use 8-bit bus width 

# CONFIG_EXYNOS4_SDHCI_CH2_8BIT is not set 

CONFIG_EXYNOS5250_ABB_WA=y 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



The kernel image is a single file, resulting from the linking of all the object files that 

correspond to features enabled in the configuration. This is the file loaded in memory by the 

bootloader and all included features are available as soon as kernel starts when there is no root 

file system exists. Some features can be compiled as modules like device drivers and file 

systems. These modules can be loaded or unloaded dynamically at run time to add or remove 

features to the kernel. Each module is stored as a separate file in the file system therefore access 

to file system is mandatory to use modules. This is not possible in the early boot procedure of the 

kernel, because at that time no file system is available.  

 

There are different types of kernel options to select different features in the kernel image. 

• bool option – it tells  

o true – include the feature in the kernel image 

o false – exclude the feature in the kernel image 

• tristate option – it tells 

o true – include the feature in the kernel image 

o module – include the feature as kernel module 

o false – exclude the feature in the kernel image 

• int option – to specify integer values 

• hex option – to specify hexadecimal values 

• string option – to specify string values 

 

There are dependencies between kernels options like if want enable a network driver requires the 

network stack to be enabled. 

 

Two types dependencies. 

1. Depend on dependencies – feature A depends on feature B, in this until feature B 

enable the feature A not visible. 

2. Select dependencies – feature A depends on feature B, in this if feature A enabled the 

feature B is automatically enabled. 

 

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



These options typically never edited by hand but through graphical or text interfaces. 

• Text interfaces 

o Make menuconfig 

o Make nconfig 

o Make config 

• Graphical interfaces 

o Make xconfig 

o Make gconfig 

 

Make menuconfig  

Text based with colored menus and radio lists. This option allows developers to save 

their progress. This is useful when no graphics are available. This type interfaces available for 

Buildroot and busybox. To run this we need to install ncurses package (sudo apt-get install 

libncurses5-dev). 

 

Make nconfig  

Text based with colored menus and user friendly. To run this we need to install libncurses 

package (sudo apt-get install libcdk5-dev). 

 

Make config - Plain text interface. 

 

Make xconfig   

It is graphical interface to configure the kernel. Easier to load configuration files and 

search interface option is available to look parameters. To run this we need to install librt-dev 

package and g++ and libqt3-mt-dev package for older kernel releases.  

 

Make gconfig  

GTK based graphical configuration interface. It is similar to xconfig but lacking of 

searching functionality. To run this we need to install libglade2-dev package.  

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



Make oldconfig  

Plain-text interface that updates a .config file to be compatible with the newer kernel 

source code. Issues warnings for configuration parameters that are no longer exist in the new 

kernel. Asks for values for new parameters, where as in xconfig and menuconfig set default 

values foe new parameters. 

 

Make silentoldconfig  

The silentoldconfig is the same as oldconfig except the questions answered by the .config file 

will not be shown. 

Make olddefconfig  

The olddefconfig is like silentoldconfig except some questions are answered by their 

defaults. 

 

Make defconfig  

The defconfig option creates a .config file that uses default settings based on the current 

system architecture. 

Before making changes to kernel configuration settings try to take back up the old configuration 

file because after changing several parameters the kernel no longer works, if something goes 

wrong then we can use this back up config file to run the kernel.  

$ cp .config .config.old 

Compiling and installing the kernel for the host system 

� Make  

• Make command given in the main kernel source directory. If you want run multiple jobs 

at a time then give make –j4 – which uses four CPU cores to compile the kernel. It speed 

up the compilation process. 

• It generates the following files 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



o Vmlinx – the raw uncompressed kernel image in the ELF format, useful for 

debugging purposes but it cannot be booted. 

o zImage, Image, bzImage, vmImage.gz images are generated in arch/arm//boot 

directory. 

� zImage – for ARM architecture 

� Image – uncompressed image format 

� bzImage – for x86 architecture. 

� vmImage.gz for blackfin. 

o The device tree files are generated in arch/arm//boot/dtb directory for some 

architecture. 

o All kernel modules spread over the kernel source tree as .ko files. 

 

� Make install 

o It will install for the host system by default. Generally it is not used when compiling 

for an embedded device, as it installs files on development workstation. 

o Installs:  

� Arch/boot/vmlinuz -- compressed kernel image. 

� arch/boot/System.map – stores kernel symbol addresses. 

� /boot/config – kernel configuration  

 

� Make modules_install 

o It will install for the host system by default. 

o Install all modules in /lib/modules 

o Kernel/ -- kernel object modules as .ko files 

o Modules.alias – for module loading utilities. 

o Module.dep – module dependencies. 

o Modules.symbols – which module a given symbol belongs to. 

 

 

 

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



� Make clean – It removes all the generated files while compilation. 

 

� Make mrproper – It also removes all generated files and also removes your .config file also. 

