www.sakshieducation.com

AC Transients

Sinusoidal Response of R-L Circuit:

Consider a circuit consisting of resistance and inductance are connected as shown in fig. the switch S is closed at $t=0$. At $t=0$, sinusoidal voltage $\mathrm{V} \cos (w t+\theta)$ applied to RL circuit, where V is the amplitude of the wave and θ is the phase angle. Application of Kirchoff's laws we can determine the differential equations.

$$
\begin{align*}
& \mathrm{V} \cos (w t+\theta)=\mathrm{i} \mathrm{R}+\mathrm{L} \frac{d i}{d t} \tag{1}\\
& \frac{d i}{d t}+\frac{R}{L} \mathrm{i}=\frac{V}{L} \cos (w t+\theta) \tag{2}
\end{align*}
$$

The corresponding characteristic equation is

$$
\begin{equation*}
\left(\mathrm{D}+\frac{R}{L}\right) \mathrm{i}=\frac{V}{L} \cos (w t+\theta) \tag{3}
\end{equation*}
$$

For the above equation, the solution consists of two parts. One is complementary function and other is particular integral.

The complementary function of the solution is

$$
\begin{equation*}
i_{c}=\mathrm{c} e^{-t\left(\frac{R}{L}\right)} \tag{4}
\end{equation*}
$$

The particular solution can be obtained by using undetermined co-efficient.
By assuming,

$$
\begin{align*}
& i_{p}=\mathrm{A} \cos (w t+\theta)+\mathrm{B} \sin (w t+\theta)---------(5) \tag{5}\\
& i_{p}^{1}=-\mathrm{Aw} \sin (w t+\theta)+\mathrm{Bw} \cos (w t+\theta)------(6) \tag{6}\\
& \quad \text { WWW.sakshieducation.com }
\end{align*}
$$

Substituting equations $5 \& 6$ in 3 we get,

$$
\begin{aligned}
& \left\{-\mathrm{Aw} \sin (w t+\theta)+\mathrm{Bw} \cos (w t+\theta)+\frac{R}{L}[\mathrm{~A} \cos (w t+\theta)+\mathrm{B} \sin (w t+\theta)]\right\}=\frac{V}{L} \cos (w t+\theta) \\
& \left(-\mathrm{Aw}+\frac{B R}{L}\right) \sin (w t+\theta)+\left(\mathrm{Bw}+\frac{A R}{L}\right) \cos (w t+\theta)=\frac{V}{L} \cos (w t+\theta)
\end{aligned}
$$

Comparing cosine terms and sine terms, we get

$$
\begin{aligned}
& -\mathrm{Aw}+\frac{B R}{L}=0 \\
& \mathrm{Bw}+\frac{A R}{L}=\frac{V}{L}
\end{aligned}
$$

From the above equations we have

$$
\begin{aligned}
& \mathrm{A}=\mathrm{V} \frac{R}{R^{2}+(w L)^{2}} \\
& \mathrm{~B}=\mathrm{V} \frac{w L}{R^{2}+(w L)^{2}}
\end{aligned}
$$

Substituting the A and B values in equation (5) we get

$$
\begin{equation*}
i_{p}=\mathrm{V} \frac{R}{R^{2}+(w L)^{2}} \cos (w t+\theta)+\mathrm{V} \frac{w L}{R^{2}+(w L)^{2}} \sin (w t+\theta) \tag{7}
\end{equation*}
$$

Putting $\mathrm{M} \cos \emptyset=\mathrm{V} \frac{R}{R^{2}+(w L)^{2}}$

$$
\mathrm{M} \sin \emptyset=\mathrm{V} \frac{w L}{R^{2}+(w L)^{2}}
$$

To find M and \varnothing, we divide one equation by the other

$$
\tan \emptyset=\frac{\sin \phi}{\cos \emptyset}=\frac{w L}{R}
$$

Squaring both equations and adding, we get

$$
\begin{gathered}
M^{2} \cos ^{2} \emptyset+M^{2} \sin ^{2} \emptyset=\mathrm{V} \frac{V}{R^{2}+(w L)^{2}} \\
\mathrm{M}=\frac{V}{\sqrt{R^{2}+(w L)^{2}}}
\end{gathered}
$$

