4. SIMPLIFICATIONS

In simplification of an expression there are certain laws which should be strictly adhered to. These laws are as follows:

'VBODMAS' Rule

This rule gives the correct sequence in which the mathematical operations are to be performed so as to find out the value of a given expression.

Here, 'V' stands for Vinculum (or Bar), 'B' stands for 'Bracket', 'O' stands for 'Of', 'D' stands for 'Division', 'M' stands for 'Multiplication', 'A' stands for 'Addition' and 'S' stand for 'Subtraction'. (a) Here, "VBODMAS' gives the order of simplification. Thus, the order of performing the mathematical operations in a given expression are

First: Vinculum or line bracket or bar

Second: Bracket

Third: Of

Fourth: Division

Fifth: Multiplication

Sixth: Addition &

Seventh: Subtraction

The above order should strictly be followed.

(b) There are four types of brackets.

(i) Square brackets []

(ii) Curly brackets { }

(iii) Circular brackets ()

(iv) Bar or Vinculum -

Thus, in simplifying an expression all the brackets must be removed in the order '-', '()', '{ }' and '[]'.

Modulus of a Real Number

The modulus of a real number x is defined as

$$|\mathbf{x}| = \begin{cases} \mathbf{x} & \text{if } \mathbf{x} > 0 \\ -\mathbf{x} & \text{if } \mathbf{x} < 0 \end{cases}$$

Basic Formulae:

(i) $(a+b)^2 = a^2+2ab+b^2$ (ii) $(a-b)^2 = a^2-2ab+b^2$ (iii) $(a+b)^2 - (a-b)^2 = 4ab$ (iv) $(a+b)^2 + (a-b)^2 = 2(a^2+b^2)$ (v) $(a-b)^2 = (a+b)(a-b)$ (vi) $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$ (vii) $(a^3+b^3) = (a+b)(a^2 - ab+b^2)$ (viii) $(a^3+b^3) = (a-b)(a^2+ab+b^2)$ (ix) $(a^3+b^{3+}c^3-3abc) = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)$ (x) $(a^3+b^{3+}c^3) = 3abc$, if a+b+c=0

Example 1:Simplify 1005 + 500 - 10 - 80.Solution:1005 + 500 - 10 - 80 = 1005 + 490 - 80 = 1495 - 80 = 1415Example 2:If $a^* b = 2 (a + b)$, then what is the value of 5 * 2?Solution:5 * 2 = 2(5 + 2) = 2 * 7 = 14

Example 3: 3/5 part of the students in a class are the girls and remaining are the boys. If 2/9 part of the girls and 1/4 part of the boys are absent, then what part of total students is

present.

Solution: Let the total number of students be xNumber of girls = $\frac{3}{5}x$ Number of boys = $\frac{2}{5}x$ Number of students absent = $\left(\frac{2}{9} of \frac{3}{5} x\right) + \left(\frac{1}{4} of \frac{2}{5} x\right) = \frac{2}{15} x + \frac{1}{10} x = \frac{7}{30} x$ No. of students Present = $(1 - \frac{7}{30})x = \frac{23}{30}x$ **Example 4**: Simplify $(2^{10} - 2^9) (2^8 - 2^7)$. $(2^{10} - 2^9) (2^8 - 2^7) = 2^9 (2-1) \cdot 2^7 (2-1) = 2^{9+7} = 2^{16}$ Solution : **Example 5:** If $\frac{x}{y} = \frac{3}{2}$ find the value of $\frac{x^2 + y^2}{x^2 - y^2}$. Solution: Method-I: $\frac{x^2+y^2}{x^2-y^2} = \frac{\frac{x^2}{y^2}+1}{\frac{x^2}{2}-1}$ (dividing both numerator and denominator by y²) $=\frac{\left(\frac{x^2}{y^2}\right)+1}{\left(\frac{x^2}{2}\right)-1}=\frac{\left(\frac{3^2}{2^2}\right)+1}{\left(\frac{3^2}{2^2}\right)-1}=\frac{\frac{9}{4}+1}{\frac{9}{4}-1}=\frac{13}{5}=2\frac{3}{5}$ Method-II: Replace x and y with 3 & 2 respectively **Example 6**: Simplify $\frac{0.3 \times 0.3 + 0.03 \times 0.03 - 0.6 \times 0.03}{1000}$ **Solution:** $0.3 \times 0.3 + 0.03 \times 0.03 - 0.6 \times 0.03 = 0.3 \times 0.3 + 0.03 \times 0.03 - 2 \times 0.3 \times 0.03$ is of the form $(a-b)^2 = a^2 - 2ab + b^2$ a=0.3 and b= $0.03 = (0.3 - 0.03)^2 = (0.27)^2$ Given expression $\frac{0.27 \times 0.27}{0.54} = 0.135$ **EXERCISE** (a) 18 (b) 21 (c) 161 th (d) 24

