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  Consider a circuit consisting of a resistance and inductance as shown in fig. the inductor in the 
circuit is initially uncharged and is in series with the resistor. When switch S is closed, we can 
find the complete solution for current. Application of Kirchoff’s law to the circuit results in 
fallowing differential equations. 

                      V = iR + L   ----------- (1) 

                        +  I =  -------------- (2) 

    In the above equation, the current i is the solution to be found and V is the applied constant 
voltage. The voltage V is applied to the circuit only when the switch S is closed. The above 
equation is linear differential equation of the first order comparing with the non homogenous 
differential equation. 

         +   = K whose solution is x =   dt + c   ----------- (3) 

 Where c is an arbitrary constant, in similar way we can write the current equation as 

                      i=  +  dt ----------- (4) 

                      i=  +  ------------- (5) 

  To determine the value of ‘c’, in equation (5) we use initial conditions. In the circuit shown in 
fig the switch S is closed at t=0. At t=0 , i.e. just before closing the switch S, the current in the 
inductor is zero. Since the inductor does not allow sudden changes in currents, at t=0  just after 
the switch is closed, the current remains zero. 

Substituting above conditions we get, 

                             0 = c +  

  Therefore, c = -  

Hence from equation (5), 

                      i=   +   

                      i=  (1-  ) ------------ (6) 

 Equation (6) consists of two parts, the steady state part  and other is transient part. When 
switch S is closed the response reaches a steady state value after a time interval as shown in fig. 
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Similarly, the voltage across the inductor,  = L  

                             = L *     =  V  

Power in the resistor, =   = V (1-  ) *  (1-  ) 

                                        =  (1 - 2 ) +   

Power in the resistor, =   =  V  *  (1-  ) 

                                        =  (  -  ) 

 

Example: A series RL circuit with R=30Ω and L=15H has a constant voltage V=60v applied at 
t=0 as shown in fig. determine the current i, the voltage across the inductor. 

       

By applying KVL we get, 

                      60 = 30i + 15    
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                                        V = iR + L  +  i dt --------- (1) 

By differentiating above equation we get, 

                                        0 = R  + L  +  i ------------ (2) 

                                                +   +  i = 0 ----------- (3) 

 The above equation is a second order linear differential equation, with only 
complementary function. The particular solution for the above equation is zero. Characteristic 
equation for the above differential equation is 

                                      +  D +  = 0 ---------- (4) 

The roots above equation are, 

                                ,  = -      

By assuming, = -  and  =   

                          = +  

                          = -  

Here  may be positive or negative or zero. 

  Is positive, when >  

     The roots are real and unequal, and give the over damped response as shown in fig. then 
equation (4) becomes 

                                  [D – ( + )][[D – ( - )]]i=0 

The solution for the above equation is, 

                                   i =  +  

  The current curve for the over damped case is shown in fig. 
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                          = -200+ j979.8 

                          = -200- j979.8 

Therefore the current, i =  [ cos  + sin  ] 

                                  i =  [ cos 979.8  + sin 979.8  ] A 

At t=0, the current through the circuit is zero 

                                  i=0= 1[ cos 0 + sin 0 ] 

                                     =0 

                                      i =  [ sin 979.8  ] A 

Differentiating we have, 

    = [ 979.8 cos 979.8  ] + (-200) sin 979.8  

At t=0, the voltage across the inductor is 100V 

           L  =100 or  = 2000 

At t=0,  =2000 = 979.8cos 0  

          = 2.04 

Therefore the current equation is, i=  [2.04 sin 979.8  ] A 
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