21. PROBABILITY

The probability is the chance of occurring of a certain event when expressed quantitatively, i.e. probability is a quantitative measure of the certainty.

Event:

The possible outcomes of a trial are called events.

Sample space:

The set of all possible outcomes of an experiment is called a sample space. We generally denote it by S.

Algebra of events:

If A and B are two events associated with sample space S, then

(i) AUB is the event that either A or B or both occur.

(ii) $A \cap B$ is the event that A and B both occur.

Mathematical definition of probability:

Probability of an event A, denoted as P(A), is defined as

 $P(A) = \frac{Number of cases favourable to A}{Number of possible outcomes}$

The probability of the happening of a certain event is denoted by p and that of not happening by q.

Here, p, q are non-negative and cannot exceed unity, i.e. $0 \le p \le 1$ and $0 \le q \le 1$.

For any two events A and B, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

If A and B are two independent events, then $P(A \text{ and } B) = P(A) \cdot P(B)$

EXERCISE

1. In a simultaneous toss of two coins, find the probability of two heads?

(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ (d) $\frac{4}{5}$

2. In a simultaneous toss of two coins, find the probability of exactly one tail?

(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ (d) $\frac{4}{5}$

3. In a simultaneous toss of three coins find the probability of all heads

(a)
$$\frac{1}{8}$$
 (b) $\frac{3}{8}$ (c) $\frac{5}{8}$ (d) $\frac{7}{9}$

4. If four coins are tossed, find the probability to get at least 1 head?

(a)
$$\frac{3}{5}$$
 (b) $\frac{1}{6}$ (c) $\frac{15}{16}$ (d) $\frac{5}{6}$

5. A Dice is thrown. Find the probability that the number showing on the dice is divisible by 2

(a) $\frac{1}{4}$ (b) $\frac{1}{6}$ (c) $\frac{1}{2}$ (d) $\frac{1}{3}$ (e) $\frac{1}{52}$

6. In a single throw of two dice, find the probability of getting doublet?

(a)
$$\frac{2}{6}$$
 (b) $\frac{3}{5}$ (c) $\frac{6}{7}$ (d) $\frac{1}{6}$

7. Two dice are tossed. Find the probability that the total is a prime number?

(a)
$$\frac{5}{12}$$
 (b) $\frac{7}{12}$ (c) $\frac{12}{16}$ (d) $\frac{6}{16}$

8. In simultaneous throw of a pair of a dice, find the probability that the sum of numbers shown on the two faces divisible by 5 or 6

(a)
$$\frac{13}{36}$$
 (b) $\frac{1}{2}$ (c) $\frac{1}{6}$ (d) $\frac{1}{36}$

9. What is the probability of one card drawn at random from the pack of playing cards may be either a queen or an ace?

(a)
$$\frac{2}{13}$$
 (b) $\frac{3}{13}$ (c) $\frac{7}{13}$ (d) $\frac{11}{13}$

10. One card is drawn from pack of playing cards. Obtain the probability that it is a letter card or a heart

(a)
$$\frac{8}{663}$$
 (b) $\frac{19}{66}$ (c) $\frac{11}{26}$
(d) $\frac{25}{52}$ (e) $\frac{37}{66}$

11. A card is drawn from a pack of 52 cars. Find the probability that it is a diamond.

www.sakshieducation.com

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{6}$ (c) $\frac{1}{3}$
(d) $\frac{1}{8}$ (e) $\frac{1}{52}$

12. The probability of getting a king and a queen when two cards are drawn from a pack of 52 cards is:

(a)
$$\frac{8}{663}$$
 (b) $\frac{19}{66}$ (c) 63
(d) $\frac{4}{663}$ (e) $\frac{37}{66}$

13. If 3 cards are drawn simultaneously form a pack of well shuffled cards, find the probability of then being all Queen.

(a)
$$\frac{26}{221}$$
 (b) $\frac{143}{11050}$ (c) $\frac{4}{13}$
(d) $\frac{1}{2}$ (e) $\frac{1}{5525}$

14. A card is drawn from a pack of 100 cards numbered 1 to 100. Find the probability of drawing a number which is square?

