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shown that all the b variables are not independent. We can determine the number of independent 
branch currents and branch voltages using the concept developed by graph theory. 

Choice of independent branch currents: 

 To determine the number of independent branch currents, consider the tree of a given 
graph which is connected sub graph with no closed path. The addition of each link branch to the 
tree gives rise to different closed path. Hence the opening or removal of the links destroys all 
closed paths, which results in forcing all branch currents to zero. Thus, if we set all link branch 
currents to zero, the currents in all branches of the network automatically to zero. We can 
conclude that tree branch currents are dependent on link branch currents and can be expressed 
uniquely in terms of link branch currents. This shows for a given network with b branches and n 
nodes, the number of independent branch currents equal to number of links is (b- (n-1)) = (b- 
n+1). 

   The dependent branch currents or tree branch currents can be expressed in a unique way in 
terms of link branch currents using the row of the tie-matrix [C]. 

    Hence to solve a given network, we have to determine the independent branch currents, in 
terms of which other variables can be determined. To determine these independent branch 
currents we formulate equations by equations by applying KVL to each of the loops, and these 
equations are called as loop equations and the variables in which equations are formulated are 
called the loop currents. This method of analysis is called as loop method of analysis and is 
based on KVL. 

    To analyze this see the fallowing example, if the branch currents are , , ,  then they 
can be expressed as link branch currents , , ,  as  

                                    

                                                 [i] = [C] [  ------------------------ (1) 

Where [i] = column of branch currents 

            [  = column of link branch currents 
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             [C] = basic tie-set matrix 

The tree branch currents for above example are can express as below, 

 

                                   =  -  

                                   =  +  

                                   =  +  

                                   =  +     ----------------- (3)  

The loop equations are formulated using equations (1). 

Another way to find loop currents:  

          Another way commonly employed in formulating the loop equations using loop currents as 
the independent variables is illustrated below. We can use the window method to arrive at the 
number of independent loop currents if it is planar network. This method is illustrated and loop 
equations are formulated using KVL in terms of loop current variables. 

             Consider the network shown in fig. the choice of loop currents in loop equations 
formulated below. Let ,  and  are the loop currents in the loops 1, 2 and 3 flowing in the 
elements forming that loop. The loop equations are obtained by applying KVL for each of the 
loop in the network. 

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com



Loop1:  -

Loop2: (

Loop3: (

   The equ

Choice o

        In a
branch vo

         Con
Since it 
through t
Hence of
network 
unique w

     Hence
and henc
be expre
branch v
these equ
and is ba

      The 
voltages 

-  +   

 - )  - 

 - )  + 

uations 1, 2,

of independe

analyzing the
oltages. We 

nsider the tr
is connected
tree branche
f all the tree 
will automa

way in terms 

e for any giv
ce there will 
essed in term
voltages, we 
uations are n
ased on KCL

dependent b
using the ro

+  + (  -

 +   + 

 + E = 0

, 3 are the lo

ent voltages

e network on
can use grap

ree of a netw
d sub graph
es removal o

branch volta
atically beco
of tree branc

ven network 
be (n-1) ind

ms of these 
formulate t

nodal equati
L. 

branch volta
ws of basic 

)  = 0 

(  - )  =

0  -   +

oop equation

s:  

n voltage bas
ph theory co

work graph w
h, there exist
of tree branch
ages are set 
ome zero. A
ch voltages.

within n no
dependent br

independen
the (n-1) equ
ons. This m

ages can be 
cut-set matr

 (  + )

=   -  

+   +

s which are 

sis, we have
oncepts to de

which is con
ts a unique 
h voltages r
equal to zer

All the link 

odes and b br
ranch voltag

nt branch vo
uations by a

method of ana

expressed 
ix [B]. 

) -   = (

 +  ( +

) = E ---- (3

to be solved

 to determin
etermine inde

nnected sub 
path betwee
esults in the
o, where in 
branch volt

ranches, ther
ges. The rem
oltages. To d
applying KC
alysis is call

in unique w

 - ) – (1)

 + ) - 

) 

d for the loop

ne the numbe
ependent vo

graph with 
en every pai
e equal poten
all the branc
tages can b

re will be (n
maining branc

determine th
CL to each o
led nodal m

way in term

) 

  =  -- (

p currents. 

er of indepen
oltages. 

no closed p
ir of nodes 
ntial of all n
ch voltages o
e expressed

n-1) tree bran
ches voltage
hese indepen
of the nodes
ethod of ana

ms of tree br

(2) 

ndent 

paths. 
only, 

nodes. 
of the 

d in a 

nches 
es can 
ndent 
s and 
alysis 

ranch 

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com



      To illustrate, we consider the below example. If the branch voltages are , , ,  then 
they can be expressed in terms of tree branch voltages [ , , , ] as 

                                                    [v] = [B] [  ----------- (1) 

            Where [v] = column branch voltages 

                        [ ] = column of tree branch voltages 

                        [B] = basic cut set matrix 

                                      

From that graph we can get, 

     

 

The link branch voltages are expressed in a unique way as 
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                                     =  +  

                                    =  +  

                                    =  +  

                                    =  +     --------------- (3) 

The nodal equations are formulated using columns of equations (1). 

