4. SIMPLIFICATIONS

In simplification of an expression there are certain laws which should be strictly adhered to. These laws are as follows:

'VBODMAS' Rule

This rule gives the correct sequence in which the mathematical operations are to be performed so as to find out the value of a given expression.

Here, 'V' stands for Vinculum (or Bar), 'B' stands for 'Bracket', 'O' stands for 'Of', 'D' stands for 'Division', ' M ' stands for 'Multiplication', ' A ' stands for 'Addition' and ' S ' stand for 'Subtraction'. (a) Here, "VBODMAS' gives the order of simplification. Thus, the order of performing the mathematical operations in a given expression are
First: Vinculum or line bracket or bar
Second: Bracket
Third: Of
Fourth: Division
Fifth: Multiplication
Sixth: Addition \&
Seventh: Subtraction
The above order should strictly be followed.
(b) There are four types of brackets.
(i) Square brackets []
(ii) Curly brackets \{ \}
(iii) Circular brackets ()
(iv) Bar or Vinculum -

Thus, in simplifying an expression all the brackets must be removed in the order '-', '()', '\{ \}' and '[]'.

Modulus of a Real Number

The modulus of a real number x is defined as

$$
|x|=\left\{\begin{array}{c}
x \text { if } x>0 \\
-x \text { if } x<0
\end{array}\right.
$$

Basic Formulae:

(i) $(a+b)^{2}=a^{2}+2 a b+b^{2}$
(ii) $(a-b)^{2}=a^{2}-2 a b+b^{2}$
(iii) $(a+b)^{2}-(a-b)^{2}=4 a b$
(iv) $(a+b)^{2}+(a-b)^{2}=2\left(a^{2}+b^{2}\right)$
(v) $(\mathrm{a}-\mathrm{b})^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$
(vi) $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
(vii) $\left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right)$
(viii) $\left(a^{3}-b^{3}\right)=(a-b)\left(a^{2}+a b+b^{2}\right)$
(ix) $\left(a^{3}+b^{3+} c^{3}-3 a b c\right)=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$
(x) $\left(a^{3}+b^{3+} c^{3}\right)=3 a b c$, if $a+b+c=0$

Example 1: Simplify $1005+500-10-80$.
Solution: $\quad 1005+500-10-80=1005+490-80=1495-80=1415$
Example 2: If $\mathrm{a}^{*} \mathrm{~b}=2(\mathrm{a}+\mathrm{b})$, then what is the value of $5 * 2$?
Solution: $\quad 5 * 2=2(5+2)=2 * 7=14$

Example 3: 3/5 part of the students in a class are the girls and remaining are the boys. If $2 / 9$ part of the girls and $1 / 4$ part of the boys are absent, then what part of total students is present.
Solution: Let the total number of students be \boldsymbol{x}
Number of girls $=\frac{3}{5} x$
Number of boys $=\frac{2}{5} \boldsymbol{x}$
Number of students absent $=\left(\frac{2}{9}\right.$ of $\left.\frac{3}{5} x\right)+\left(\frac{1}{4}\right.$ of $\left.\frac{2}{5} x\right)=\frac{2}{15} x+\frac{1}{10} x=\frac{7}{30} x$
No. of students Present $=\left(1-\frac{7}{30}\right) x=\frac{23}{30} x$
Example 4: Simplify $\left(2^{10}-2^{9}\right)\left(2^{8}-2^{7}\right)$.
Solution: $\quad\left(2^{10}-2^{9}\right)\left(2^{8}-2^{7}\right)=2^{9}(2-1) \cdot 2^{7}(2-1)=2^{9+7}=2^{16}$
Example 5: If $\frac{x}{y}=\frac{3}{2}$ find the value of $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$.
Solution: Method-I: $\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=\frac{\frac{x^{2}}{y^{2}}+1}{\frac{x^{2}}{y^{2}}-1}$ (dividing both numerator and denominator by y^{2})

$$
=\frac{\left(\frac{x^{2}}{y^{2}}\right)+1}{\left(\frac{x^{2}}{y^{2}}\right)-1}=\frac{\left(\frac{3^{2}}{2^{2}}\right)+1}{\left(\frac{3^{2}}{2^{2}}\right)-1}=\frac{\frac{9}{4}+1}{\frac{9}{4}-1}=\frac{13}{5}=2 \frac{3}{5}
$$

