MATHEMATICS PAPER IB

COORDINATE GEOMETRY (2D \&3D) AND CALCULUS.

TIME : 3hrs
Max. Marks. 75
Note: This question paper consists of three sections A, B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS. $10 \mathrm{X} 2=20$

1. Show that the straight lines $(a-b) x+(b-c) y=c-a,(b-c) x+(c-a) y=(a-b)$ and $(c-a) x+(a-b) y b-c$ are concurrent.
2. Find the angle between the following straight lines $y=-\sqrt{3} x+5, y=\frac{1}{\sqrt{3}} x-\frac{2}{\sqrt{3}}$
3. Find the coordinates of the vertex C of $\triangle \mathrm{ABC}$ if its centroid is the origin and the vertices A, B are $(1,1,1)$ and $(-2,4,1)$ respectively.
4. Find the equation of the plane passing through the point $(1,1,1)$ and parallel to the plane
$x+2 y+3 z-7=0$.
5. Compute $\underset{x \rightarrow 0}{L t} \frac{a^{x}-1}{b^{x}-1} a>0, b>0, b \neq 1$.
6. $\underset{x \rightarrow 0}{\operatorname{Lt}}\left[\frac{3^{x}-1}{\sqrt{1+x}-1}\right]$
7. $y=\log \tan 5 x$ find $\frac{d y}{d x}$.
8. If $y=\cot ^{-1} \operatorname{cosec} 3 x$ find $\frac{d y}{d x}$.
9. Find approximate value of $\sqrt[3]{\mathbf{7 . 8}}$
10. Verify Rolle's theorem for the following functions. $\mathrm{x}^{2}-1$ on $[-1,1]$

SECTION B
 SHORT ANSWER TYPE QUESTIONS.
 ANSWER ANY FIVE OF THE FOLLOWING
 $5 \mathrm{X} 4=20$

11. Find the equation of locus of a point, the difference of whose distances from $(-$ $5,0)$ and $(5,0)$ is 8 units.
12. Show that the axes are to be rotated through an angle of $\frac{1}{2} \operatorname{Tan}^{-1}\left(\frac{2 h}{a-b}\right)$ so as to removethexy term from the equation $a x^{2}+2 h x y+b y^{2}=0$, if $a \neq b$ and through the angle $\frac{\pi}{4}$, if $\mathrm{a}=\mathrm{b}$
13. Line L has intercepts a and b on the axes of co-ordinates. When the axes are rotated through a given angle, keeping the origin fixed, the same line L has intercepts p and q on the transformed axes. Prove that $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}$.
14. Evaluate ${ }^{L t \rightarrow a}\left[\frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a}+x-2 \sqrt{x}}\right]$
15. find the derivative of the function $f x=\cos ^{2} x$ from first principle.
16. Find the value of k so that the length of the sub-normal at any point on the curve $\mathbf{x} \cdot \mathbf{y}^{\mathbf{k}}=\mathbf{a}^{\mathbf{k + 1}}$ is constant.
17. The volume of a cube is increasing at the rate of $8 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the surface area increasing when the length of an edge is 12 cm ?

SECTION C

LONG ANSWER TYPE QUESTIONS. ANSWER ANY FIVE OF THE FOLLOWING

$$
5 \times 7=35
$$

18. Find the equation of the straight lines passing through the point $(-3,2)$ and making an angle of 45° with the straight line $3 x-y+4=0$.
19. The product of the perpendiculars from $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ to the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{a-b^{2}+4 h^{2}}}$
20. Show that the straight lines represented by $3 x^{2}+48 x y+23 y^{2}=0$ and $3 x-2 y$ $+13=0$ form an equilateral triangle of area $\frac{13}{\sqrt{3}}$ sq. units.
21. The vertices of a triangle are $\mathrm{A}(1,4,2), \mathrm{B}(-2,1,2) \mathrm{C}(2,3,-4)$. Find $\lfloor A, \underline{B}, \mid C$
22. If $y=\operatorname{Tan}^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)$ for $0<|x|<1$, find $\frac{d y}{d x}$.
23. Find the angle between the curves

