21. PROBABILITY

The probability is the chance of occurring of a certain event when expressed quantitatively, i.e. probability is a quantitative measure of the certainty.

Event:

The possible outcomes of a trial are called events.

Sample space:

The set of all possible outcomes of an experiment is called a sample space. We generally denote it by S .

Algebra of events:

If A and B are two events associated with sample space S, then
(i) $A \cup B$ is the event that either A or B or both occur.
(ii) $\mathrm{A} \cap \mathrm{B}$ is the event that A and B both occur.

Mathematical definition of probability:

Probability of an event A, denoted as $\mathrm{P}(\mathrm{A})$, is defined as

$$
\mathrm{P}(\mathrm{~A})=\frac{\text { Number of cases favourable to } \mathrm{A}}{\text { Number of possible outcomes }}
$$

The probability of the happening of a certain event is denoted by p and that of not happening by q .

Here, p, q are non-negative and cannot exceed unity, i.e. $0 \leq p \leq 1$ and $0 \leq q \leq 1$.
For any two events A and $\mathrm{B}, \boldsymbol{P}(\boldsymbol{A} \cup \boldsymbol{B})=$ $P(A)+P(B)-P(A \cap B)$.
If A and B are two independent events, then $P(A$ and $B)=P(A) \cdot P(B)$

EXERCISE

1. In a simultaneous toss of two coins, find the probability of two heads?
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\frac{3}{4}$
(d) $\frac{4}{5}$
2. In a simultaneous toss of two coins, find the probability of exactly one tail?
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\frac{3}{4}$
(d) $\frac{4}{5}$
3. In a simultaneous toss of three coins find the probability of all heads
(a) $\frac{1}{8}$
(b) $\frac{3}{8}$
(c) $\frac{5}{8}$
(d) $\frac{7}{9}$
4. If four coins are tossed, find the probability to get at least 1 head?
(a) $\frac{3}{5}$
(b) $\frac{1}{6}$
(c) $\frac{15}{16}$
(d) $\frac{5}{6}$
5. A Dice is thrown. Find the probability that the number showing on the dice is divisible by 2
(a) $\frac{1}{4}$
(b) $\frac{1}{6}$
(c) $\frac{1}{2}$
(d) $\frac{1}{3}$
(e) $\frac{1}{52}$
6. In a single throw of two dice, find the probability of getting doublet?
(a) $\frac{2}{6}$
(b) $\frac{3}{5}$
(c) $\frac{6}{7}$
(d) $\frac{1}{6}$
7. Two dice are tossed. Find the probability that the total is a prime number?
(a) $\frac{5}{12}$
(b) $\frac{7}{12}$
(c) $\frac{12}{16}$
(d) $\frac{6}{16}$
8. In simultaneous throw of a pair of a dice, find the probability that the sum of numbers shown on the two faces divisible by 5 or 6
(a) $\frac{13}{36}$
(b) $\frac{1}{2}$
(c) $\frac{1}{6}$
(d) $\frac{1}{36}$
9. What is the probability of one card drawn at random from the pack of playing cards may be either a queen or an ace?
(a) $\frac{2}{13}$
(b) $\frac{3}{13}$
(c) $\frac{7}{13}$
(d) $\frac{11}{13}$
10. One card is drawn from pack of playing cards. Obtain the probability that it is a letter card or a heart
(a) $\frac{8}{663}$
(b) $\frac{19}{66}$
(c) $\frac{11}{26}$
(d) $\frac{25}{52}$
(e) $\frac{37}{66}$
11. A card is drawn from a pack of 52 cars. Find the probability that it is a diamond.
(a) $\frac{1}{4}$
(b) $\frac{1}{6}$
(c) $\frac{1}{3}$
(d) $\frac{1}{8}$
(e) $\frac{1}{52}$
12. The probability of getting a king and a queen when two cards are drawn from a pack of 52 cards is:
(a) $\frac{8}{663}$
(b) $\frac{19}{66}$
(c) 63
(d) $\frac{4}{663}$
(e) $\frac{37}{66}$
13. If 3 cards are drawn simultaneously form a pack of well shuffled cards, find the probability of then being all Queen.
(a) $\frac{26}{221}$
(b) $\frac{143}{11050}$
(c) $\frac{4}{13}$
(d) $\frac{1}{2}$
(e) $\frac{1}{5525}$
14. A card is drawn from a pack of 100 cards numbered 1 to 100 . Find the probability of drawing a number which is square?
(a) $\frac{2}{5}$
(b) $\frac{3}{15}$
(c) $\frac{7}{10}$
(d) $\frac{1}{10}$
15. A box contains 49 tickets numbered 1 to 49. One ticket drawn at randomly, find the probability that number on the ticket is either divisible by 3 or is a perfect square?
(a) $\frac{21}{49}$
(b) $\frac{12}{49}$
(c) $\frac{2}{49}$
(d) $\frac{37}{49}$
16. A bag contains 5 red, 8 blue balls and also contains 4 green 7 black balls. If a ball is drawn, find the probability to that is not green?
(a) $\frac{1}{4}$
(b) $\frac{3}{5}$
(c) $\frac{5}{6}$
(d) $\frac{2}{4}$
17. If events A and B are independent and $P(A)$
$=0.15 \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathbf{0 . 4 5}$ then $\mathrm{P}(\mathrm{B})=$?
(a) $\frac{1}{4}$
(b) $\frac{3}{15}$
(c) $\frac{6}{17}$
(d) None of these
18. A family has 2 children. What is the probability that both the children are girls given that at least one of them is a girl?
(a) $\frac{1}{4}$
(b) $\frac{1}{6}$
(c) $\frac{1}{3}$
(d) $\frac{1}{8}$
(e) $\frac{1}{52}$