I.	What is $\frac{1}{2}$	of 3?				(\mathbf{c}) 10
	(a) 6	(b) 3 1	(c) $1/2$	(d) $1/3$	6.	Simplif
2.	Divide 0.04	45 by 1	00.			(a) $\frac{3}{2}$
	(a) 0.0045		(b) 0.00045			$(c)^{\frac{2}{-}}$
	(c) 0.00004	15	(d) 0.45			3
3.	Simplify 1	5.876 -	(2.49 + 4.056)	$\tilde{0}$ $\div \frac{1}{2}$.	7.	. Find th
	(a) 2.784		(b) 3.052	2		(a) $\frac{1}{4}$
	(c) 2.984		(d) 3.152			(c) 1
4.	Simplify <u>0.</u>	48÷0.12- 0.0	+0.04×25 5		8.	Simplif
	(a) 100		(b) 110			(a) $\frac{1}{4}$
	(c) 90		(d) 105			$(c)\frac{1}{c}$
5.	Simplify -	$\frac{3}{2} \div \frac{1}{2} \times \frac{3}{2} $	<u>1</u>		9.	$(16 \div 4)$
5.	$\frac{3}{2}$	$\div \frac{1}{2} of \frac{3}{2}$	8			(a) 4

()	
Simplify 1÷	$[1+1 \div \{1+1 \div (1 \div 1)\}]$
(a) $\frac{3}{2}$	(b) $\frac{2}{5}$
(c) $\frac{2}{3}$	(d) $\frac{2}{3}$
. Find the valu	ue of $\frac{(3+3+3+3)\div 3}{5+5+5+5\div 5}$
(a) $\frac{1}{4}$	$(b)\frac{3}{4}$
(c) 1	(d) $\frac{9}{4}$
Simplify [1 -	$2(3-4)^{-1}]^{-1}$
(a) $\frac{1}{4}$	(b) $\frac{1}{3}$
(c) $\frac{1}{2}$	(d) $\frac{1}{6}$
(16÷4) ÷4 is	equal to
(a) 4	(b) 1
	Simplify $1 \div $ (a) $\frac{3}{2}$ (c) $\frac{2}{3}$. Find the value (a) $\frac{1}{4}$ (c) 1 Simplify [1 - (a) $\frac{1}{4}$ (c) $\frac{1}{2}$ (16÷ 4) ÷4 is (a) 4