The particular current becomes

$$
\begin{equation*}
i_{p}=\frac{V}{\sqrt{R^{2}+(w L)^{2}}} \cos \left(w t+\theta-\tan ^{-1} \frac{w L}{R}\right) \tag{8}
\end{equation*}
$$

The complete solution for the current, $\mathrm{i}=i_{c}+i_{p}$

www.sakshieducation.com

$$
\mathrm{i}=\mathrm{c} e^{-t\left(\frac{R}{L}\right)}+\frac{V}{\sqrt{R^{2}+(w L)^{2}}} \cos \left(w t+\theta-\tan ^{-1} \frac{w L}{R}\right)
$$

Since the inductor does not allow sudden changes in currents, at $\mathrm{t}=0, \mathrm{i}=0$

$$
\mathrm{c}=\frac{-V}{\sqrt{R^{2}+(w L)^{2}}} \cos \left(\theta-\tan ^{-1} \frac{w L}{R}\right)
$$

The complete solution for the current is,

$$
\mathrm{i}=e^{-t\left(\frac{R}{L}\right)}\left[\frac{-V}{\sqrt{R^{2}+(w L)^{2}}} \cos \left(\theta-\tan ^{-1} \frac{w L}{R}\right)\right]+\frac{V}{\sqrt{R^{2}+(w L)^{2}}} \cos \left(w t+\theta-\tan ^{-1} \frac{w L}{R}\right)
$$

Example: In the circuit shown in fig. determine the complete solution for the current, when the switch S is closed at $\mathrm{t}=0$. Applied voltage is $\mathrm{V}(\mathrm{t})=1000 \cos \left(1000 t+\frac{\pi}{2}\right)$, Resistance $=20 \Omega$, and inductance $=0.1 \mathrm{H}$.

$$
\begin{aligned}
& 100 \cos \left(1000 t+\frac{\pi}{2}\right)=20 \mathrm{i}+0.1 \frac{d i}{d t} \\
& \frac{d i}{d t}+200 \mathrm{i}=1000 \cos \left(1000 t+\frac{\pi}{2}\right)
\end{aligned}
$$

The corresponding characteristic equation is

$$
(D+200) i=1000 \cos \left(1000 t+\frac{\pi}{2}\right)
$$

The complementary function of the solution is

$$
i_{c}=\mathrm{c} e^{-t\left(\frac{R}{L}\right)}=\mathrm{c} e^{-200 t}
$$

The particular current becomes

$$
i_{p}=\frac{100}{\sqrt{20^{2}+(1000 * 0.1)^{2}}} \cos \left(1000 t+\frac{\pi}{2}-\tan ^{-1} \frac{100}{20}\right)
$$

$$
i_{p}=0.98 \cos \left(1000 t+\frac{\pi}{2}-78.6^{\circ}\right)
$$

The complete solution for the current, $\mathrm{i}=i_{c}+i_{p}$

$$
\mathrm{i}=\mathrm{c} e^{-200 t}+0.98 \cos \left(1000 t+\frac{\pi}{2}-78.6^{\circ}\right)
$$

At $\mathrm{t}=0$, the current flowing through the circuit is zero, $\mathrm{i}=0$

$$
\mathrm{c}=-0.98 \cos \left(\frac{\pi}{2}-78.6^{\circ}\right)
$$

The complete solution for the current, $\mathrm{i}=i_{c}+i_{p}$

$$
\mathrm{i}=\left[-0.98 \cos \left(\frac{\pi}{2}-78.6^{\circ}\right)\right] e^{-200 t}+0.98 \cos \left(1000 t+\frac{\pi}{2}-78.6^{\circ}\right)
$$

Sinusoidal Response of R-C Circuit:

Consider a circuit consisting of resistance and capacitance in series as shown in fig. the switch S is closed at $\mathrm{t}=0$. At $\mathrm{t}=0$, sinusoidal voltage $\mathrm{V} \cos (w t+\theta)$ applied to RL circuit, where V is the amplitude of the wave and θ is the phase angle. Application of Kirchoff's laws we can determine the differential equations.

