
Object Oriented Thinking

Everywhere in the real world we can see objects like
people, animals, plants, cars, planes, buildings, and
computers and so on. Computer programs, such as the
Java programs are composed of lots of interacting
software objects. We sometimes divide objects into two
categories: animate and inanimate. Animate objects are
“alive” in some sense they move around and do things.
Inanimate objects, on the other hand, do not move on
their own.

Objects of both types and some things are common. They all have attributes (e.g.,
size, shape, color and weight),

They all exhibit behaviors (e.g., a ball rolls, bounces, inflates and deflates; a baby
cries, sleep crawls, walks and blinks; a car accelerates, brakes and turns; a towel
absorbs water).

We will study the kinds of attributes and behaviors that software objects have.
Humans learn about existing objects by studying their attributes and observing
their behaviors.

Different objects can have similar attributes and can exhibit similar behaviors.
Comparisons can be made, for example, between babies and adults and between
humans and chimpanzees.

Object-oriented design provides a natural and intuitive way to view the
software design process namely, modeling objects by their attributes and
behaviors just as we describe real-world objects.

OOD also models communication between objects. Just as people send messages
to one another objects also communicate via messages.

Example: A bank account object may receive a message to decrease its balance by
a certain amount because the customer has withdrawn that amount of money.

Object-Oriented:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Java was not designed to be source-code compatible with any other language.
This allowed the Java team the freedom to design. One outcome of this was a
clean, usable, pragmatic approach to objects.

The object model in Java is simple and easy to extend, while simple types, such as
integers, are kept as high-performance non objects.

OOD wraps attributes and behaviors into objects, an object’s attributes and
operations are intimately tied together.

Objects have the property of information hiding. This means that objects may
know how to communicate with one another across well-defined interfaces, but
normally they are not allowed to know how other objects are implemented,
implementation details are hidden within the objects themselves.

Example: We can drive a car effectively without knowing the details of how
engines, transmissions, brakes and exhaust systems work internally.

Java is object oriented programming language is and it allows computer
programmers to implement an object-oriented design as a working system.

C is procedural, so programming tends to be action oriented. In C, the unit of
programming is the function. Groups of actions that perform some common task
are formed into functions, and functions are grouped to form programs.

In Java, the unit of programming is the class from which objects are eventually
instantiated or created. Java classes contain methods as well as fields.

Java programmers concentrate on creating classes. Each class contains fields, and
the set of methods that manipulate the fields and provide services to clients.

The programmer uses existing classes as the building blocks for constructing new
classes. Just as we can build many houses from one blueprint, we can create
many objects from one class.

Classes can have relationships with other classes.

Example, in an object-oriented design of a bank, the “bank teller” class needs to
relate to the “customer” class, the “cash drawer” class, the “safe” class, and so
on. These relationships are called associations.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Packaging software as classes makes it possible for future software systems to
reuse the classes. Groups of related classes are often packaged as reusable
components.

People in the software community often say that the three most important
factors affecting the future of software development are “reuse, reuse and
reuse.”

Reuse of existing classes when building new classes and programs saves time and
effort. Reuse also helps programmers build more reliable and effective systems,
because existing classes and components often have gone through extensive
testing, debugging and performance tuning.

Each new class you create will have the potential to become a valuable software
asset that you and other programmers can use to speed and enhance the quality
of future software development efforts.

NEED FOR OOP PARADIGM:

Two Paradigms of OOP Programming:

All computer programs consist of two elements: code and data.

A program can be conceptually organized around its code or around its data.

 That is, some programs are written around “what is happening” and others are
written around “who is being affected.”

These are the two paradigms that govern how a program is constructed.

The first way is called the process oriented model. The process-oriented model
can be thought of as code acting on data. Procedural languages such as C employ
this model to considerable success. Problems with this approach appear as
programs grow larger and more complex.

Object-oriented programming organizes a program around its data (that is,
objects) and a set of well-defined interfaces to that data. An object-oriented
program can be characterized as data controlling access to code.

Procedure oriented Programming:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Here primary focus on “Functions” and little attention on data.

There are many high level languages like COBOL, FORTRAN, PASCAL, C used for
conventional programming commonly known as POP.

POP basically consists of writing a list of instructions for the computer to follow,
and organizing these instructions into groups known as functions.

A POP structure

In a multi-function program, many important data items are placed as global so
that they may be accessed by all the functions. Each function may have its own
local data.

In a large program it is very difficult to identify what data is used by which
function. In case we need to revise an external data structure, we should also
revise all the functions that access the data. This provides an opportunity for bugs
to creep in.

Drawback: It does not model real world problems very well, because functions are
action oriented and does not really corresponding to the elements of the
problem.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Chars of POP:

 Emphasis is on doing actions.
 Large programs are divided into smaller programs known as functions.
 Most of the functions shared global data.
 Data move openly around the program from function to function.
 Functions transform data from one form to another.
 Employs top-down approach in program design.