$$
x+y+2=0 ; x^{2}+y^{2}-10 y=0
$$

24. Find the point on the graph $\mathrm{y}^{2}=\mathrm{x}$ which is the nearest to the point $(4,0)$.

SOLUTIONS

SECTION A

1. Show that the straight lines $(a-b) x+(b-c) y=c-a,(b-c) x+(c-a) y=(a-b)$ and $(c-a) x+(a-b) y b-c$ are concurrent.
Sol. Equations of the given lines are

$$
\begin{aligned}
& L_{1}=(a-b) x+(b-c) y-c+a=0---(1) \\
& L_{2}=(b-c) x+(c-a) y-a+b=0---(2) \\
& L_{3}=(c-a) x+(a-b) y-b+c=0---(3)
\end{aligned}
$$

If three lines L_{1}, L_{2}, L_{3} are concurrent, then there exists non zero real numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}$, such that $\lambda_{1} \mathrm{~L}_{1}+\lambda_{2} \mathrm{~L}_{2}+\lambda_{3} \mathrm{~L}_{3}=0$.
Let $\lambda_{1}=1, \lambda_{2}=1, \lambda_{3}=1$, then $1 . \mathrm{L}_{1}+1 . \mathrm{L}_{2}+1 . \mathrm{L}_{3}=0$

Hence the given lines are concurrent.
2. Find the angle between the following straight lines

$$
y=-\sqrt{3} x+5, y=\frac{1}{\sqrt{3}} x-\frac{2}{\sqrt{3}}
$$

Sol. slope of $1^{\text {st }}$ line is $m_{1}=-\sqrt{3}$
Slope of $2^{\text {nd }}$ line is $\mathrm{m}_{2}=\frac{1}{\sqrt{3}} . \quad \mathrm{m}_{1} \mathrm{~m}_{2}=-\sqrt{3} \frac{1}{\sqrt{3}}=-1$.
The lines are perpendicular $\theta=\frac{\pi}{2}$
3. Find the coordinates of the vertex C of $\triangle \mathrm{ABC}$ if its centroid is the origin and the vertices A, B are $(1,1,1)$ and $(-2,4,1)$ respectively.

Sol. $\quad A(1,1,1), B(-2,4,1)$ and (x, y, z) are the vertices of $\triangle A B C$.
G is the centroid of $\triangle A B C$
Coordinates of G are :

$$
\begin{aligned}
& \left(\frac{1-2+x}{3}, \frac{1+4+y}{3}, \frac{1+1+z}{3}\right)=(0,0,0) \\
& \frac{x-1}{3}=0, \frac{y+5}{3}=0, \frac{z+2}{3}=0 \\
& x-1=0, y+5=0, z+2=0 \\
& x=1, y=-5, z=-2
\end{aligned}
$$

\therefore Coordinates of c are $(1,-5,-2)$.
4. Find the equation of the plane passing through the point $(1,1,1)$ and parallel to the plane

$$
x+2 y+3 z-7=0
$$

Sol. Equation of the given plane is

$$
x+2 y+3 z-7=0
$$

Equation of the parallel plane is

$$
x+2 y+3 z=k
$$

This plane passing through the point $\mathrm{P}(1,1,1)$

$$
\Rightarrow 1+2+3=\mathrm{k} \Rightarrow \mathrm{k}=-6
$$

Equation of the required plane is

$$
x+2 y+3 z=6
$$

5. Compute $\underset{x \rightarrow 0}{L t} \frac{a^{x}-1}{b^{x}-1} a>0, b>0, b \neq 1$.

Sol : For $x \neq 0, \frac{a^{x}-1}{b^{x}-1}=\frac{\left[\frac{a^{x}-1}{x}\right]}{\left[\frac{b^{x}-1}{x}\right]}$

$$
\underset{x \rightarrow 0}{L t} \frac{a^{x}-1}{b^{x}-1}=\frac{\underset{x \rightarrow 0}{L t} \frac{a^{x}-1}{x}}{\underset{x \rightarrow 0}{L t} \frac{b^{x}-1}{x}}=\frac{\log _{e}^{a}}{\log _{e}^{b}}
$$