$(c)\frac{1}{4}$	(d) 16
10. $16 \div (4 \div 4)$ is equ	al to
(a) 4	(b) 1
$(c)\frac{1}{2}$	(d) 16
11 Simplify	
(1) (1) (1)	(1) (1) (1)
$\left(1+\frac{1}{4}\right)\left(1-\frac{1}{4}\right)$	$\left(1+\frac{1}{5}\right)\left(1-\frac{1}{5}\right)$
$\left(1+\frac{1}{6}\right)$	$\left(1-\frac{1}{6}\right)$
(a) $\frac{3}{8}$	(b) $\frac{5}{8}$
$(c)\frac{7}{8}$	$(d)\frac{1}{q}$
12. Find <i>P</i> in the expr	ression if $\frac{p}{p} = 1$.
	$1 + \frac{1}{1 + \frac{p}{1 - p}}$
(a) 2	(b) $\frac{1}{4}$
(c) 1	$(d)\frac{1}{2}$
13. If $x \# y = x + y$, the function $x = x + y$, the function $x = x + y$, the function $x = x + y$.	hen find the value of (3 #
4) # 3.	
(a) 6	(b) 7
(c) 10	(d) 8
14. If $1^3 + 2^3 + 3$	+ $9^3 = 2025$, then find
the value of $(0.1)^3$	$5^{4} + (0.2)^{3} + + (0.9)^{3}$
(a) 2.025	(b) 202.5
(c) 20.25	(d) 0.2025
15. What least fraction	n should be added to
$\frac{1}{2\times 3} + \frac{1}{3\times 4} + \frac{1}{4\times 5} + 1$	$\dots + \frac{1}{21 \times 22}$, so that the
result is unity.	
(a) $\frac{3}{11}$	(b) $\frac{6}{11}$
$(c)\frac{\overline{5}}{5}$	$(d)\frac{7}{7}$
··· 11	11

16.	The	sum	of	first	50	positive	integers	is
	1275	5. Wh	at is	s the	sum	of the in	ntegers fro	om
	51 to	b 100°	?					

(a) 2525	(b) 2550
(c) 3250	(d) 3775

17. 2 tables and 3 chairs cost Rs.3500 while 3 tables and 2 chairs cost Rs.4000. The cost of a table (in rupees) is

(a) 500	(b) 1000
(c) 1200	(d) 1500

18. If x + y - z = m and if x - y + z = n, then x is equal to

(a) $(m + n)/2$	(b) $m - n$
(c) $2m + n$	(d) $m + n$

19. If the numerator of a fraction is double and the denominator is increased by 3, the new fraction is 3/5. What is the original fraction, if its denominator is more than twice the numerator by 1?

(a) 3/7	(b) 6/13		
(c) 1/3	(d) 5/11		

20. It is required to change a rupee coin into 2 paisa and 5 paisa coins with the total number of coins equal to 26. Find the number of each type of coins.

(ัล)	10 and 16	(b) 12	and	14
ſ	α)	10 and 10	(0	114	anu	1 -

- (c) 10 and 20 (d) 10 and 14
- **21.** For what value of x, $8 + (x 3)^2$ have the least value?

(a) -3	(b) 0
(c) 3	(d) 5

ANSWER KEY									
1	C	6	С	11	с	16	d	21	с
2	b	7	а	12	с	17	b		
3	а	8	b	13	с	18			
4	а	9	b	14	a	19	а		
5	а	10	d	15	b	20	а		