Method-II: Replace x and y with 3 \& 2 respectively.
Example 6: Simplify $\frac{0.3 \times 0.3+0.03 \times 0.03-\mathbf{0 . 6} \times \mathbf{0 . 0 3}}{0.54}$
Solution: $\quad 0.3 \times 0.3+0.03 \times 0.03-0.6 \times 0.03=0.3 \times 0.3+0.03 \times 0.03-2 \times 0.3 \times 0.03$ is of the form

$$
\begin{aligned}
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& a=0.3 \text { and } b=0.03=(0.3-0.03)^{2}=(0.27)^{2} \\
& \quad \text { Given expression } \frac{\mathbf{0 . 2 7} \times \mathbf{0 . 2 7}}{\mathbf{0 . 5 4}}=0.135
\end{aligned}
$$

EXERCISE

1. What is $\frac{\mathbf{1}}{\mathbf{6}}$ th of 3 ?
(a) 6
(b) 3
(c) $1 / 2$
(d) $1 / 3$
2. Divide 0.045 by 100 .
(a) 0.0045
(b) 0.00045
(c) 0.000045
(d) 0.45
3. Simplify $15.876-(2.49+4.056) \div \frac{1}{2}$.
(a) 2.784
(b) 3.052
(c) 2.984
(d) 3.152
4. Simplify $\frac{0.48 \div 0.12+0.04 \times 25}{0.05}$
(a) 100
(b) 110
(c) 90
(d) 105
5. Simplify $\frac{\frac{3}{2} \cdot \frac{1}{2} \times \frac{3}{2}}{\frac{3}{2} \div \frac{1}{2} o f \frac{3}{2}} \div \frac{1}{8}$
(a) 18
(b) 21
(c) 16
(d) 24
6. Simplify $1 \div[1+1 \div\{1+1 \div(1 \div 1)\}]$.
(a) $\frac{3}{2}$
(b) $\frac{2}{5}$
(c) $\frac{2}{3}$
(d) $\frac{2}{3}$
7. . Find the value of $\frac{(3+3+3+3) \div 3}{5+5+5+5 \div 5}$
(a) $\frac{1}{4}$
(b) $\frac{3}{4}$
(c) 1
(d) $\frac{9}{4}$
8. Simplify $\left[1-2(3-4)^{-1}\right]^{-1}$
(a) $\frac{1}{4}$
(b) $\frac{1}{3}$
(c) $\frac{1}{2}$
(d) $\frac{1}{6}$
9. $(16 \div 4) \div 4$ is equal to
(a) 4
(b) 1
(c) $\frac{1}{4}$
(d) 16
10. $16 \div(4 \div 4)$ is equal to
(a) 4
(b) 1
(c) $\frac{1}{4}$
(d) 16
11. Simplify
$\left(1+\frac{1}{4}\right)\left(1-\frac{1}{4}\right)\left(1+\frac{1}{5}\right)\left(1-\frac{1}{5}\right)$ $\left(1+\frac{1}{6}\right)\left(1-\frac{1}{6}\right)$
(a) $\frac{3}{8}$
(b) $\frac{5}{8}$
(c) $\frac{7}{8}$
(d) $\frac{1}{8}$
12. Find P in the expression, if $\frac{p}{1+\frac{1}{1+\frac{p}{1-p}}}=1$.
(a) 2
(b) $\frac{1}{4}$
(c) 1
(d) $\frac{1}{2}$
13. If $x \# y=x+y$, then find the value of $(3 \#$ 4) \# 3 .
(a) 6
(b) 7
(c) 10
(d) 8
14. If $1^{3}+2^{3}+3^{3}+\ldots+9^{3}=2025$, then find the value of $(0.1)^{3}+(0.2)^{3}+\ldots+(0.9)^{3}$
(a) 2.025
(b) 202.5
(c) 20.25
(d) 0.2025
15. What least fraction should be added to $\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\ldots \ldots+\frac{1}{21 \times 22}$, so that the result is unity.
(a) $\frac{3}{11}$
(b) $\frac{6}{11}$
(c) $\frac{5}{11}$
(d) $\frac{7}{11}$
16. The sum of first 50 positive integers is 1275. What is the sum of the integers from 51 to 100 ?
(a) 2525
(b) 2550
(c) 3250
(d) 3775
17. 2 tables and 3 chairs cost Rs. 3500 while 3 tables and 2 chairs cost Rs. 4000 . The cost of a table (in rupees) is
(a) 500
(b) 1000
(c) 1200
(d) 1500
18. If $x+y-z=m$ and if $x-y+z=n$, then x is equal to
(a) $(\mathrm{m}+\mathrm{n}) / 2$
(b) $m-n$
(c) $2 m+n$
(d) $m+n$
19. If the numerator of a fraction is double and the denominator is increased by 3 , the new fraction is $3 / 5$. What is the original fraction, if its denominator is more than twice the numerator by 1 ?
(a) $3 / 7$
(b) $6 / 13$
(c) $1 / 3$
(d) $5 / 11$
20. It is required to change a rupee coin into 2 paisa and 5 paisa coins with the total number of coins equal to 26 . Find the number of each type of coins.
(a) 10 and 16
(b) 12 and 14
(c) 10 and 20
(d) 10 and 14
21. For what value of $x, 8+(x-3)^{2}$ have the least value?
(a) -3
(b) 0
(c) 3
(d) 5