(a) $\frac{2}{5}$ (b) $\frac{3}{15}$ (c) $\frac{7}{10}$ (d) $\frac{1}{10}$

15. A box contains 49 tickets numbered 1 to 49. One ticket drawn at randomly, find the probability that number on the ticket is either divisible by 3 or is a perfect square?

(a)
$$\frac{21}{49}$$
 (b) $\frac{12}{49}$ (c) $\frac{2}{49}$ (d) $\frac{37}{49}$

16. One bag contains 4 white 2 black balls. Another contains 3 white and 5 black balls. One ball is drawn from each bag. Find the probability that both are white?

(a)
$$\frac{1}{2}$$
 (b) $\frac{2}{3}$ (c) $\frac{1}{4}$ (d)

17. A can solve 80% of the problems given in an exam and B can solve 70%. What is the probability that exactly one of them will solve a problem selected at random from the exam?

(a)
$$\frac{19}{50}$$
 (b) $\frac{28}{50}$ (c) $\frac{19}{79}$ (d) $\frac{24}{79}$

18. In an arrangement of 'SHIP'. Find the probability that 'S' letter occupies the first place?

(a)
$$\frac{2}{3}$$
 (b) $\frac{1}{4}$ (c) $\frac{2}{4}$ (d) $\frac{3}{4}$

Quantitative Aptitude

19. A bag contains 5 red, 8 blue balls and also contains 4 green 7 black balls. If a ball is drawn, find the probability to that is not green?

(a) $\frac{1}{4}$ (b) $\frac{3}{5}$ (c) $\frac{5}{6}$ (d) $\frac{2}{4}$ 20. If events A and B are independent and P(A) = 0.15 P(A \cup B) = 0.45 then P(B)=?

(a)
$$\frac{1}{4}$$
 (b) $\frac{3}{15}$ (c) $\frac{6}{17}$
(d) None of these

21. A family has 2 children. What is the probability that both the children are girls given that at least one of them is a girl?

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{6}$ (c) $\frac{1}{3}$
(d) $\frac{1}{8}$ (e) $\frac{1}{52}$

Answer Key							
	1	a	8	а	15	а	
	2	b	9	а	16	с	
	3	а	10	d	17	а	
	4	с	11	а	18	b	
	5	с	12	а	19	с	
	6	d	13	e	20	с	
	7	а	14	d	21	с	

SOLUTIONS

1. Sample space, $S = \{HH, HT, TH, TT\}$ n(S) = 4There is only one chance to get two heads. That is {HH} So, n(E) = 1Probability $=\frac{\mathbf{n}(\mathbf{E})}{\mathbf{n}(\mathbf{S})}=\frac{1}{4}$ **2.** Ans: (b) $\frac{1}{2}$ Sample spaces = $\{HH, HT, TH, TT\}$ Number of elements in the sample space n(S) =4 Probability of exactly 1 tail occurs in 2 ways. That is {HT, TH} So, n(E) = 2Probability $=\frac{n(E)}{n(S)}=\frac{2}{4}=\frac{1}{2}$ **3.** Ans: (a) $\frac{1}{8}$ Sample spaces = {HHH, HHT, HTH, THH, TTH, HTT, TTT, THT} Number of sample spaces = n(S) = 8Probability of getting all heads occurs in {HHH} 1 way $n(E_1) = 1$ Probability $=\frac{n(E1)}{n(S)}=\frac{1}{8}$ 4. Ans: (c) $\frac{15}{16}$ Sample spaces = {HHHH, HHHT, HHTH, HTHH, THHH, TTHH, THHT, HHTT, TTHT, THTT, TTTH, HTTT. TTTT, HTHT, HTTH, THTH} $(2^n \text{ possibilities, here } n = 4)$ n(S) = 16 🔺 Favorable cases to get at least 1 head = {HHHH, HHHT, HHTH, HTHH, THHH, TTHH, THHT, HHTT, TTTH, TTHT, THTT, HTTT, HTHT, HTTH, THTH} n(E) = 15Probability $=\frac{n(E)}{n(S)}=\frac{15}{16}$ 5. Ans: (c) $\frac{1}{2}$ Sample spaces = $\{1, 2, 3, 4, 5, 6\}$