OOP:

OOP allows us to decompose a problem into a number of entities called objects
and then builds data and methods around these entities.

Definition: OOP’s is an approach that provides a way of modularizing programs by
creating portioned memory area for both data and methods that can used as
templates for creating copies of such modules on demand.

OOP Chars:

 Emphasis on data.
 Programs are divided into what are known as methods.
 Data structures are designed such that they characterize the objects.
 Methods that operate on the data of an object are tied together.
 Data is hidden.
 Objects can communicate with each other through methods.
 Reusability.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 Follows bottom-up approach in program design.

Organization of OOP:

Evolution of Computing and Programming:

Computer use is increasing in almost every field of endeavor. Computing costs
have been decreasing dramatically due to rapid developments in both hardware
and software technologies. Computers that might have filled large rooms and cost
millions of dollars decades ago can now be inscribed on silicon chips smaller than
a fingernail, costing perhaps a few dollars each.

Fortunately, silicon is one of the most abundant materials on earth it is an
ingredient in common sand. Silicon chip technology has made computing so
economical that about a billion general-purpose computers are in use worldwide,
helping people in business, industry and government, and in their personal lives.
Many programmers learned the programming methodology called structured
programming.

Method

Method

Method

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Object orientation is the key programming methodology used by programmers
today. You will create and work with many software objects in this text.

Language of Choice for Networked Applications:

 Java has become the language of choice for implementing Internet-based
applications and software for devices that communicate over a network. Stereos
and other devices in homes are now being networked together by Java
technology.

At the May 2006 Java One conference, Sun announced that there were one billion
java-enabled mobile phones and hand held devices! Java has evolved rapidly into
the large-scale applications arena.

 It’s the preferred language for meeting many organizations’ enterprise-wide
programming needs. Java has evolved so rapidly that this seventh edition of Java
How to Program was published just 10 years after the first edition was published.

Java has grown so large that it has two other editions. The Java Enterprise Edition
(Java EE) is geared toward developing large-scale, distributed networking
applications and web-based applications. The Java Micro Edition (Java ME) is
geared toward developing applications for small, memory constrained devices,
such as cell phones, pagers and PDAs.

Security:

Every time that we download a normal program, effected with viral infection.
Prior to Java, most users did not download executable programs frequently, and
those who did scan them for viruses prior to execution.

Even so, most users still worried about the possibility of infecting their systems
with a virus. In addition to viruses, another type of malicious program exists that
must be guarded against.

This type of program can gather private information, such as credit card numbers,
bank account balances, and passwords, by searching the contents of your
computer’s local file system.

Java addresses both of these concerns by providing a firewall between a
networked application and your computer. When we use a Java-compatible Web
browser, we can safely download Javaapplets without fear of viral infection or
malicious intent.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Java achieves this protection by confining a Java program to the Java execution
environment and not allowing it access to other parts of the computer. The ability
to download applets with confidence that no harm will be done and that no
security will be breached is considered by many to be the single most important
aspect of Java.

Portability

For programs to be dynamically downloaded to all the various types of platforms
connected to the Internet, some means of generating portable executable code is
needed. As we will soon see, the same mechanism that helps ensure security also
helps create portability. Java’s solution to these two problems is both elegant and
efficient.

A way of viewing World-Agents and Responsibility:

Object-oriented languages use objects to encapsulate the details.

State data are represented as instance data.

Behaviors are represented as methods.

OOP establish the communication between Distributed Objects. It is possible with
the help of clients and servers in the form of agents. It helps for Distributed
Applications.

OOP Chars with Distributed Applications:

Interprocess Communication:

A distributed application requires the participation of two or more independent
entities. To do so, the processes must have the ability to exchange data among
themselves.

Event Synchronization: In a distributed application, the sending and receiving of
data among the participants of a distributed application must be synchronized.

 A distributed system is a collection of independent computers,
interconnected via a network, capable of collaborating on a task.

 Distributed computing is computing performed in a distributed system.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Peer-to-Peer distributed computing:

The peer-to-peer paradigm can be implemented with facilities using any tool that
provide message-passing, or with a higher-level tool such as one that supports the
point-to-point model of the Message System paradigm.

For web applications, the web agent is a protocol promoted by the XNSORG (the
XNS Public Trust Organization) for peer-to-peer interprocess communication

“Project JXTA is a set of open, generalized peer-to-peer protocols that allow any
connected device (cell phone, to PDA, PC to server) on the network to
communicate and collaborate.

 JXTA is short for Juxtapose, as in side by side. It is a recognition that peer to peer
is juxtapose to client server or Web based computing -- what is considered today's
traditional computing model. “

The Distributed Objects Paradigms

 The idea of applying object orientation to distributed applications is a
natural extension of object-oriented software development.

 Applications access objects distributed over a network.

 Objects provide methods, through the invocation of which an application
obtains access to services.

 Object-oriented paradigms include:

Remote method invocation (RMI)

Network services

Object request broker

Object spaces

 Remote Method Invocation (RMI):

 Remote method invocation is the object-oriented equivalent of remote
method calls.

