I. Very Short Answer Questions. Answer all Questions.

1. Find the equation of the straight line whose distance from the origin is 4, if the normal ray from the origin to the straight line makes an angle of 135° with the positive direction of the X -axis.
2. Find the value of k , if the angle between the straight lines $4 x-y+7=0$ and $k x-5 y-9=0$ is 45^{0}.
3. Find the in centre of the triangle formed by the points $0,0,0,3,0,0$ and $0,4,0$.
4. Find the equation to the plane parallel to $Z X$ - plane and passing through $0,4,4$.
5. Compute $\lim _{x \rightarrow 0} \frac{\sin \pi \cos ^{2} x}{x^{2}}$
6. Compute $\lim _{x \rightarrow \infty} \frac{11 x^{3}-3 x+4}{13 x^{3}-5 x^{2}-7}$
7) If $f x=7^{x^{3}+3 x} \quad x>0$ then find $f^{\prime} x$
8) If $y=a e^{n x}+b e^{-n x}$ then prove that $y^{\prime \prime}=n^{2} y$
9) Find dy and δy of $y=f x=x^{2}+x$ at $x=10$ when $\delta x=0.1$
10) Verify the Roll's theorem for $f x=x x+3 e^{-x / 2}$ in $[-3,0]$

Section-B

II. Short Answer Questions. Answer any 'Five' Questions.

Each Question carries 'Four' marks.
11) If $\mathrm{A}(2,3)$ and $\mathrm{B}(-3,4)$ are two points. Find the locus of P so that the area of triangle PAB is 8.5 sq uints.
12) When the axis are rotated through an angle $\frac{\pi}{6}$. Find the transformed equation of $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$
13. Find the orthocenter of the triangle whose vertices are $-5,-7,13,2$ and $-5,6$.
14. Find real constants a, b so that the function f given by $f x=\left\{\begin{array}{lll}\sin x & \text { if } \quad x \leq 0 \\ x^{2}+a & \text { if } & 0<x<1 \\ b x+3 & \text { if } & 1 \leq x \leq 3 \\ -3 & \text { if } & x>3\end{array}\right.$ is continuous on R
15. Find the derivative of $\sin 2 x$ from the first principle.
16. The volume of a cube is increasing at a rate of 9 cubic centimeters per second. How fast is the surface area increasing when the length of the edge is 10 centimeters?
17. Show that the curves $y^{2}=4 x+1$ and $y^{2}=369-x$ intersect orthogonally.

Section-C

III. Long Answer Questions. Answer any 'Five' Questions. Each Question carries 'Seven' marks.
18. If $Q h, k$ is the foot of the perpendicular from $P x_{1}, y_{1}$ on the straight line $a x+b y+c=0$ then show that $h-x_{1}: a=k-y_{1}: b=-a x_{1}+b y_{1}+c: a^{2}+b^{2}$
19. Find the lines joining the origin to the points of intersection of the curve $7 x^{2}-4 x y+8 y^{2}+2 x-4 y-8=0$ with the line $3 x-y-2=0$ and also the angle between them
20) Show that the pair of lines $3 x^{2}+8 x y-3 y^{2}=0$ and $3 x^{2}+8 x y-3 y^{2}+2 x-4 y-1=0$ form a square
21. Find the angle between the lines whose direction cosines are given by the equations $3 l+m+5 n=0$ and $6 m m-2 n l+5 l m=0$.
22. If $y=\operatorname{Tan}^{-1}\left[\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right]$ for $0<|x|<1$, find $\frac{d y}{d x}$.
23. If the tangent at any point on the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ intersects the coordinate axes in A and B, then show that the length $A B$ is a constant.
24) If the curved surface of right circular cylinder inscribed in a sphere of radius r in maximum. Show that the height of cylinder in $\sqrt{2} r$