n(S) = 6Numbers divisible by 2 are 2, 4 and 6 n(E) = 3 $P(E) = \frac{3}{6} = \frac{1}{2}$ 6. Ans: d) $\frac{1}{6}$ Sample spaces = $\{(1, 1), (1, 2) \dots (1, 6)\}$ (2, 1), (2, 2) ... (2, 6) $(3, 1), (3, 2) \dots (3, 6)$ (4, 1), (4, 2) ... (4, 6) (5, 1), (5, 2) ... (5, 6) $(6, 1), (6, 2) \dots (6, 6)$ n(S) = 36Favorable cases to get doublets are = $\{(1, 1), (2, \ldots)\}$ $2), (3, 3), (4, 4), (5, 5), (6, 6)\}$ n(E) = 6Probability = $\frac{\mathbf{n}(\mathbf{E})}{\mathbf{n}(\mathbf{S})} = \frac{6}{36} = \frac{1}{6}$ 7. Ans: (a) ~ $\mathbf{n}(\mathbf{s}) = ((\mathbf{1}, \mathbf{1}), (\mathbf{1}, \mathbf{2}), \dots \dots (\mathbf{6}, \mathbf{6}))$ n(s) = 36Favorable cases to get prime numbers as sum= $\{(1,1)\ (1,2)\ (1,4)\ (1,6)\ (2,1),\ (2,3)\ (2,5)\ (3,2),\$ (3,4) (4,1) (4,3) (5,2) (5,6) (6,1), (6,5)n(A) = 15 $P(A) = \frac{n(A)}{n(s)} = \frac{15}{36} = \frac{5}{12}$ 8. Ans: $\frac{1}{2}$ $n(S) = 6 \times 6 = 36$ Event of getting a sum of numbers shown on the two faces divisible by 5 or 6 = [(1,4), (1,5), (2,3), (2,4), (3,2), (3,3), (4,1),(4,2),(4,6),(5,1),(5,5),(6,4),(6,6)]n(E) = 13 $P(E) = \frac{n(E)}{n(S)} = \frac{13}{36}$ 9. Ans: (a) $\frac{2}{13}$ There are 52 playing cards in a pack of cards. So, n(S) = 52(a) Getting a queen: There are 4 queen cards, one from each verity of symbols.

So,
$$n(A) = 4$$

www.sakshieducation.com

www.sakshieducation.com

b) Getting an ace: There are 4 aces in a pack. So, n(B) = 4 $P(A) = \frac{n(A)}{n(S)} = \frac{4}{52}$ and $P(B) = \frac{n(B)}{n(S)} = \frac{4}{52}$ $P(A \cap B) = \frac{0}{52}$ (There is no cards common between them) So, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $=\frac{4}{52}+\frac{4}{52}-\frac{0}{52}$ $=\frac{8}{52}=\frac{2}{13}$ **10.** Ans: (d) $\frac{25}{52}$ Let A=letter card and B=Heart Required probability = (A or B) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $=\frac{16}{52}+\frac{13}{52}-\frac{4}{52}=\frac{25}{52}$ **11.** Ans: (a) $\frac{1}{4}$ Total number of ways drawing one card from 52 $cards = {}^{52}C_1$ One diamond card can be chosen in ${}^{13}C_1$ ways. P (getting diamond) $=\frac{13C1}{52C1} = \frac{13}{52} = \frac{1}{4}$ **12. Ans:** (a) $\frac{8}{663}$ Probability (a king and a Queen) $=\frac{4C1\times4C1}{52C2} = \frac{4\times4}{\frac{52\times51}{2}} = \frac{8}{663}$ **13.** Ans: (e) $\frac{1}{5525}$ P (getting queen) = $\frac{4C3}{52C3} = \frac{4}{22100}$ **14.** Ans: (d) $\frac{1}{10}$ Here n(S) = 100 (As mentioned in the problem) Favorable cases to get the square cards = $\{1, 4, ...\}$ 9, 16, 25, 36, 49, 64, 81, 100} n(E) = 10Probability $=\frac{n(E)}{n(S)} = \frac{10}{100} = \frac{1}{10}$ **15.** Ans: (a) $\frac{21}{49}$ Sample space = n(S) = 49n(A) = favorable cases divisible by 3 = {3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39,