6. $\underset{x \rightarrow 0}{\operatorname{Lt}}\left[\frac{3^{x}-1}{\sqrt{1+x}-1}\right]$

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{3^{x}-1}{\sqrt{1+x}-1}
$$

Sol $:=\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{3^{x}-1}{\sqrt{1+x}-1} \times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1}$ rationalise Dr .
$=\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{3^{x}-1 \sqrt{1+x}+1}{1+x-1}$
$=\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{3^{x}-1}{x} \cdot \underset{x \rightarrow 0}{\operatorname{Lt}} \sqrt{1+x}+1$

$$
=\log 3 \sqrt{1+0}+1=2 \cdot \log 3
$$

7. $y=\log \tan 5 x$ find $\frac{d y}{d x}$.
sol :

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x} \log \tan 5 x=\frac{1}{\tan 5 x} \frac{d}{d x} \tan 5 x \\
& =\frac{5 \sec ^{2} 5 x}{\tan 5 x}=5 \cdot \frac{1}{\cos ^{2} 5 x \cdot \frac{\sin 5 x}{\cos 5 x}} \\
& =\frac{10}{2 \sin 5 x \cdot \cos 5 x} \\
& =\frac{10}{\sin 10 x}=10 \cdot \cos e c 10 x
\end{aligned}
$$

8. If

$$
y=\cot ^{-1} \operatorname{cosec} 3 x \text { find } \frac{d y}{d x}
$$

sol : $\frac{d y}{d x}=\frac{d}{d x} \cot ^{-1} \operatorname{cosec} 3 x$

$$
\begin{aligned}
& =-\frac{1}{1+\operatorname{cosec}^{2}} \cdot \frac{d}{d x} \operatorname{cosec} 3 x \\
& =-\frac{1}{1+\operatorname{cosec} 3 x}-\operatorname{cosec} 3 x \cdot \cot 3 x \frac{d}{d x} 3 x=\frac{3 \cdot \operatorname{cosec} 3 x \cdot \cot 3 x}{1+\operatorname{cosec}^{2} 3 x}
\end{aligned}
$$

9. Find approximate value of $\sqrt[3]{7.8}$

Sol: Let $\mathrm{x}=8, \Delta \mathrm{x}=-0.2, \mathrm{f}(\mathrm{x})=\sqrt[3]{\mathrm{x}}$

$$
\begin{aligned}
& f(x+\delta x)=f x+f^{1} x \delta x \\
& =\sqrt[3]{\mathrm{x}}+\frac{1}{3} \mathrm{x}^{-\frac{2}{3}} \cdot \Delta x=\sqrt[3]{8}+\frac{1}{3.8^{\frac{2}{3}}}-0.2
\end{aligned}
$$

$$
=2-0.0166=1.9834
$$

10. Verify Rolle's theorem for the following functions. $\mathrm{x}^{2}-1$ on $[-1,1]$

Sol. Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-1$
f is continuous on $[-1,1]$
since $f(-1)=f(1)=0$ and
f is differentiable on $[-1,1]$
\therefore By Rolle's theorem $\exists \mathrm{c} \in(-1,1)$
Such that $\mathrm{f}^{\prime}(\mathrm{c})=0$
$\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}=0$
$\therefore=\mathrm{f}^{\prime}(\mathrm{c})=0$
$2 \mathrm{c}=0 \Rightarrow \mathrm{c}=0$
The point $\mathrm{c}=0 \in(-1,1)$
Then Rolle's theorem is verified.