Answer Key						
1	a	$\mathbf{8}$	a	15	a	
2	b	9	a	16	c	
3	a	10	d	17	a	
4	c	11	a	18	b	
5	c	12	a	19	c	
6	d	13	e	20	c	
7	a	14	d	21	c	

16. One bag contains 4 white 2 black balls. Another contains 3 white and 5 black balls. One ball is drawn from each bag. Find the probability that both are white?
(a) $\frac{1}{2}$
(b) $\frac{2}{3}$
(c) $\frac{1}{4}$
(d) $\frac{3}{5}$
17. A can solve 80% of the problems given in an exam and B can solve 70%. What is the probability that exactly one of them will solve a problem selected at random from the exam?
(a) $\frac{19}{50}$
(b) $\frac{28}{50}$
(c) $\frac{19}{79}$
(d) $\frac{28}{79}$
18. In an arrangement of 'SHIP'. Find the probability that ' S ' letter occupies the first place?
(a) $\frac{2}{3}$
(b) $\frac{1}{4}$
(c) $\frac{2}{4}$
(d) $\frac{3}{4}$

SOLUTIONS

1. Sample space, $S=\{H H, H T, T H, T T\}$

$$
\mathrm{n}(\mathrm{~S})=4
$$

There is only one chance to get two heads. That is $\{\mathrm{HH}\}$
So, $\mathrm{n}(\mathrm{E})=1$
Probability $=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathbf{S})}=\frac{1}{4}$
2. Ans: (b) $\frac{1}{2}$

Sample spaces $=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
Number of elements in the sample space $n(S)=$ 4

Probability of exactly 1 tail occurs in 2 ways.
That is $\{\mathrm{HT}, \mathrm{TH}\}$
So, $\mathrm{n}(\mathrm{E})=2$
Probability $=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathbf{S})}=\frac{2}{4}=\frac{1}{2}$
3. Ans: (a) $\frac{1}{8}$

Sample spaces $=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}$, THH, TTH, HTT, TTT, THT $\}$
Number of sample spaces $=n(S)=8$
Probability of getting all heads occurs in \{HHH\} 1 way
$\mathrm{n}\left(\mathrm{E}_{1}\right)=1$
Probability $=\frac{\mathrm{n}(\mathrm{E} 1)}{\mathrm{n}(\mathbf{S})}=\frac{\mathbf{1}}{\mathbf{8}}$
4. Ans: (c) $\frac{15}{16}$

Sample spaces $=\{$ HHHH, HHHT, HHTH, HTHH, THHH, TTHH, THHT, HHTT, TTTH, TTHT, THTT, HTTT,
TTTT, HTHT, HTTH, THTH
$\mathrm{n}(\mathrm{S})=16 \quad\left(2^{\mathrm{n}}\right.$ possibilities, here $\left.\mathrm{n}=4\right)$
Favorable cases to get at least 1 head $=\{\mathrm{HHHH}$,
НННТ, ННTH, HTHH, THHH, TTHH, THHT, HHTT, TTTH, TTHT, THTT, HTTT, HTHT, HTTH, THTH\}
$\mathrm{n}(\mathrm{E})=15$
Probability $=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathbf{S})}=\frac{\mathbf{1 5}}{\mathbf{1 6}}$
5. Ans: (c) $\frac{1}{2}$

Sample spaces $=\{1,2,3,4,5,6\}$
$\mathrm{n}(\mathrm{S})=6$
Numbers divisible by 2 are 2, 4 and 6
$\mathrm{n}(\mathrm{E})=3$
$\mathrm{P}(\mathrm{E})=\frac{3}{6}=\frac{1}{2}$
6. Ans: d) $\frac{1}{6}$