$$
\begin{gather*}
\mathrm{V} \cos (w t+\theta)=\mathrm{Ri}+\frac{1}{C} \int i d t \tag{1}\\
-\mathrm{V} w \sin (w t+\theta)=\mathrm{R} \frac{d i}{d t}+\frac{i}{C} \tag{2}\\
\left(\mathrm{D}+--\frac{1}{R C}\right) \mathrm{i}=\frac{-\mathrm{Vw}}{R} \sin (w t+\theta) \tag{3}
\end{gather*}
$$

The complementary function, $i_{C}=\mathrm{c} e^{\frac{-t}{R C}}$
The particular solution can be obtained by using undetermined coefficients.

www.sakshieducation.com

$$
\begin{align*}
& i_{p}=\mathrm{A} \cos (w t+\theta)+\mathrm{B} \sin (w t+\theta) \tag{4}\\
& i_{p}{ }^{1}=--\cdots- \tag{5}
\end{align*}
$$

Substituting equation $4 \& 5$ in 3 we get
$\{-\mathrm{Aw} \sin (w t+\theta)+\mathrm{Bw} \cos (w t+\theta)\}+$

$$
\frac{1}{R C}\{\mathrm{~A} \cos (w t+\theta)+\mathrm{B} \sin (w t+\theta)\}=\frac{-\mathrm{Vw}}{R} \sin (w t+\theta)
$$

Comparing both sides,

$$
\begin{aligned}
-\mathrm{Aw}+\frac{B}{R C} & =\frac{-\mathrm{Vw}}{R} \\
\mathrm{Bw}+\frac{A}{R C} & =0
\end{aligned}
$$

So we get,

$$
\begin{aligned}
& \mathrm{A}=\frac{V R}{R^{2}+\left(\frac{1}{w c}\right)^{2}} \\
& \mathrm{~B}=\frac{-V}{w C\left[R^{2}+\left(\frac{1}{w c}\right)^{2}\right]}
\end{aligned}
$$

Substituting A and B values in 4 we get

$$
i_{p}=\frac{V R}{R^{2}+\left(\frac{1}{w c}\right)^{2}} \cos (w t+\theta)-\frac{V}{w C\left[R^{2}+\left(\frac{1}{w c}\right)^{2}\right]} \sin (w t+\theta)
$$

Putting $\mathrm{M} \cos \emptyset=\frac{V R}{R^{2}+\left(\frac{1}{w c}\right)^{2}}$

$$
\mathrm{M} \sin \emptyset=\frac{V}{w C\left[R^{2}+\left(\frac{1}{w c}\right)^{2}\right]}
$$

To find M and \varnothing, we divide one equation by the other

$$
\tan \emptyset=\frac{\sin \phi}{\cos \emptyset}=\frac{1}{w C R}
$$

Squaring both equations and adding, we get

$$
\begin{gathered}
M^{2} \cos ^{2} \emptyset+M^{2} \sin ^{2} \emptyset=\mathrm{V} \frac{V}{R^{2}+\left(\frac{1}{w c}\right)^{2}} \\
\mathrm{M}=\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}\right)^{2}}}
\end{gathered}
$$

The particular current becomes

$$
\begin{equation*}
i_{p}=\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}\right)^{2}}} \cos \left(w t+\theta+\tan ^{-1} \frac{1}{w C R}\right) \tag{8}
\end{equation*}
$$

The complete solution for the current, $\mathrm{i}=i_{c}+i_{p}$

$$
\mathrm{i}=\mathrm{c} e^{-t\left(\frac{1}{R C}\right)}+\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}\right)^{2}}} \cos \left(w t+\theta+\tan ^{-1} \frac{1}{w C R}\right)
$$

Since the capacitor does not allow sudden changes in voltages, at $\mathrm{t}=0, \mathrm{i}=\frac{V}{R} \cos \theta$

$$
\frac{V}{R} \cos \theta=\mathrm{c}+\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}\right)^{2}}} \cos \left(\theta+\tan ^{-1} \frac{1}{w C R}\right)
$$

Therefore, $\mathrm{c}=\frac{V}{R} \cos \theta-\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}\right)^{2}}} \cos \left(\theta+\tan ^{-1} \frac{1}{w C R}\right)$
The complete solution for the current is,

$$
\mathrm{i}=e^{-t\left(\frac{1}{R C}\right)}\left[\frac{V}{R} \cos \theta-\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}\right)^{2}}} \cos \left(\theta+\tan ^{-1} \frac{1}{w C R}\right)\right]+\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}\right)^{2}}} \cos \left(w t+\theta+\tan ^{-1} \frac{1}{w C R}\right)
$$