It is useful when switching from one architecture to other architecture. 

 

� Make distclean – It also removes all generated files as well as backup and patch reject files. 

 

Cross compiling the kernel 

To make the difference between native compilers, cross-compiler executables are 

prefixed by name of the target board and architecture. The CPU architecture and cross compiler 

prefix are defined through the ARCH and CROSS_COMPILE variables in the top level 

makefile. 

• ARCH is the name of the architecture. It is defined by the name of the 

subdirectory in arch/ folder in the kernel sources. 

o Example: for ARM – ARCH=arm 

• CROSS_COMPIE is the prefix of the cross compilation tool chain. 

o Example: for ARM – CROSS_COMPILE=arm-linux-gcc 

• Two solutions to define ARCH and CROSS_COMPILE 

o Pass ARCH and CROSS_COMPILE on the make command line while 

compiling the kernel. 

� Example: make ARCH=arm CROSS_COMPILE=arm-linux-gcc 

� Problem with this is we will forget to pass these variables when 

you run any make command. 

o Define ARCH and CROSS_COMPILE as environment variable. 

� Export ARCH=arm 

� CROSS_COMPILE=arm-linux-gcc 

� Problem with this it works inside the current shell or command line 

terminal. You can overcome by this putting this settings in a file 

that your source every time you start working on the project. If you 

work on a single architecture with always same tool chain then 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



place this settings in. /bashrc file to make them permanent and 

visible for any terminal. 

 

Predefined configuration files 

 Default configuration files are available for every architecture or CPU family in 

arch/<arch>/configs as .config files. Run make help to find if one is available for your platform. 

To load default configuration file just run make old_defconfig. This will overwrite your existing 

.config file. 

 

Device Tree 

Many embedded architectures have a lot of non discoverable hardware. Depending on the 

architecture such hardware is either described using C code directly with in the kernel or using a 

special hardware description language in a device tree. ARM, power PC, ARC, Micro blaze are 

the examples of architecture using device tree. The Device Tree is a data structure for describing 

hardware, rather than hard coding every detail of a device into an operating system, many aspect 

of the hardware can be described in a data structure that is passed to the operating system at boot 

time. A device tree is written by kernel developers and is compiled into a binary device tree blob 

passed at boot time to the kernel. There are different device tree for each board or platform 

supported by the kernel. It will be there arch/arm/boot.dts/board.dtb.  The boot loader must load 

both kernel image and device tree blob in memory before starting the kernel. 

 

Building and installing the kernel 

• Make  

o This command creates kernel images in /arch/<arch>/boot/ (can uImage, 

zImage,vmlinux,bzImage) and copy this kernel image onto target board. 

o Make dtbs creates the device tree blob in arch/<arch>/boot/dts/ and copy this file 

also onto target board. 

• Make install  

o It is rarely used in embedded development, as kernel image is a single file. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



 

• Make modules_install  

o It installs many modules and description files. 

 

Booting with U-Boot 

• Latest versions of u-boot can boot the zImage binary file where as older version of u-boot 

require special kernel image format uImage. 

• uImage is generated from zImage using mkimage tool and it also done by automatically 

by the kernel make uImage target. 

• On some ARM platforms make uImage requires passing a LOADADDR environment 

variable, which indicates at which physical memory address the kernel will be executed. 

• U-Boot also needs to pass a device tree blob to the kernel. 

o Load zImage or uImage at address X in memory. 

o Load board.dtb at address Y in memory 

o Start the kernel with bootz X – Y or bootm X – Y. The – in the middile indicates 

no initramfs. 

 

Kernel Command line 

• The kernel behavior can be adjusted with no recompilation using the kernel command 

line. 

• This kernel command line is passed by boot loader. In u-boot the contents of bootargs 

environment variable is automatically passed to the kernel. 

• Built into the kernel using the CONFIG_CMDLINE option. 

• The kernel command line is string that defines various arguments to the kernel.   

o It is very important for system configuration. 

o root – for root filesystem 

o Console – to print kernel messages. 

 

 

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om



 

Using kernel modules 

• Modules are useful to keep the kernel image size is to minimum. 

• Modules make it easy to develop drivers without rebooting and reduce boot time. That is 

at boot time it will not initialize devices and kernel features, this will be done later. 

• Some kernel modules can depend on other kernel modules which need to be loaded first. 

o Dependencies are described in /lib/modules/<kernel-version>/modules.dep. this 

files are generated when we run make modules_install 

o Example: usb-storage module depends on the scsi_mod, libusual and usbcore 

modules. 

Kernel log 

When a new module is loaded the related information is available in the kernel log. The 

kernel keeps its messages in a circular buffer. Kernel messages are available through the 

“dmesg” command. Kernel log messages also displayed in the system console and can filtered 

using “loglevel” kernel parameter or completely disabled with “quit” kernel parameter. 

 

  

 

 

 

 

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om