 In this model, a process invokes the methods in an object, which may reside
in a remote host.

 As with RPC, arguments may be passed with the invocation.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

The Object Request broker Paradigm:

 In the object broker paradigm, an application issues requests to an object

request broker (ORB), which directs the request to an appropriate object

that provides the desired service.

 The paradigm closely resembles the remote method invocation model in

its support for remote object access. The difference is that the object

request broker in this paradigm functions as a middleware which allows an

application, as an object requestor, to potentially access multiple remote

(or local) objects.

 The request broker may also function as a mediator for heterogeneous

objects, allowing interactions among objects implemented using different

APIs and /or running on different platforms.

The Object Space Paradigm:

 Perhaps the most abstract of the object-oriented paradigms, the object

space paradigm assumes the existence of logical entities known as

object spaces.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 The participants of an application converge in a common object space.

 A provider places objects as entries into an object space, and requesters

who subscribe to the space access the entries.

 In addition to the abstractions provided by other paradigms, the object space

paradigm provides a virtual space or meeting room among provides and

requesters of network resources or objects. This abstraction hides the detail

involved in resource or object lookup needed in paradigms such as remote

method invocation, object request broker, or network services.

 Current facilities based on this paradigm include JavaSpaces

 http://java.sun.com/products/javaspaces/.

The Mobile Agent Paradigm

 A mobile agent is a transportable program or object.

 In this model, an agent is launched from an originating host.

 The agent travels from host to host according to an itinerary that it

carries.

 At each stop, the agent accesses the necessary resources or services,

and performs the necessary tasks to accomplish its mission.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

http://java.sun.com/products/javaspaces/

 The paradigm offers the abstraction for a transportable program or object.

 In lieu of message exchanges, data is carried by the program/object as the

program is transported among the participants.

The Network Services Paradigm:

 In this paradigm, service providers register themselves with directory

servers on a network. A process desiring a particular service contacts the

directory server at run time, and, if the service is available, will be provided

a reference to the service. Using the reference, the process interacts with

the service.

 This paradigm is essentially an extension of the remote method call

paradigm. The difference is that service objects are registered with a global

directory service, allowing them to be look up and accessed by service

requestors on a federated network.

Java’s Jini technology is based on this paradigm

Service requestor

Directory service

service object

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

The Collaborative Application (Groupware) Paradigm:

 In this model, processes participate in a collaborative session as a group.

Each participating process may contribute input to part or all of the group.

 Processes may do so using:

 multicasting to send data to all or part of the group, or they may use

a

 virtual sketchpads or whiteboards which allows each participant to

read and write data to a shared display.

The Architecture of Distributed Applications:

message

message

message

Message-based groupware paradigm Whiteboard-based groupware paradigm

Presentation

Application (Business) logic

Services

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

MESSAGES:

An OOP consists of objects that communicate with each other. The process of

programming in an object-Oriented language, therefore, involves the basic

concepts:

1. Creating classes that define objects and their behavior.

2. Creating objects from class definitions.

3. Establishing communication among objects.

Objects communicate with one another by sending and receiving information

much the same way as people pass messages to one another.

The concept of message passing makes it easier to talk about building systems
that directly model or simulate their real-world counter parts.

A message for an object is a request for execution of a procedure, and therefore
will invoke a procedure in the receiving object that generates the desired results.

Objects have a life cycle. They can be created and destroyed. Communication with
an object is feasible as long as it is alive.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Message passing involves specifying the name of the object, the name of the
method and the information to be sent.

Example:

1. The object to which the message is addressed.(YourBicycles)
2. The name of the method to perform. (changeGears)
3. Any parameters needed by the method.(lowerGear)

The Message Passing Paradigm:

Message passing is the most fundamental paradigm for distributed applications.

 A process sends a message representing a request.

 The message is delivered to a receiver, which processes the request, and

sends a message in response.

In turn, the reply may trigger a further request, which leads to a subsequent reply,

and so forth.

 The basic operations required to support the basic message passing
paradigm are send, and receive.

Process A
Process B

a message

Message passing

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 For connection-oriented communication, the operations connect and
disconnect are also required.

 With the abstraction provided by this model, the interconnected
processes perform input and output to each other, in a manner similar
to file I/O. The I/O operations encapsulate the detail of network
communication at the operating-system level.

 The socket application programming interface is based on this paradigm.

The Client-Server Paradigm:

Perhaps the best known paradigm for network applications, the client-server

model assigns asymmetric roles to two collaborating processes.

 One process, the server, plays the role of a service provider which waits passively

for the arrival of requests. The other, the client, issues specific requests to the

server and awaits its response.

 Simple in concept, the client-server model provides an efficient
abstraction for the delivery of network services.

 Operations required include those for a server process to listen and to
accept requests, and for a client process to issue requests and accept
responses.

 By assigning asymmetric roles to the two sides, event synchronization is
simplified: the server process waits for requests, and the client in turn
waits for responses.