Example: In the circuit shown in fig. determine the complete solution for the current, when the switch S is closed at $\mathrm{t}=0$. Applied voltage is $\mathrm{V}(\mathrm{t})=50 \cos \left(100 t+\frac{\pi}{4}\right)$, Resistance $=10 \Omega$, and capacitance $=1 \mu \mathrm{~F}$.

$$
\begin{gathered}
50 \cos \left(100 t+\frac{\pi}{4}\right)=10 \mathrm{i}+\frac{1}{1 * 10^{-6}} \int i d t \\
-500 \sin \left(100 t+\frac{\pi}{4}\right)=10 \frac{d i}{d t}+\frac{i}{1 * 10^{-6}}
\end{gathered}
$$

www.sakshieducation.com

$$
\left(\mathrm{D}+\frac{1}{1 * 10^{-5}}\right) \mathrm{i}=-500 \sin \left(100 t+\frac{\pi}{4}\right)
$$

The complementary function, $i_{C}=\mathrm{c} e^{\frac{-t}{R C}}=\mathrm{c} e^{\frac{-t}{10^{-5}}}$
The particular current becomes

$$
\begin{aligned}
i_{p} & =\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w C}\right)^{2}}} \cos \left(w t+\theta+\tan ^{-1} \frac{1}{w C R}\right) \\
i_{p} & =\frac{50}{\sqrt{10^{2}+\left(\frac{1}{\left.100 * 10^{-6}\right)^{2}}\right.}} \cos \left(w t+\frac{\pi}{4}+\tan ^{-1} \frac{1}{100 * 10^{-6} * 10}\right) \\
& =4.99 * 10^{-3} \cos \left(100 t+\frac{\pi}{4}+89.94^{\circ}\right)
\end{aligned}
$$

At $\mathrm{t}=0$, the current flowing through the circuit is,

$$
\frac{V}{R} \cos \theta=\frac{50}{10} \cos \frac{\pi}{4}=3.53 \mathrm{~A}
$$

The complete solution for the current, $\mathrm{i}=i_{c}+i_{p}$

$$
\mathrm{i}=\mathrm{c} e^{\frac{-t}{10^{-5}}+4.99^{*} 10^{-3} \cos \left(100 t+\frac{\pi}{4}+89.94^{\circ}\right)}
$$

At $t=0, i=3.53 \mathrm{~A}$ then we get c value

$$
\begin{aligned}
& 3.53=\mathrm{c} e^{\frac{-t}{10^{-5}}+4.99 * 10^{-3} \cos \left(100 t+\frac{\pi}{4}+89.94^{\circ}\right)} \\
& \mathrm{c}=\left[3.53-4.99 * 10^{-3} \cos \left(100 t+\frac{\pi}{4}+89.94^{\circ}\right)\right]
\end{aligned}
$$

The complete solution for the current,

$$
\mathrm{i}=\left[3.53-4.99^{*} 10^{-3} \cos \left(100 t+\frac{\pi}{4}+89.94^{\circ}\right)\right] e^{\frac{-t}{10^{-5}}+4.99^{*} 10^{-3} \cos \left(100 t+\frac{\pi}{4}+89.94^{\circ}\right)}
$$

Sinusoidal Response of R-L-C Circuit:

Consider a circuit consisting of resistance, inductance and capacitance in series as shown in fig. Switch s is closed at $\mathrm{t}=0$. At $\mathrm{t}=0$, a sinusoidal voltage $\mathrm{V} \cos (w t+\theta)$ applied to RLC circuit, where V is the amplitude of the wave and θ is the phase angle. Application of Kirchoff's laws we can determine the differential equations.

$$
\begin{equation*}
\mathrm{V} \cos (w t+\theta)=\mathrm{iR}+\mathrm{L} \frac{d i}{d t}+\frac{1}{c} \int \mathrm{i} \mathrm{dt} \tag{1}
\end{equation*}
$$

