JUNIOR INTER		MATHS-1B	Max. Marks :75
www.sakshieducation.com			
I.	I. Very Short Answer Questions. Answer all Questions. Each Question carries' Two' marks		ns. 10x2=20M
1.	Find the equation of the straight line whose distance from the origin is 4, if the normal ray		
	from the origin to	the straight line makes an angle of	135° with the positive direction of the
	X-axis.		
2.	Find the value of k, if the angle between the straight lines $4x - y + 7 = 0$ and $kx - 5y - 9 = 0$		
	45°.		G
3.	Find the in centre	e of the triangle formed by the point	s 0,0,0 , 3,0,0 and 0,4,0 .
4.	Find the equation to the plane parallel to ZX – plane and passing through 0,4,4.		
5.	Compute $\lim_{x\to 0} \frac{\sin}{x\to 0}$	$\frac{\pi\cos^2 x}{x^2}$	2
6.	Compute $\lim_{x\to\infty} \frac{11x}{13x}$	$\frac{x^3 - 3x + 4}{3 - 5x^2 - 7}$	
7)	If $f = 7^{x^3+3x}$ $x > 0$ then find $f' = x$		
8)	If $y = ae^{nx} + be^{-nx}$ then prove that $y'' = n^2 y$ Find the prove that $y'' = n^2 y$		
9) 10)	Find dy and δy of $y = f$ $x = x^2 + x$ at $x = 10$ when $\delta x = 0.1$		
10)	verify the Roll's	theorem for $f(x) = x + 3 e^{-x}$ in	[-3,0]
		Section-B	
II.	Short Answer Q	uestions. Answer any 'Five' Ques	stions.
	Each Question c	arries 'Four' marks.	5 x4 =20 M
11)	If A(2,3) and B(- 8.5 sq uints.	3,4) are two points. Find the locus of	of P so that the area of triangle PAB is
12)	When the axis are	e rotated through an angle $\frac{\pi}{6}$. Find	the transformed equation of
1	$x^2 + 2\sqrt{3}xy - y^2 =$	$2a^2$	
13.	Find the orthocer	nter of the triangle whose vertices a	e -5, -7, 13, 2 and $-5, 6$.
SEC: JR.ICON Page 1			
www.sakshieducation.com			

14. Find real constants *a*, *b* so that the function f given by $f(x) = \begin{cases} \sin x & \text{if } x \le 0 \\ x^2 + a & \text{if } 0 < x < 1 \end{cases}$ is $bx + 3 & \text{if } 1 \le x \le 3 \\ -3 & \text{if } x > 3 \end{cases}$

continuous on R

- 15. Find the derivative of $\sin 2x$ from the first principle.
- 16. The volume of a cube is increasing at a rate of 9 cubic centimeters per second. How fast is the surface area increasing when the length of the edge is 10 centimeters?
- 17. Show that the curves $y^2 = 4 x + 1$ and $y^2 = 36 9 x$ intersect orthogonally.

Section-C

- III. Long Answer Questions. Answer any 'Five' Questions. Each Question carries 'Seven' marks.
- 18. If Q h,k is the foot of the perpendicular from P x_1, y_1 on the straight line ax + by + c = 0then show that $h - x_1 : a = k - y_1 : b = -ax_1 + by_1 + c : a^2 + b^2$
- 19. Find the lines joining the origin to the points of intersection of the curve $7x^2 4xy + 8y^2 + 2x 4y 8 = 0$ with the line 3x y 2 = 0 and also the angle between them
- 20) Show that the pair of lines $3x^2 + 8xy 3y^2 = 0$ and $3x^2 + 8xy 3y^2 + 2x 4y 1 = 0$ form a square
- 21. Find the angle between the lines whose direction cosines are given by the equations 3l + m + 5n = 0 and 6mm 2nl + 5lm = 0.

22. If
$$y = Tan^{-1} \left[\frac{\sqrt{1+x^2} + \sqrt{1-x^2}}{\sqrt{1+x^2} - \sqrt{1-x^2}} \right]$$
 for $0 < |x| < 1$, find $\frac{dy}{dx}$.

- 23. If the tangent at any point on the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ intersects the coordinate axes in A and B, then show that the length AB is a constant.
- 24) If the curved surface of right circular cylinder inscribed in a sphere of radius r in maximum. Show that the height of cylinder in $\sqrt{2}r$

5 x7 = 35 M