Another way of choosing independent voltages: 

       This method is commonly employed in practice instead of using graph theory. In this 
method, we employ node pair voltages or nodal voltages as the variables in terms of which nodal 
equations are obtaining KCL at each node. 

 Consider a network having nodes and choose one of the nodes as the reference node. 
Theoretically any one of the nodes can be chosen as reference node and the potentials of all other 
nodes are measured with respect to node. A node to which more number of elements is 
connected is generally taken as reference node. Consider below example 

                            

      The reference node is numbered zero and assumed to be at zero potential. The other nodes 
are numbered as 1, 2, -----, n-1and the potentials of these nodes with reference to node (0) are 

, , -----,  respectively. Thus there will be (n-1) node pair voltages which are independent 
voltages. All other voltages can be expressed in terms of these node pair voltages. The nodal 
equations are formulated in terms of these variables, by applying KCL at each node but expect at 
reference node. This method is known as nodal method of analysis.  

Ex 1: For the given network draw the graph and choose a possible tree. Construct the basic tie-
set schedule. Write the equation for the branch currents and in terms of the link currents and 
write separately the independent equations. 
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    No of nodes of a tree,  = 4 

No of tree branches, n= 4-1 = 3 

Total no of branches, b = 6 

No of links, l = no of independent loop currents = b – n = 6 – 3 = 3 

 

 

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com



Branch currents in terms of independent link currents from fig c 

                     =   

                     =    

                     =     identities 

                     =  +  

                     = - (  + ) 

                     =  -  independent equations 

The loop equations from the rows of tie-set matrix are,  

                     + -   = 0 

                     + -  +  = 0 

                     + -   = 0 

Duality and Dual Networks 

Duals: Two circuits are said to be dual of each other, if the mesh equations characterize one of 
them has the same mathematical form as the nodal equations that characterize the other. 

Principle of Duality: Identical behavior patterns observed between voltages and currents 
between two independent circuits illustrate the principle of duality. 

Ex:  1) series R-L-C circuit:  

                                            

Mesh  KVL  -V + iR + L  +    = 0  

                                  V = I R + L  +      
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2) Parallel G-C-L circuit:  

                                                  

Nodal  KCL  - I + V G + C  +      

                                I = V G + C  +      

From that (1) and (2) are mathematically identical, so they are duals. 

Some dual elements: 

1) Voltage (V)  Current (I) 
2) Resistor (R)   Conductance (G) 
3) Inductor (I)   Capacitor (C) 
4) KVL   KCL 
5) V(t)   I(t) 
6) Mesh   nodal 
7) Series   parallel 
8) Vsinwt   Icoswt 
9) Open circuit   short circuit 
10) Thevenin    Norton 
11) Link    twig 
12) Cut set   tie set 
13) Tree   co-tree 
14) Switch in series (getting closed)   switching in parallel (getting opened) etc. 

Procedure to Obtain a Dual Network:  

 These rules illustrated below are only for planar or flat networks which do not have any 
of their branches crossing other branches1. 
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1) Place a dot in every loop of the network whose dual is obtained and a dot outside the 
network. Each dot is numbered according to the loop in which it is placed. The outside 
dot is called the reference node and give number as 0. 

2) Connect two dots by a line through each branch. The dots are the nodes of the dual 
network between two nodes; the element to be connected is the dual of the element 
crossed by the line. 

3) When sources are included, then the line joining the dots should intersect the sources 
also; between these two nodes the dual of the source is included. 

4) The polarity of the source is decided by the fallowing rule. A voltage or current source 
which drives a current in clockwise in  loop, then place a positive polarity at  the 
dual network. Negative if it is opposite. 

Example:  

     

Inverse Networks: If two impedances ,  which are duals of each other are expressed in the 
form of   = , where K is a positive number of independent of frequency, then the two 
impedances are said to be inverse or reciprocal. The inversion is said to be about K. 

Ex:   =  + j (w  ) and   

         =  =  + j (w  ) 

So  *  =  = 
     

    
 =  

From the above equation that,  

                 =  =  =  
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  The dua

 

                

al of the netwwork is, 
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