\qquad
By differentiating above equation we get,

$$
\begin{array}{r}
-\mathrm{V} w \sin (w t+\theta)=\mathrm{R} \frac{d i}{d t}+\mathrm{L} \frac{d^{2} i}{d t^{2}}+\frac{1}{C} \mathrm{i}- \\
\frac{d^{2} i}{d t^{2}}+\frac{R}{L} \frac{d i}{d t}+\frac{1}{L C} \mathrm{i}=-\mathrm{V} w \sin (w t+\theta)- \\
\left(D^{2}+\frac{R}{L} \mathrm{D}+\frac{1}{L C}\right) \mathrm{i}=-\frac{V w}{L} \sin (w t+\theta) . \tag{4}
\end{array}
$$

The particular solution can be obtained by using undetermined coefficients.

$$
\begin{align*}
& i_{p}=\mathrm{A} \cos (w t+\theta)+\mathrm{B} \sin (w t+\theta)-\cdots \tag{5}\\
& i_{p}{ }^{1}=-\mathrm{A} w \sin (w t+\theta)+\mathrm{Bw} \cos (w t+\theta) \tag{6}\\
& i_{p}{ }^{11}=-\mathrm{A} w^{2} \cos (w t+\theta)-\mathrm{B} w^{2} \sin (w t+\theta) \tag{7}
\end{align*}
$$

Substituting 5,6 \& 7 in equation 4 we get,

$$
\begin{gathered}
\left\{-\mathrm{A} w^{2} \cos (w t+\theta)-\mathrm{B} w^{2} \sin (w t+\theta)\right\}+\frac{R}{L}\{-\mathrm{Aw} \sin (w t+\theta)+\mathrm{Bw} \cos (w t+\theta)\} \\
+\frac{1}{L C}\{\mathrm{~A} \cos (w t+\theta)+\mathrm{B} \sin (w t+\theta)\}=-\frac{V w}{L} \sin (w t+\theta)
\end{gathered}
$$

Comparing both the sides, sine and cosine coefficients we get,

$$
\begin{gather*}
-\mathrm{B} w^{2}-A \frac{w R}{L}+\frac{B}{L C}=-\frac{V w}{L} \\
\mathrm{~A}\left(\frac{w R}{L}\right)+\mathrm{B}\left(w^{2}-\frac{1}{L C}\right)=\frac{V w}{L} \tag{8}\\
-\mathrm{A} w^{2}+B \frac{w R}{L}+\frac{A}{L C}=0 \\
\mathrm{~A}\left(w^{2}-\frac{1}{L C}\right)-\mathrm{B}\left(\frac{w R}{L}\right)+=0 \tag{9}
\end{gather*}
$$

Solving equations $8 \& 9$ we get

$$
\begin{aligned}
& \mathrm{A}=\frac{V * \frac{w^{2} R}{L^{2}}}{\left[\left(\frac{w R}{L}\right)^{2}-\left(w^{2}-\frac{1}{L C}\right)^{2}\right]} \\
& \mathrm{B}=\frac{\left(w^{2}-\frac{1}{L C}\right) * V w}{L\left[\left(\frac{w R}{L}\right)^{2}-\left(w^{2}-\frac{1}{L C}\right)^{2}\right]}
\end{aligned}
$$

Substituting A and B values in 5 we get

$$
\begin{equation*}
i_{p}=\frac{V * \frac{w^{2} R}{L^{2}}}{\left[\left(\frac{w R}{L}\right)^{2}-\left(w^{2}-\frac{1}{L C}\right)^{2}\right]} \cos (w t+\theta)+\frac{\left(w^{2}-\frac{1}{L C}\right) * V w}{L\left[\left(\frac{w R}{L}\right)^{2}-\left(w^{2}-\frac{1}{L C}\right)^{2}\right]} \sin (w t+\theta)--- \tag{10}
\end{equation*}
$$

Putting $\mathrm{M} \cos \emptyset=\frac{V * \frac{w^{2} R}{L^{2}}}{\left[\left(\frac{w R}{L}\right)^{2}-\left(w^{2}-\frac{1}{L C}\right)^{2}\right]}$

$$
\mathrm{M} \sin \emptyset=\frac{\left(w^{2}-\frac{1}{L C}\right) * V w}{L\left[\left(\frac{w R}{L}\right)^{2}-\left(w^{2}-\frac{1}{L C}\right)^{2}\right]}
$$