Sample spaces $=\{(1,1),(1,2) \ldots(1,6)$
$(2,1),(2,2) \ldots(2,6)$
$(3,1),(3,2) \ldots(3,6)$
$(4,1),(4,2) \ldots(4,6)$
$(5,1),(5,2) \ldots(5,6)$
$(6,1),(6,2) \ldots(6,6)\}$
$\mathrm{n}(\mathrm{S})=36$
Favorable cases to get doublets are $=\{(1,1),(2$,
2), $(3,3),(4,4),(5,5),(6,6)\}$
$\mathrm{n}(\mathrm{E})=6$
Probability $=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathbf{S})}=\frac{6}{36}=\frac{1}{6}$
7. Ans: (a)

$$
n(s)=((1,1),(1,2), \ldots \ldots(6,6))
$$

$\mathbf{n}(\mathrm{s})=\mathbf{3 6}$
Favorable cases to get prime numbers as sum= $\{(1,1)(1,2)(1,4)(1,6)(2,1),(2,3)(2,5)(3,2)$,
$(3,4)(4,1)(4,3)(5,2)(5,6)(6,1),(6,5)\}$
$\mathrm{n}(\mathrm{A})=15$
$P(A)=\frac{n(A)}{n(s)}=\frac{15}{36}=\frac{5}{12}$
8. Ans: $\frac{1}{3}$
$\mathrm{n}(\mathrm{S})=\mathbf{6 \times 6}=\mathbf{3 6}$
Event of getting a sum of numbers shown on the two faces divisible by 5 or 6 $=[(1,4),(1,5),(2,3),(2,4),(3,2),(3,3),(4,1)$, (4,2),(4,6),(5,1), (5,5),(6,4), (6,6)]
$\mathrm{n}(\mathrm{E})=13$
$\mathrm{P}(\mathrm{E})=\frac{n(E)}{n(S)}=\frac{13}{36}$
9. Ans: (a) $\frac{2}{13}$

There are 52 playing cards in a pack of cards. $\mathrm{So}, \mathrm{n}(\mathrm{S})=52$
(a) Getting a queen:

There are 4 queen cards, one from each verity of symbols.
So, $n(A)=4$
b) Getting an ace:

There are 4 aces in a pack. So, $n(B)=4$
$\mathrm{P}(\mathrm{A})=\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}=\frac{4}{52}$ and $\mathrm{P}(\mathrm{B})=\frac{\mathrm{n}(\mathrm{B})}{\mathrm{n}(\mathrm{S})}=\frac{4}{52}$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{\mathbf{0}}{\mathbf{5 2}}$ (There is no cards common between them)
So, $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\frac{4}{52}+\frac{4}{52}-\frac{0}{52}$
$=\frac{8}{52}=\frac{2}{13}$
10. Ans: (d) $\frac{25}{52}$

Let $\mathrm{A}=$ letter card and $\mathrm{B}=$ Heart
Required probability $=(A$ or $B)$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\frac{16}{52}+\frac{13}{52}-\frac{4}{52}=\frac{25}{52}$
11. Ans: (a) $\frac{1}{4}$

Total number of ways drawing one card from 52 cards $={ }^{52} \mathrm{C}_{1}$
One diamond card can be chosen in ${ }^{13} \mathrm{C}_{1}$ ways.
$P($ getting diamond $)=\frac{13 \mathrm{C} 1}{52 \mathrm{C} 1}=\frac{13}{52}=\frac{1}{4}$
12. Ans: (a) $\frac{8}{663}$

Probability (a king and a Queen) $=\frac{4 \mathrm{C} 1 \times 4 \mathrm{C} 1}{52 \mathrm{C} 2}=\frac{4 \times 4}{\frac{52 \times 51}{2}}=\frac{8}{663}$
13. Ans: (e) $\frac{1}{5525}$
$P($ getting queen $)=\frac{4 \mathrm{C} 3}{52 \mathrm{C} 3}=\frac{4}{22100}=\frac{1}{5525}$
14. Ans: (d) $\frac{1}{10}$

Here $n(S)=100$ (As mentioned in the problem)
Favorable cases to get the square cards $=\{1,4$,
$9,16,25,36,49,64,81,100\}$
$n(E)=10$
Probability $=\frac{\mathrm{n}(\mathrm{E})}{\mathrm{n}(\mathbf{S})}=\frac{\mathbf{1 0}}{100}=\frac{1}{10}$
15. Ans: (a) $\frac{21}{49}$