 Many Internet services are client-server applications. These services are often

known by the protocol that the application implements. Well known Internet

services include HTTP, FTP, DNS, finger, gopher, etc.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

The Message System Paradigm:

 The Message System or Message-Oriented Middleware (MOM)
paradigm is an elaboration of the basic message-passing paradigm.

 In this paradigm, a message system serves as an intermediary among
separate, independent processes.

 The message system acts as a switch for messages, through which
processes exchange messages asynchronously, in a decoupled manner.

 A sender deposits a message with the message system, which forwards
it to a message queue associated with each receiver. Once a message is
sent, the sender is free to move on to other tasks.

...

service request

a server process

a client process

a service

The Client-Server Paradigm, conceptual

Server host

Client host

...

...
message system

receivers

sender

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Two subtypes of message system models:

The Point-To-Point Message Model:

 In this model, a message system forwards a message from the sender to
the receiver’s message queue.

 Unlike the basic message passing model, the middleware provides a
message depository, and allows the sending and the receiving to be
decoupled. Via the middleware, a sender deposits a message in the
message queue of the receiving process.

A receiving process extracts the messages from its message queue, and
handles each one accordingly.

 Compared to the basic message-passing model, this paradigm provides
the additional abstraction for asynchronous operations. To achieve the
same effect with basic message-passing, a developer will have to make
use of threads or child processes.

The Publish/Subscribe Message Model:

 In this model, each message is associated with a specific topic or event.
Applications interested in the occurrence of a specific event may
subscribe to messages for that event.

 When the awaited event occurs, the process publishes a message
announcing the event or topic. The middleware message system
distributes the message to all its subscribers.

 The publish/subscribe message model offers a powerful abstraction for
multicasting or group communication.

The publish operation allows a process to multicast to a group of
processes, and the subscribe operation allows a process to listen for
such multicast.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Remote Procedure Call:

 As applications grew increasingly complex, it became desirable to have a
paradigm which allows distributed software to be programmed in a manner
similar to conventional applications which run on a single processor.

 The Remote Procedure Call (RPC) model provides such an abstraction.
Using this model, interposes communications proceed as procedure, or
function, calls, which are familiar to application programmers.

 A remote procedure call involves two independent processes, which may
reside on separate machines.

A process, a, wishing to make a request to another process,
B, issues a procedure call to B, passing with the call a list of argument
values.

 As in the case of local procedure calls, a RPC triggers a predefined action in
a procedure provided by process B, after the completion of the procedure,
process B returns a value to process A.

 RPC allows programmers to build network applications using a
programming construct similar to the local procedure call, providing a
convenient abstraction for both interposes communication and event
synchronization.

 Since its introduction in the early 1980s, the Remote Procedure Call model
has been widely in use in network applications.

 There are two prevalent APIs for Remote Procedure Calls.

 The Open Network Computing Remote Procedure Call, evolved from
the RPC API originated from Sun Microsystems in the early 1980s.

 The OpenGroup Distributed Computing Environment (DCE) RPC.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 Both APIs provide a tool, rpcgen, for transforming remote procedure calls
to local procedure calls to the stub.

MESSAGE: SOFTWARE OBJECTS INTERACT AND COMMUNICATE WITH EACH

OTHER USING MESSAGES.

METHODS:

Method is an action required by an object. Methods allow the programmer to
modularize the program. All variables declared in method definitions are local
variables.

That means they are known only in the method in which they are defined. Most
methods have a list of parameters that provide the means for communicating
information between the methods. A methods parameters are also local
variables.

There are several motivations for modularizing a program with methods. The
divide and conquer approach makes program development more manageable.

Another motivation is reusability. That means using existing methods as building
blocks to create new programs. With good method naming and definition,
programs can be created from standardized methods, rather than being built by
using customized code.

A third motivation is to avoid repeating code in a program. Packaging code as a
method allows that code to be executed from several locations in a program
simply by calling the method.

proc1(arg1, arg2)

proc2(arg1)

proc3(arg1,arg2,arg3)

Process A
Process B

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

General format of method:

modifier returnvaluetype methodname(list of parameters)

{

//method body;

}

If an object wants another object to do some work on its behalf, then in the
parlance of OOP, the first object sends a message to the second object.

 In response, the second object selects the appropriate method to invoke. Java
method invocations look similar to functions in C.

Using the message passing paradigm of OOP, you can build entire networks and
webs of objects that pass messages between them to change state.

This programming technique is one of the best ways to create models and
simulations of complex real-world systems.

Example:

MODIFIER RETURNVALUETYPE

Public static int max(int n1, int n22)

 NAME PARA-LIST

{

if(n1>n2)

 {

 return n1;

 else

 return n2;

 } RETURN VALUE

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

CLASSES AND INSTANCES:

The class is at the core of Java. It is the logical construct upon which the entire
Java language is built because it defines the shape and nature of an object.