To find M and \emptyset, we divide one equation by the other

$$
\tan \emptyset=\frac{\sin \emptyset}{\cos \emptyset}=\frac{\left(w L-\frac{1}{w C}\right)}{R}
$$

Squaring both equations and adding, we get

$$
\begin{gathered}
M^{2} \cos ^{2} \emptyset+M^{2} \sin ^{2} \emptyset=\mathrm{V} \frac{V}{R^{2}+\left(\frac{1}{w c}-w L\right)^{2}} \\
\mathrm{M}=\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}-w L\right)^{2}}}
\end{gathered}
$$

The particular current becomes

www.sakshieducation.com

$$
i_{p}=\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}-w L\right)^{2}}} \cos \left(w t+\theta+\tan ^{-1} \frac{\frac{1}{w c}-w L}{R}\right)
$$

The complementary function is similar to that of DC series RLC circuit.

$$
D^{2}+\frac{R}{L} \mathrm{D}+\frac{1}{L C}=0
$$

The roots above equation are,

$$
D_{1}, D_{2}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
$$

By assuming, $K_{1}=-\frac{R}{2 L}$ and $K_{2}=\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}$

$$
\begin{aligned}
& D_{1}=K_{1}+K_{2} \\
& D_{2}=K_{1}-K_{2}
\end{aligned}
$$

Here K_{2} may be positive or negative or zero.
K_{2} Is positive, when $\left(\frac{R}{2 L}\right)^{2}>\frac{1}{L C}$
The roots are real and unequal, and give the over damped response as shown in fig. then equation (4) becomes

$$
\left[\mathrm{D}-\left(K_{1}+K_{2}\right)\right]\left[\left[\mathrm{D}-\left(K_{1}-K_{2}\right)\right]\right] \mathrm{i}=0
$$

The solution for the above equation is,

$$
i_{c} \equiv c_{1} e^{\left(K_{1}+K_{2}\right) \mathrm{t}}+c_{2} e^{\left(K_{1}-K_{2}\right) \mathrm{t}}
$$

Therefore the complete solution is, $\mathrm{i}=i_{c}+i_{p}$

$$
\mathrm{i}=c_{1} e^{\left(K_{1}+K_{2}\right) \mathrm{t}}+c_{2} e^{\left(K_{1}-K_{2}\right) \mathrm{t}}+\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}-w L\right)^{2}}} \cos \left(w t+\theta+\tan ^{-1 \frac{1}{w c}-w L} R\right)
$$

K_{2} Is negative, when $\left(\frac{R}{2 L}\right)^{2}<\frac{1}{L C}$. The roots are complex conjugate, and give the under damped the equation as shown in becomes

$$
\left[\mathrm{D}-\left(K_{1}+j K_{2}\right)\right]\left[\left[\mathrm{D}-\left(K_{1}-j K_{2}\right)\right]\right] \mathrm{i}=0
$$

The solution for above equation is,

$$
i_{c}=e^{K_{1} \mathrm{t}}\left[c_{1} \cos K_{2} t+c_{2} \sin K_{2} t\right]
$$

Therefore the complete solution is, $\mathrm{i}=i_{c}+i_{p}$

$$
\mathrm{i}=e^{K_{1} \mathrm{t}}\left[c_{1} \cos K_{2} t+c_{2} \sin K_{2} t\right]+\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}-w L\right)^{2}}} \cos \left(w t+\theta+\tan ^{-1} \frac{\frac{1}{w c}-w L}{R}\right)
$$

K_{2} Is zero, when $\left(\frac{R}{2 L}\right)^{2}=\frac{1}{L C}$. The roots are equal, and give the critically damped response as shown in fig. the equation becomes

$$
\left[\mathrm{D}-K_{1}\right]\left[\left[\mathrm{D}-K_{2}\right]\right] \mathrm{i}=0
$$

The solution for above equation is

$$
i_{c}=e^{K_{1} \mathrm{t}}\left[c_{1}+c_{2} t\right]
$$

Therefore the complete solution is, $\mathrm{i}=i_{c}+i_{p}$

$$
\mathrm{i}=e^{K_{1} \mathrm{t}}\left[c_{1}+c_{2} t\right]+\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}-w L\right)^{2}}} \cos \left(w t+\theta+\tan ^{-1} \frac{\frac{1}{w c}-w L}{R}\right)
$$

Example: In the circuit shown in fig. determine the complete solution for the current, when the switch S is closed at $\mathrm{t}=0$. Applied voltage is $\mathrm{V}(\mathrm{t})=400 \cos \left(500 t+\frac{\pi}{4}\right)$, Resistance $=15 \Omega$, inductance $=0.2 \mathrm{H}$ and capacitance $=3 \mu \mathrm{~F}$.