SECTION B

11. Find the equation of locus of a point, the difference of whose distances from ($5,0)$ and $(5,0)$ is 8 units.
Sol. Given points are $\mathrm{A}(5,0), \mathrm{B}(-5,0)$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point in the locus
Given $|\mathrm{PA}-\mathrm{PB}|=8$
$\Rightarrow \mathrm{PA}-\mathrm{PB}= \pm 8$
$\Rightarrow \mathrm{PA}= \pm 8+\mathrm{PB}$
Squaring on both sides

$$
\mathrm{PA}^{2}=64+\mathrm{PB}^{2} \pm 16 \mathrm{~PB}
$$

$\Rightarrow(\mathrm{x}-5)^{2}+\mathrm{y}^{2}-(\mathrm{x}+5)^{2}-\mathrm{y}^{2}-64= \pm 16 \mathrm{~PB}$
$-4 \cdot 5 \cdot \mathrm{x}-64= \pm 16 \mathrm{~PB}$
$-5 \mathrm{x}-16= \pm 4 \mathrm{~PB}$
Squaring on both sides

$$
\begin{aligned}
25 x^{2}+256 & +160 x=16(P B)^{2} \\
& =16\left[(x+5)^{2}+y^{2}\right] \\
& =16 x^{2}+400+160 x+16 y^{2}
\end{aligned}
$$

$9 x^{2}-16 y^{2}=144$
Dividing with 144 , locus of P is

$$
\frac{9 x^{2}}{144}-\frac{16 y^{2}}{144}=1 \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{9}=1
$$

12. Show that the axes are to be rotated through an angle of $\frac{1}{2} \operatorname{Tan}^{-1}\left(\frac{2 h}{a-b}\right)$ so as to removethexy term from the equation $a x^{2}+2 h x y+b y^{2}=0$, if $a \neq b$ and through the angle $\frac{\pi}{4}$, if $\mathrm{a}=\mathrm{b}$
Sol: Given equation is $a x^{2}+2 h x y+b y^{2}=0$
Since the axes are rotated through an angle θ, then $x=X \cos \theta-Y \sin \theta$, $y=X \sin \theta+Y \cos \theta$

Now the transformed equation is
$a X \cos \theta-Y \sin \theta^{2}+2 h \quad X \cos \theta-Y \sin \theta \quad X \sin \theta+Y \cos \theta+b X \sin \theta+Y \cos \theta^{2}=0$
$\Rightarrow a X^{2} \cos ^{2} \theta+Y^{2} \sin ^{2} \theta-2 X Y \cos \theta \sin \theta+2 h\left[X^{2} \cos \theta \sin \theta+X Y \cos ^{2} \theta-\sin ^{2} \theta-Y^{2} \sin \theta \mathrm{cc}\right.$ $+b X^{2} \sin ^{2} \theta+Y^{2} \cos ^{2} \theta+2 X Y \cos \theta \sin \theta=0$
$\Rightarrow \quad$ It is in the form
$A X^{2}+2 X Y\left[-a \cos \theta \sin \theta+h \cos ^{2} \theta-\sin ^{2} \theta+b \cos \theta \sin \theta\right]+B Y^{2}=0$
Since XY term is to be eliminated, $b-a \cos \theta \sin \theta+h \cos ^{2} \theta-\sin ^{2} \theta=0$
$\Rightarrow 2 h \cos 2 \theta=2 a-b \sin \theta \cos \theta=a-b \sin 2 \theta--\cdots-------(1)$
$\Rightarrow \tan 2 \theta=\frac{\sin 2 \theta}{\cos 2 \theta}=\frac{2 h}{a-b}$
\Rightarrow Angle of rotation $\theta=\frac{1}{2} \operatorname{Tan}^{-1}\left(\frac{2 h}{a-b}\right)$
If $\mathrm{a}=\mathrm{b}$, then from (1),$\Rightarrow 2 h \cos 2 \theta=0 \Rightarrow \cos 2 \theta=0 \Rightarrow 2 \theta=\frac{\pi}{2} \Rightarrow \theta=\frac{\pi}{4}$
13. Line L has intercepts a and b on the axes of co-ordinates. When the axes are rotated through a given angle, keeping the origin fixed, the same line L has intercepts p and q on the transformed axes. Prove that $\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}$.
Sol. Equation of the line in the old system in intercept form is
$\frac{x}{a}+\frac{y}{b}=1 \Rightarrow \frac{x}{a}+\frac{y}{b}-1=0$