42, 45, and 48}

Quantitative Aptitude

n(A) = 16
P(A) =
$$\frac{n(A)}{n(S)} = \frac{16}{49}$$

n(B) = favorable cases, perfect square = {1, 4, 9, 16, 25, 36, 49}
n(B) = 7
P(B) = $\frac{n(B)}{n(S)} = \frac{7}{49}$
n(A \cap B) = {9, 36} = 2
P(A \cap B) = $\frac{n(A \cap B)}{n(S)} = \frac{2}{49}$
P(A \cap B) = P(A)+P (B)-P (A \cap B)
= $\frac{16}{49} + \frac{7}{49} - \frac{2}{49} = \frac{21}{49}$
P(A \cap B) = $\frac{21}{49}$
16. Ans: (c)
Probability of drawing white ball from first bag
= $\frac{No of white ball}{total ball} = \frac{4}{6} = \frac{2}{3}$
Probability of drawing white ball from second
bag = $\frac{No of white ball}{total ball} = \frac{3}{8}$
Since, these are independent
The probability of both the balls is white = $\frac{2}{3} \times \frac{3}{8} = \frac{2}{8} = \frac{1}{4}$
17. Ans: (a)
A can solve 80% of problems
n(A) = 80% = $\frac{80}{100}$
P() = 1-(P(A)) = $1 - \frac{80}{100} = \frac{20}{100}$
B can solve 70% of problems
n (B) = $70\% = \frac{70}{100}$
P(B) = $1 - \frac{70}{100} = \frac{-30}{100}$
required probability = P(A)P(B) +
P(B)P()
= $\frac{80}{100} \times \frac{30}{100} + \frac{70}{100} \times \frac{20}{100}$
18. Ans: (b) $\frac{1}{4}$
's' occupies the first place

www.sakshieducation.com

www.sakshieducation.com

required probability = $P(A) = \frac{n(A)}{n(s)}$ n(s) = no of samples = 4n(A) = no of letters excluding 's'= 4-1=3 letters n(A) = 3! $P(A) = \frac{3!}{4!} = \frac{1}{4!}$ another con **19. Ans:** (c) n(S) = 5 + 8 + 7 + 4 = 24n(A) =green balls = 4 $P(A) = \frac{n(A)}{n(s)} = \frac{4}{24} = \frac{1}{6}$ Required ratio P() = 1- P(A)= $1 - \frac{1}{6} = \frac{5}{6}$ **20. Ans:** (c) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $0.45 = 0.15 + P(A) - P(A \cap B)$ $0.45 = 0.15 + P(B) - (0.15 \times P(B))$ 0.45 = 0.15 + 0.85P(B)0.85P(B) = 0.30 $P(B) = \frac{0.30}{0.85} = \frac{30}{85} = \frac{6}{17}$ **21.** Ans: (c) $\frac{1}{2}$ Let b stand for boy and g for girl. The sample space of the experiment is $S = \{(b, b), (g, b)\}$ b), (b, g), (g, g)} There are two events A---> both the children are girls B----> at least one of the child is a girl $\{(g, g)\}$ and $\{(g, b), (b, g), (g, g)\}$ $A \cap B = \{g, g\}$ $P(B) = \frac{3}{4}$ and $P(A \cap B) = \frac{1}{4}$ $P(\mathbf{A}/\mathbf{B}) = \frac{\overline{4}}{3} = \frac{1}{3}$ conditional probability