By applying Kirchoff's voltage law to the circuit,

$$
400 \cos \left(500 t+\frac{\pi}{4}\right)=15 \mathrm{i}(\mathrm{t})+0.2 \frac{d i}{d t}+\frac{1}{3 * 10^{-6}} \int \mathrm{i}(\mathrm{t}) \mathrm{dt}
$$

By differentiating above equation we get,

$$
-2 * 10^{5} \sin \left(500 t+\frac{\pi}{4}\right)=15 \frac{d i}{d t}+0.2 \frac{d^{2} i}{d t^{2}}+\frac{1}{3 * 10^{-6}} \mathrm{i}
$$

www.sakshieducation.com

$$
\left(D^{2}+75 \mathrm{D}+16.7 * 10^{5}\right) \mathrm{i}=-10 * 10^{5} \sin \left(500 t+\frac{\pi}{4}\right)
$$

The roots of the characteristic equation are,

$$
\begin{aligned}
D_{1}= & -37.5+\mathrm{j} 1290 \text { and } D_{2}=-37.5-\mathrm{j} 1290 \\
& {\left[\mathrm{D}-\left(K_{1}+j K_{2}\right)\right]\left[\left[\mathrm{D}-\left(K_{1}-j K_{2}\right)\right]\right] \mathrm{i}=0 }
\end{aligned}
$$

The solution for above equation is,

$$
i_{c}=e^{-37.5 \mathrm{t}}\left[c_{1} \cos 1290 t+c_{2} \sin 1290 t\right]
$$

The particular solution is

$$
\begin{aligned}
& i_{p}=\frac{V}{\sqrt{R^{2}+\left(\frac{1}{w c}-w L\right)^{2}}} \cos \left(w t+\theta+\tan ^{-1} \frac{\frac{1}{w c}-w L}{R}\right) \\
& i_{p}=0.71 \cos \left(500 t+\frac{\pi}{4}+88.5^{\circ}\right)
\end{aligned}
$$

Therefore the complete solution is, $\mathrm{i}=i_{c}+i_{p}$

$$
\mathrm{i}=e^{-37.5 \mathrm{t}}\left[c_{1} \cos 1290 t+c_{2} \sin 1290 t\right]+0.71 \cos \left(500 t+\frac{\pi}{4}+88.5^{\circ}\right)
$$

At $\mathrm{t}=0, i_{0}=0$

$$
c_{1}=0.71 \cos \left(\frac{\pi}{4}+88.5^{\circ}\right)=0.49
$$

Differentiating the current equation, we get

$$
\begin{aligned}
& \frac{d i}{d t}=e^{-37.5 t}\left[-1290 c_{1} \sin 1290 t+1290 c_{2} \cos 1290 t\right]-37.5 e^{-37.5 t}\left[c_{1} \cos 1290 t+\right. \\
& \left.c_{2} \sin 1290 t\right]-500 * 0.71 \sin \left(500 t+\frac{\pi}{4}+88.5^{\circ}\right)
\end{aligned}
$$

At $\mathrm{t}=0, \frac{d i}{d t}=1414$
$1414=e^{-37.5 t}\left[-1290 c_{1} \sin 1290 t+1290 c_{2} \cos 1290 t\right]-37.5 e^{-37.5 t}\left[c_{1} \cos 1290 t+\right.$ $\left.c_{2} \sin 1290 t\right]-500 * 0.71 \sin \left(500 t+\frac{\pi}{4}+88.5^{\circ}\right)$

Solving this we get, $c_{2}=1.31$
Therefore the complete solution is,

$$
\mathrm{i}=e^{-37.5 \mathrm{t}}[0.49 \cos 1290 t+1.31 \sin 1290 t]+0.71 \cos \left(500 t+133.5^{\circ}\right)
$$