As such, the class forms the basis for object-oriented programming in Java. Any
concept you wish to implement in a Java program must be encapsulated within a
class, because the class is so fundamental to Java.

Class Fundamentals

The classes created in the preceding description primarily exist simply to
encapsulate the main() method, which has been usedto demonstrate the basics
of the Java syntax.

As we will see, classes are substantiallymore powerful than the limited ones
presented so far.

Perhaps the most important thing to understand about a class is that it defines a
new data type. Once defined, this new type can be used to create objects of that
type.

Thus, a class is a template for an object, and an object is an instance of a class.
Because an object is an instance of a class, you will often see the two words
object and instance used interchangeably.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this

by specifying the data that it contains and the code that operates on that data.

While very simple classes may contain only code or only data, most real-world

classes contain both. As you will see, a class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used

up to this point are actually very limited examples of its complete form. Classes

can (and usually do) get much more complex.

The general form of a class definition is shown here:

class classname {

type instance-variable1;

type instance-variable2;

// ...

type instance-variableN;

type methodname1(parameter-list) {

// body of method

}

type methodname2(parameter-list) {

// body of method

}

// ...

type methodnameN(parameter-list) {

// body of method

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

}

}

The data, or variables, defined within a class are called instance variables. The

code is contained within methods. Collectively, the methods and variables

defined within a class are called members of the class.

 In most classes, the instance variables are acted upon and accessed by the

methods defined for that class. Thus, it is the methods that determine how a class

data can be used.

Variables defined within a class are called instance variables because each

instance of the class) contains its own copy of these variables.

Thus, the data for one object is separate and unique from the data for another. All

methods have the same general form as main(), which we have been using thus

far. However, most methods will not be specified as static or public.

 Notice that the general form of a class does not specify a main() method. Java

classes do not need to have a main() method. You only specify one if that class is

the starting point for yourprogram. Further, applets don’t require a main()

method at all.

A class is a software construct that defines the data(states) and
methods(behavior) of the specific concrete objects that are subsequently
constructed from that class.

In Java terminology, a class is built out of members, which are either fields or
methods. Fields are the data for the class. Methods are the sequences of
statements that operate on the data.

Fields are normally specific to an object-that is, every object constructed from the
class definition will have its own copy of the field. Such fields are known as
instance variables. Similarly methods are also normally declared to operate on the
instance variables of the class, and are thus known as instance methods.

A class in and of itself is not an object. A class is like a blueprint that defines how
an object will look and behave when the object is created or instantiated from the

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

specification declared by the class. You obtain concrete objects by instantiating a
previously defined class.

We can instantiate many objects from one class definition, just as you can
construct many houses all the same from a single architect’s drawing.

CLASS HIERARCHIES (INHERITANCE):

A class/interface is represented as follows:

attributes are static/ instance variables/constants

operations are static or instance methods.

Basic UML Class Diagram Notations

interface/class
 name

 attributes
(name: type)

 operations
(method names)

class A

operations

attributes

operations

attributes
class B depends on (uses)
class A

class B

class C

operations

attributes
class C implements
Java interface someInterface

 someInterface

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Inheritance is the process by which objects of one class acquire the

properties of objects of another class. Inheritance supports the concept of

hierarchical classification. A deeply inherited subclass inherits all of the attributes

from each of its ancestors in the class hierarchy.

 Most people naturally view the world as made up of objects that are related to

each other in a hierarchical way.

Inheritance: A new class (subclass, child class) is derived from the existing class

(base class, parent class).

interface D

operations

attributes

operations

attributes
class E implements
programmer-provided interface D

class E

interface F

operations

attributes

operations

attributes
class G inherits from class F

class G

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Main uses of Inheritance:

1. Reusability

2. Abstraction

Method Overriding:

 In a class hierarchy, when a method in a subclass has the same name and the

type signature as a method in its super class, then the method in the subclass is

said to be override the method in the super class.

Example for Method Overriding and Inheritance:

class Figure

{

 double dig1;

 double dig2;

 Figure(double a,double b)

 {

dig1=a;

dig2=b;

 }

 double area()

 {

 System.out.println("Figure area undefined");

 return 0;

 }

}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

class Rectangle extends Figure

 {

 Rectangle(double a,double b)

 {

 super(a,b);

 }

 double area()

 {

 System.out.println("Rectangle inside area");

 return dim1*dim2;

 }

 }

class Triangle extends Figure

 {

 Triangle(double a,double b)

 {

 super(a,b);

 }

 double area()

 {

 System.out.println(“Ttriangle inside area”);

 return dim1*dim2/2;

 }

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 }

class FindAreas

{

 public static void main(String args[])

 {

 Figure f=new Figure(10,10);

 Rectangle r=new Rectangle(9,5);

 Triangle t=new Triangle(10,8);

 Figure figref;

 figref=r;

 System.out.println("area is"+figref.area());

 figref=t;

 System.out.println("area is"+figref.area());

 figref=f;

 System.out.println("area is"+figref.area());

 }

}

OUTPUT:

Rectangle inside area

area is 45

Ttriangle inside area

area is 40

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Figure area undefined

area is 0

Use of superKeyword:

 Whenever a subclass needs to refer to its immediate super class, it can do so by

the use of the keyword super.