Sample space $=n(S)=49$
$\mathrm{n}(\mathrm{A})=$ favorable cases divisible by 3
$=\{3,6,9,12,15,18,21,24,27,30,33,36,39$,
$42,45$, and 48$\}$
$n(A)=16$
$\mathrm{P}(\mathrm{A})=\frac{\mathrm{n}(\mathrm{A})}{\mathrm{n}(\mathrm{S})}=\frac{16}{49}$
$n(B)=$ favorable cases, perfect square $=\{1,4,9$,
$16,25,36,49\}$
$\mathrm{n}(\mathrm{B})=7$
$\mathrm{P}(\mathrm{B})=\frac{\mathrm{n}(\mathrm{B})}{\mathrm{n}(\mathrm{S})}=\frac{\mathbf{7}}{49}$
$\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\{9,36\}=2$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{\mathrm{n}(\mathrm{A} \cap \mathrm{B})}{\mathrm{n}(\mathrm{S})}=\frac{2}{49}$
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=\frac{16}{49}+\frac{7}{49}-\frac{2}{49}=\frac{21}{49}$
$P(A \cup B)=\frac{21}{49}$
16. Ans: (c)

Probability of drawing white ball from first bag
$=\frac{\text { No of white ball }}{\text { total ball }}=\frac{4}{6}=\frac{2}{3}$
Probability of drawing white ball from second
$\mathrm{bag}=\frac{\text { No of white ball }}{\text { total ball }}=\frac{\mathbf{3}}{\mathbf{8}}$
Since, these are independent
The probability of both the balls is white $=$ $\frac{2}{3} \times \frac{3}{8}=\frac{2}{8}=\frac{1}{4}$
17. Ans: (a)

A can solve 80% of problems
$\mathrm{n}(\mathrm{A})=80 \%=\frac{\mathbf{8 0}}{\mathbf{1 0 0}}$
$\mathrm{P}(\quad)=1-(\mathrm{P}(\mathrm{A}))=\mathbf{1}-\frac{\mathbf{8 0}}{\mathbf{1 0 0}}=\frac{\mathbf{2 0}}{\mathbf{1 0 0}}$
B can solve 70% of problems
$\mathrm{n}(\mathrm{B})=70 \%=\frac{\mathbf{7 0}}{\mathbf{1 0 0}}$
$P(B)=1-\frac{70}{100}=\frac{-30}{100}$
required probability $=P(A) P \overline{(B)}+$
$\mathbf{P}(\mathbf{B}) \mathbf{P}(\square)$
$=\frac{80}{100} \times \frac{30}{100}+\frac{70}{100} \times \frac{20}{100}$
$=\frac{4}{5} \times \frac{3}{10}+\frac{7}{50}$
$=\frac{6}{25}+\frac{7}{50}=\frac{19}{50}$
18. Ans: (b) $\frac{1}{4}$
's' occupies the first place

required probability $=P(A)=\frac{n(A)}{n(s)}$

$\mathrm{n}(\mathrm{s})=$ no of samples $=4$
$\mathrm{n}(\mathrm{A})=$ no of letters excluding ' s '
$=4-1=3$ letters
$\mathrm{n}(\mathrm{A})=3$!
$\mathrm{P}(\mathrm{A})=\frac{3!}{4!}=\frac{1}{4}$
19. Ans: (c)

$$
n(S)=5+8+7+4=24
$$

$n(A)=$ green balls $=4$
$P(A)=\frac{n(A)}{n(s)}=\frac{4}{24}=\frac{1}{6}$
Required ratio $\mathrm{P}(\quad)=1-\mathrm{P}(\mathrm{A})=1-\frac{\mathbf{1}}{\mathbf{6}}=\frac{\mathbf{5}}{\mathbf{6}}$
20. Ans: (c)

$$
\mathbf{P}(\mathbf{A} \cup \mathbf{B})=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{P}(\mathbf{A} \cap \mathbf{B})
$$

$0.45=0.15+P(A)-P(A \cap B)$
$0.45=\mathbf{0 . 1 5}+\mathbf{P}(\mathbf{B})-(\mathbf{0 . 1 5} \times \mathbf{P}(\mathbf{B}))$
$0.45=0.15+0.85 P(B)$
$0.85 P(B)=0.30$
$P(B)=\frac{0.30}{0.85}=\frac{30}{85}=\frac{6}{17}$
21. Ans: (c) $\frac{1}{3}$

Let b stand for boy and g for girl. The sample space of the experiment is $S=\{(b, b),(g$, b), (b, g), (g, g) \}

There are two events
A---> both the children are girls
B----> at least one of the child is a girl
$\{(\mathrm{g}, \mathrm{g})\}$ and $\{(\mathrm{g}, \mathrm{b}),(\mathrm{b}, \mathrm{g}),(\mathrm{g}, \mathrm{g})\}$
$\mathrm{A} \cap \mathrm{B}=\{\mathrm{g}, \mathrm{g}\}$
$\mathrm{P}(\mathrm{B})=\frac{3}{4}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{4}$
$\mathrm{P}(\mathbf{A} / \mathbf{B})=\frac{\frac{1}{4}}{\frac{4}{4}}=\frac{1}{3} \because$ conditional probability