SOLUTIONS

1. $\frac{1}{6}$ th of $3 = \frac{1}{6} \times 3 = \frac{1}{2}$ 2. $\frac{0.045}{100} = 0.00045$ 3. The given expression is $15.876 - (2.49 + 4.056) \div \frac{1}{2}$ $= 15.876 - (6.546) \div \frac{1}{2}$ $= 15.876 - (6.546 \times 2)$ = 15.876 - 13.092 = 2.7844. $0.48 \div 0.12 + 0.04 \times 25$ $=\frac{0.48}{0.12}+0.04\times25$ = 4 + 1 = 5Given expression $=\frac{5}{0.05}=100$ 5. Given expression $\frac{\frac{3}{2} \div \frac{1}{2} \times \frac{3}{2}}{\frac{3}{2} \div \frac{1}{2} of \frac{3}{2}} \div \frac{1}{8} = \frac{\frac{3}{2} \times \frac{2}{1} \times \frac{3}{2}}{\frac{3}{2} \div \frac{3}{2}} \div \frac{1}{8}$ $=\frac{\frac{9}{2}}{\frac{3}{2}\times\frac{4}{3}}\div\frac{1}{8}=\frac{\frac{9}{2}}{2}\div\frac{1}{8}=\frac{9}{4}\times\frac{8}{1}=18$ 6. Given expression $=1 \div [1+1 \div \{1+1 \div (1 \div 1)\}]$ $=1 \div [1 + 1 \div \{1 + 1 \div 1\}]$ $= 1 \div [1 + 1 \div \{1 + 1\}]$ $= 1 \div [1 + 1 \div 2] = 1 \div [1 + \frac{1}{2}] = 1 \div \frac{3}{2} = \frac{2}{2}$ 7. Given expression $=\frac{(12)\div3}{5+5+5+1}=\frac{4}{16}=\frac{4}{1$ 8. Given expression = $[1 - 2(3 - 4)^{-1}]^{-1}$ $= [1-2(-1)^{-1}]^{-1} = [1+2]^{-1} = 3^{-1} = \frac{1}{3}$ **9.** $(16 \div 4) \div 4 = 4 \div 4 = 1$ **10.** $16 \div (4 \div 4) = 16 \div 1 = 16$ **11.** Given expression is $\left(1+\frac{1}{4}\right)\left(1-\frac{1}{4}\right)\left(1+\frac{1}{5}\right)\left(1-\frac{1}{5}\right)\left(1+\frac{1}{5}\right)$ $\left(1-\frac{1}{6}\right) = \frac{5}{4} \times \frac{3}{4} \times \frac{6}{5} \times \frac{4}{5} \times \frac{7}{6} \times \frac{5}{6} = \frac{7}{8}$ 12. Given, $\frac{p}{1+\frac{1}{(1-p)+p}} = 1 \Longrightarrow \frac{p}{1+\frac{1}{\frac{1}{2}}} = 1$ $\Rightarrow \frac{p}{1+(1-n)} = 1 \Rightarrow \frac{p}{2-n} = 1$ \Rightarrow p=2-p or p=1 **13.** Given x # y = x + yThen, (3 # 4) # 3 = (3 + 4) # 3 = 7 # 3 = 10**14.** Given $l^3 + 2^3 + 3^3 + ... + 9^3 = 2.025$ Now, $(0.1)^3 + (0.2)^3 + ... + (0.9)^3$ $= (0,1)^3 [1^3 + 2^3 + ... + 9^3]$

 $= (0.1)^3 (2025) = 0.001 \text{ x } 2025 = 2.025$ 15. Given expression is $\frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \dots + \frac{1}{21 \times 22}$ $= \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \left(\frac{1}{4} - \frac{1}{5}\right) + \ldots + \left(\frac{1}{21} - \frac{1}{21}\right)$ $\left(\frac{1}{22}\right) = \frac{1}{2} - \frac{1}{22} = \frac{10}{22} = \frac{5}{11}$ Thus, least fraction to be added = $1-\frac{5}{11}$ = $\frac{6}{11}$ **16.** Sum of 1 to $100 = \frac{100(100+1)}{2} = 5050$ \therefore Sum of 51 to 100 = sum of 1 to 100 sum of 1 to 50 = 5050 - 1275 = 3775**17.** 2t + 3c = 3500(i) 3t + 2c = 4000.....(ii) On solving t = Rs.100018. x + y - z = m and x - y + z = nAdding the above two we have, 2x = m + n or x = (m + n)/2.**19. M-I:** Let the fraction be $\frac{x}{2x+1}$ Then, $\frac{2x}{2x+1+3} = \frac{3}{5} \Longrightarrow 10x = 6x + 12$ \Rightarrow 10x - 6x = 12 \Rightarrow x = 3 So, the fraction is $\frac{3}{7}$ M-II: 0TP **20.** M-I: Let *x* be the number of 5 paisa coins, then (26 - x) will be the number of 2 paisa coins. So, $5x + (26 - x) \times 2 = 100$ 5x + 52 - 2x = 1003x = 48 = x = 16Number of 5 paisa coins = 16Number of 2 paisa coins = 26 - 16 = 10M-II: 0TP **21.** Clearly for x = 3, given expression has least value.