ANSWER KEY

1	c	6	c	11	c	16	d	21	c
2	b	7	a	12	c	17	b		
3	a	8	b	13	c	18			
4	a	9	b	14	a	19	a		
5	a	10	d	15	b	20	a		

SOLUTIONS

1. $\frac{1}{6}$ th of $3=\frac{1}{6} \times 3=\frac{1}{2}$
2. $\frac{\mathbf{0 . 0 4 5}}{\mathbf{1 0 0}}=\mathbf{0 . 0 0 0 4 5}$
3. The given expression is

$$
\begin{aligned}
& 15.876-(2.49+4.056) \div \frac{1}{2} \\
= & 15.876-(6.546) \div \frac{1}{2} \\
= & 15.876-(6.546 \times 2) \\
= & 15.876-13.092=2.784
\end{aligned}
$$

4. $0.48 \div 0.12+0.04 \times 25$

$$
\begin{aligned}
& =\frac{\mathbf{0 . 4 8}}{\mathbf{0 . 1 2}}+\mathbf{0 . 0 4} \times \mathbf{2 5} \\
& \quad=4+1=5
\end{aligned}
$$

Given expression $=\frac{\mathbf{5}}{\mathbf{0 . 0 5}}=100$
5. Given expression $\frac{\frac{3}{2} \div \frac{1}{2} \times \frac{3}{2}}{\frac{3}{2} \div \frac{1}{2} \text { of } \frac{3}{2}} \div \frac{1}{8}=\frac{\frac{3}{2} \times \frac{2}{1} \times \frac{3}{2}}{\frac{3}{2} \div \frac{3}{4}} \div \frac{1}{8}$

$$
=\frac{\frac{9}{2}}{\frac{3}{2} \times \frac{4}{3}} \div \frac{1}{8}=\frac{\frac{9}{2}}{2} \div \frac{1}{8}=\frac{9}{4} \times \frac{8}{1}=18
$$

6. Given expression

$$
\begin{aligned}
& =1 \div[1+1 \div\{1+1 \div(1 \div 1)\}] \\
& =1 \div[1+1 \div\{1+1 \div 1\}] \\
& =1 \div[1+1 \div\{1+1\}] \\
& =1 \div[1+1 \div 2]=1 \div\left[1+\frac{1}{2}\right]=1 \div \frac{3}{2}=\frac{2}{3}
\end{aligned}
$$