Super has the two general forms.

1. Super (args-list): calls the Super class’s constructor.

2. Super. Member: To access a member of the super class that has been

hidden by a member of a subclass. Member may be variable or method.

Use: Overridden methods allow Java to support Run-time polymorphism. This

leads to Robustness by Reusability.

Method Binding:

If we use a super class reference to a subclass object and invoke the (common)

method , the program will choose the correct subclass’s (common) method . The

program will find out a class to which the reference is actually pointing and that

class method will be bounded.

class Figure

{

 double dig1;

 double dig2;

 Figure(double a,double b)

 {

dig1=a;

dig2=b;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 }

 double area()

 {

 System.out.println("figure are undifined");

 return 0;

 }

}

class Rectangle extends Figure

 {

 Rectangle(double a,double b)

 {

 super(a,b);

 }

 double area()

 {

 System.out.println("Rectangle area inside");

 return dim1*dim2;

 }

 }

class Triangle extends Figure

 {

 Triangle(double a,double b)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 {

 super(a,b);

 }

 double area()

 {

 System.out.println("Triangle inside area");

 return dim1*dim2/2;

 }

 }

class FindAreas

{

 public static void main(String args[])

 {

 Figure f=new Figure(10,10);

 Rectangle r=new Rectangle(9,5);

 Triangle t=new Triangle(10,8);

 Figure figref;

 figref=r;

 System.out.println("area is"+figref.area());

 figref=t;

 System.out.println("area is"+figref.area());

 figref=f;

 System.out.println("area is"+figref.area());

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 }

}

OUTPUT:

Rectangle inside area

area is 45

Triangle inside area

area is 40

figure are undifined

area is 0

Exceptions:

An exception is an abnormal condition that arises during the execution of a

program that disrupts the normal flow of execution.

Error: When a dynamic linking failure or some other “hard” failure in the virtual

machine occurs, the virtual machine throws an Error.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Java exception handling is managed via by five keywords: try, catch, throw,

throws, finally.

Try: The try block is said to govern the statements enclosed within it and defines

the scope of any exception associated with it. It detects the exceptions.

Catch: The catch block contains a series of legal Java statements. These

statements are executed if and when the exception handler is invoked. It holds an

exception.

Throw: To manually throw an exception, use the keyword throw.

Throws: Any exception that is thrown out of a method must be specified as such

by a throws clause.

Finally: Any code that absolutely must be executed after a try block completes is

put in a finally block. After the exception handler has run, the runtime system

passes control to the finally block.

General form of an exception handling:

try

{

 //block of code to monitor for errors

}

catch(ExceptionType exOb)

{

 //exception handler for ExceptionType

}

//...

finally

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

{

 //block of code to be executed after try block ends

}

Example:

public class ExceptionDemo

{

 public static void main(String args[])throws IOException

 {

 int subject[]={12,23,34,21};

 try

 {

 System.out.println(subject[2]);

 System.out.println("not okay");

 }

 catch(ArrayIndexOutOfBoundException e)

 {

 System.out.println("i caught the exception:"+e);

 throw e;

 }

 finally

 {

 System.out.println("Complete");

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 }

 }

}

Output:

34

Not CompleteComplete

Coping with complexity:

The size and complexity of a small program is small and simple, whereas the size

and complexity of a large application program is large and hard.

The complexity in dealing with the problems to build a large application depends

on the ‘composition’ and ‘abstraction’ mechanisms.

Composition mechanisms:

We can create objects of another (super) class as instance variable in the current
(sub) class. This capability is called composition. Composition is one form of
software reuse in which a class has references to objects of other classes as
members. It is called as “has a relationship.”

class Figure

{

 double dim1;

 double dim2;

 Figure(double a,double b)

 {

 dim1=a;

 dim2=b;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 }

 double area()

 {

 System.out.println("figure area undefined");

 return 0;

 }

}

class Rectangle extends Figure

 {

 Rectangle(double a,double b)

 {

 super(a,b);

 }

 double area()

 {

 System.out.println("Rectangle area inside");

 return dim1*dim2;

 }

 }

class Triangle extends Figure

 {

 Triangle(double a,double b)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 {

 super(a,b);

 }

 double area()

 {

 System.out.println("Triangle inside area");

 return dim1*dim2/2;

 }

 }

class FindAreas

{

 public static void main(String args[])

 {

 Figure f=new Figure(10,10);

 Rectangle r=new Rectangle(9,5);

 Triangle t=new Triangle(10,8);

 //creating objects of one(super) class in another(sub) class:Composition

figref=r;

 System.out.println("area is"+figref.area());

Figure figref;

 figref=f;

 System.out.println("area is"+figref.area());

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 figref=t;

 System.out.println("area is"+figref.area());

 }

}

OUTPUT:

Rectangle area inside

area is 45

Triangle inside area

area is 40

figure area undefined

area is 0

Abstraction Mechanisms:

Abstraction refers to the act of representing essential features without including
the background details or explanations. Classes use the concept of abstraction
and are defined as a list of attributes and methods to operate on these attributes.