7. Given expression $=\frac{(12) \div 3}{5+5+5+1}=\frac{4}{16}=\frac{1}{4}$
8. Given expression $=\left[1-2(3-4)^{-1}\right]^{-1}$

$$
=\left[1-2(-1)^{-1}\right]^{-1}=[1+2]^{-1}=3^{-1}=\frac{1}{3}
$$

9. $(16 \div 4) \div 4=4 \div 4=1$
10. $16 \div(4 \div 4)=16 \div 1=16$
11. Given expression is

$$
\left(1+\frac{1}{4}\right)\left(1-\frac{1}{4}\right)\left(1+\frac{1}{5}\right)\left(1-\frac{1}{5}\right)\left(1+\frac{1}{6}\right)
$$

$\left(1-\frac{1}{6}\right)=\frac{5}{4} \times \frac{3}{4} \times \frac{6}{5} \times \frac{4}{5} \times \frac{7}{6} \times \frac{5}{6}=\frac{7}{8}$
12. Given, $\frac{p}{1+\frac{1}{\frac{(1-p)+p}{1-p}}}=1 \Rightarrow \frac{p}{1+\frac{1}{\frac{1}{1-p}}}=1$

$$
\Rightarrow \frac{p}{1+(1-p)}=1 \Rightarrow \frac{p}{2-p}=1
$$

$$
\Rightarrow \mathrm{p}=2-\mathrm{p} \text { or } \mathrm{p}=1
$$

13. Given $x \# y=x+y$

Then, $(3$ \# 4) \# $3=(3+4) \# 3=7$ \# $3=10$
14. Given $1^{3}+2^{3}+3^{3}+\ldots+9^{3}=2.025$

Now, $(0.1)^{3}+(0.2)^{3}+\ldots+(0.9)^{3}$
$=(0.1)^{3}\left[1^{3}+2^{3}+\ldots+9^{3}\right]$

$$
=(0.1)^{3}(2025)=0.001 \times 2025=2.025
$$

15. Given expression is
$\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\frac{1}{4 \times 5}+\cdots . .+\frac{1}{21 \times 22}$
$=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\ldots .+\left(\frac{1}{21}-\right.$
$\left.\frac{1}{22}\right)=\frac{1}{2}-\frac{1}{22}=\frac{10}{22}=\frac{5}{11}$
Thus, least fraction to be added $=1-\frac{5}{11}=$ $\frac{6}{11}$
16. Sum of 1 to $100=\frac{\mathbf{1 0 0}(\mathbf{1 0 0 + 1)}}{\mathbf{2}}=5050$
\therefore Sum of 51 to $100=$ sum of 1 to 100 -
sum of 1 to $50=5050-1275=3775$
17. $2 \mathrm{t}+3 \mathrm{c}=3500$
$3 t+2 c=4000$
On solving $\mathrm{t}=$ Rs. 1000
18. $x+y-z=m$ and $x-y+z=n$

Adding the above two we have,
$2 \boldsymbol{x}=\boldsymbol{m}+\boldsymbol{n}$ or $\boldsymbol{x}=(\boldsymbol{m}+\boldsymbol{n}) / 2$.
19. M-I: Let the fraction be $\frac{x}{2 x+1}$

Then, $\frac{2 x}{2 x+1+3}=\frac{3}{5} \Rightarrow 10 \mathrm{x}=6 \mathrm{x}+12$
$\Rightarrow 10 x-6 x=12 \Rightarrow x=3$
So, the fraction is $\frac{3}{7}$

M-II: 0TP

20. M-I: Let x be the number of 5 paisa coins, then ($26-\mathrm{x}$) will be the number of 2 paisa coins.

$$
\begin{aligned}
& \text { So, } 5 x+(26-x) \times 2=100 \\
& 5 x+52-2 x=100 \\
& 3 x=48=>\quad x=16
\end{aligned}
$$

Number of 5 paisa coins $=16$
Number of 2 paisa coins $=26-16=10$

M-II: 0TP

21. Clearly for $\boldsymbol{x}=3$, given expression has least value.