 They encapsulate all the essential features of the objects that are to be created
since the classes use the concept of data abstraction they are known as Abstract
Data Types.

An essential element of object-oriented programming is abstraction. Humans
manage complexity through abstraction. For example, people do not think of a
car as a set of tens of thousands of individual parts.

 They think of it as a well-defined object with its own unique behavior. This
abstraction allows people to use a car to drive to the grocery store without being
overwhelmed by the complexity of the parts that form the car. They can ignore
the details of how the engine, transmission, and braking systems work. Instead
they are free to utilize the object as a whole.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

A powerful way to manage abstraction is through the use of hierarchical
classifications. This allows you to layer the semantics of complex systems,
breaking them into more manageable pieces. From the outside, the car is a single
object.

Once inside, you see that the car consists of several subsystems: steering, brakes,
sound system, seat belts, heating, cellular phone, and so on. In turn, each of these
subsystems is made up of more specialized units.

For instance, the sound system consists of a radio, a CD player, and/or a tape
player. The point is that you manage the complexity of the car (or any other
complex system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer
programs. The data from a traditional process-oriented program can be
transformed by abstraction into its component objects.

A sequence of process steps can become a collection of messages between these
objects. Thus, each of these objects describes its own unique behavior. We can
treat these objects as concrete entities that respond to messages telling them to
do something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for
human understanding. It is important that you understand how these concepts
translate into programs. As you will see, object-oriented programming is a
powerful and natural paradigm for creating programs that survive the inevitable
changes accompanying the life cycle of any major software project, including
conception, growth, and aging.

 For example, once you have well-defined objects and clean, reliable interfaces to
those objects, you can gracefully decommission or replace parts of an older
system without fear.

Abstract class: Any class that contains one or more abstract methods must also
be declared abstract.

To declare a class abstract, you simply use the abstract keyword in front of the
class keyword at the beginning of the class declaration. There can be no objects of
an abstract class.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 That is, an abstract class cannot be directly instantiated with the new operator.
Such objects would be useless, because an abstract class is not fully defined.

Also, you cannot declare abstract constructors, or abstract static methods. Any
subclass of an abstract class must either implement all of the abstract methods in
the super class, or be itself declared abstract.

There are situations in which you will want to define a super class that declares
the structure of a given abstraction without providing a complete implementation
of every method.

That is, sometimes you will want to create a super class that only defines a
generalized form that will be shared by all of its subclasses, leaving it to each
subclass to fill in the details. Such a class determines the nature of the methods
that the subclasses must implement.

One way this situation can occur is when a super class is unable to create a
meaningful implementation for a method. This is the case with the class Figure
used in the preceding example. The definition of area () is simply a placeholder.

It will not compute and display the area of any type of object. As you will see as
you create your own class libraries, it is not uncommon for a method to have no
meaningful definition in the context of its super class. You can handle this
situation two ways.

One way, as shown in the previous example, is to simply have it report a warning
message. While this approach can be useful in certain situations such as
debugging it is not usually appropriate.

You may have methods which must be overridden by the subclass in order for the
subclass to have any meaning. Consider the class Triangle. It has no meaning if
area () is not defined. In this case, you want some way to ensure that a subclass
does, indeed, override all necessary methods. Java’s solution to this problem is
the abstract method.

Abstract method: A method that is declared but not implemented (no body).
Abstract methods are used to ensure that subclasses implement the method.

You can require that certain methods be overridden by subclasses by specifying
the abstract type modifier. These methods are sometimes referred to as

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

subclasses responsibility because they have no implementation specified in the
super class.

Thus, a subclass must override them it cannot simply use the version defined in
the super class. To declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.

An abstract class can be sub classed and can’t be instantiated.

Example program for Abstract class and method:

abstract class Figure

 {

double dim1;

double dim2;

Figure(double a, double b)

{

dim1 = a;

dim2 = b;

}

// area is now an abstract method

abstract double area();

}

class Rectangle extends Figure

 {

Rectangle(double a, double b)

 {

super(a, b);

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

}

// override area for rectangle

double area()

 {

System.out.println("Rectangle inside area.");

return dim1 * dim2;

}

}

class Triangle extends Figure

{

Triangle(double a, double b)

 {

super(a, b);

 }

// override area for right triangle

double area()

 {

System.out.println("Triangle inside area.");

return dim1 * dim2 / 2;

}

}

class AbstractAreas

 {

public static void main(String args[])

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

{

// Figure f = new Figure(10, 10); // illegal now

Rectangle r = new Rectangle(9, 5);

Triangle t = new Triangle(10, 8);

Figure figref; // this is OK, no object is created

figref = r;

System.out.println("Area is " + figref.area());

figref = t;

System.out.println("Area is " + figref.area());

}

}

output:

Rectangle inside area.

Area is 45.0

Triangle inside area.

Area is 40.0

As the comment inside main () indicates, it is no longer possible to declare
objects of type Figure, since it is now abstract. And, all subclasses of Figure must
override area ().

Although it is not possible to create an object of type Figure, you can create a
reference variable of type Figure. The variable figref is declared as a reference to
Figure, which means that it can be used to refer to an object of any class derived
from Figure. As explained, it is through super class reference variables that
overridden methods are resolved at run time.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Summary of OOP concepts:

OOP concepts:

If you have never used an object-oriented language before, you need to
understand the underlying concepts before you begin writing code. You need to
understand what an object is, what a class is, how objects and classes are related,
how objects communicate by using messages.

Object: An object is a software bundle of related variables and methods. Software
objects are often used to model real-world objects you find in everyday life. It is
real time entity distinguished from others by its name and behavior.

Messages: Information for interaction or data for communication. Software
objects interact and communicate with each other using messages.

Class: A class is a blueprint or prototype that defines the variables and the
methods common to all objects of a certain kind.

Inheritance: A class inherits state and behavior from its super class. Inheritance
provides a powerful and natural mechanism for organizing and structuring
software programs.

Interface: An interface is a contract in the form of a collection of method and
constant declarations. When a class implements an interface, it promises to
implement all of the methods declared in those methods.

General concepts of OOP:

1. Class

2. Objects

3. Data Abstraction

4. Data Encapsulation

5. Inheritance

6. Polymorphism

7. Dynamic Binding

8. Message Passing

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

The three principles of OOPs:

1. Encapsulation
2. Inheritance
3. Polymorphism

Encapsulation: Encapsulation is the mechanism that binds together code and the
data it manipulates, and keeps both safe from outside interference and misuse.

One way to think about encapsulation is as a protective wrapper that prevents
the code and data from being arbitrarily accessed by other code defined outside
the wrapper. Access to the code and data inside the wrapper is tightly controlled
through a well-defined interface.

To relate this to the real world, consider the automatic transmission on an
automobile. It encapsulates hundreds of bits of information about your engine,
such as how much you are accelerating, the pitch of the surface you are on, and
the position of the shift lever.

For example, shifting gears does not turn on the headlights! Because an
automatic transmission is encapsulated, dozens of car manufacturers can
implement one in any way they please. However, from the driver’s point of view,
they all work the same. This same idea can be applied to programming.

The power of encapsulated code is that everyone knows how to access it and thus
can use it regardless of the implementation details and without fear of
unexpected side effects.

In Java the basis of encapsulation is the class. A class defines the structure and
behavior (data and code) that will be shared by a set of objects.

Each object of a given class contains the structure and behavior defined by the
class, as if it were stamped out by a mold in the shape of the class.

For this reason, objects are sometimes referred to as instances of a class. Thus, a
class is a logical construct; an object has physical reality.

Polymorphism: Polymorphism (from the Greek, meaning “many forms”) is a
feature that allows one interface to be used for a general class of actions. The
specific action is determined by the exact nature of the situation.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

More generally, the concept of polymorphism is often expressed by the phrase
one interface, multiple methods.

 This means that it is possible to design a generic interface to a group of related
activities. This helps reduce complexity by allowing the same interface to be used
to specify a general class of action.

 It is the compiler’s job to select the specific action (that is, method) as it applies
to each situation. As a programmer, do not need to make this selection manually.
You need only remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells
a cat, it will bark and run after it. If the dog smells its food, it will salivate and run
to its bowl. The same sense of smell is at work in both situations.

The difference is what is being smelled, that is, the type of data being operated
upon by the dog’s nose! This same general concept can be implemented in Java as
it applies to methods within a Java program.

Advantages of OOPs:

 We can eliminate redundant code and extend the use of classes with the
concept of inheritance.

 We can build the programs from the standard working modules that
communicate with one another, rather than having to start writing the
code from beginning. This leads to saving of development time and higher
productivity.

 The principle of data hiding helps the programmer to build secure programs
that cannot be invaded by code in other parts of the program.

 It is possible to have multiple instance of an object to exist without any
interference.

 Software complexity can be managed.

 OO systems can be easily upgraded from small to large systems.

Applications of OOPs:

 Real time systems

 Simulation and modeling

 OO database

 Hypertext, hypermedia and expert-text

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 AI and expert systems

 Neural networks and parallel programming

 Decision support and office automation systems

 CAM/CAD systems

Conclusion:

 Everything is an object.

 Methods are used to pass the messages between objects.

 Objects are packaged by class.

 Methods and variables are considered as the members of class.

 One class can inherit the many classes

 One method can do many actions.

 Complexity is managed by abstraction and composition.

 We can hide and bind the data.

 OOP follows the bottom-up approach.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