Length of the perpendicular form origin $=\frac{|0+0-1|}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}--(1)$
Equation of the line in the new system in intercept form is
$\frac{x}{p}+\frac{y}{q}=1 \Rightarrow \frac{x}{p}+\frac{y}{q}-1=0 \quad$ Length of the perpendicular $=\frac{|0+0-1|}{\sqrt{\frac{1}{p^{2}}+\frac{1}{q^{2}}}}$ form origin

Since the position of origin and the given line remain unchanged ,perpendicular distances in both the systems are same.

$$
\begin{aligned}
& \frac{1}{\sqrt{\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}}}=\frac{1}{\sqrt{\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}}} \Rightarrow \frac{1}{\left(\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}\right)}=\frac{1}{\left(\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}}\right)} \\
& \Rightarrow \frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}=\frac{1}{\mathrm{p}^{2}}+\frac{1}{\mathrm{q}^{2}} \\
& \text { 14. } \quad L_{x \rightarrow a}\left[\frac{\sqrt{a+2 x}-\sqrt{3 x}}{\sqrt{3 a}+x-2 \sqrt{x}}\right]
\end{aligned}
$$

Sol. Rationalize both nr.and dr.

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow a} \frac{\sqrt{a+2 x}-\sqrt{3 x} \sqrt{a+2 x}+\sqrt{3 x}}{\sqrt{a+2 x}+\sqrt{3 x}} \\
& \\
& \times \frac{\sqrt{3 a+x}+\sqrt{4 x}}{\sqrt{3 a+x}-\sqrt{4} x \sqrt{3 a}+x+\sqrt{4 x}} \\
& =\operatorname{Lt}_{x \rightarrow a} \frac{a+2 x-3 x}{\sqrt{a+2 x}+\sqrt{3 x}} \times \frac{\sqrt{3 a+x+\sqrt{4 x}}}{3 a+x-4 x}=\operatorname{Lt}_{x \rightarrow a} \frac{a-x \sqrt{3 a+x}+\sqrt{4 x}}{\sqrt{a+2 x}+\sqrt{3 x} 3 a-x} \\
& \quad=\frac{22 a}{2 \sqrt{3 a} 3}=\frac{2}{3 \sqrt{3}}
\end{aligned}
$$

15. $f x=\cos ^{2} x$
sol : $f^{1} x=\underset{h \rightarrow 0}{L t} \frac{f x+h-f x}{h}$
$f^{1} x=\underset{h \rightarrow 0}{L t} \frac{\cos ^{2} x+h-\cos ^{2} x}{h}$
$=\underset{h \rightarrow 0}{L t} \frac{-\cos ^{2} x-\cos ^{2} x+h}{h}$
$=\underset{h \rightarrow 0}{L t} \frac{-\sin x+h+x \sin x+h-x}{h}$
$f^{\prime} x=\underset{h \rightarrow 0}{L t}-\sin 2 x+h \underset{h \rightarrow 0}{L t} \cdot \frac{\sin h}{h}$
$=-\sin 2 x .1=-\sin 2 x$
16. Find the value of k so that the length of the sub-normal at any point on the curve $x \cdot y^{k}=a^{k+1}$ is constant.
Sol: Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be a point on the curve.
Equation of the curve is $x \cdot y^{k}=a^{k+1}$.
Differentiating w.r.to \mathbf{x}
$x . k . y^{k-1} \frac{d y}{d x}+y^{k} \cdot 1=0 \Rightarrow \quad k \cdot x y^{k-1} \cdot \frac{d y}{d x}=-y^{k}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{y}^{\mathrm{k}}}{\mathrm{k} \cdot \mathrm{x} \cdot \mathrm{y}^{\mathrm{k}-1}}=-\frac{\mathrm{y}}{\mathrm{kx}}$
Length of the sub-normal $=\left|\boldsymbol{y}_{1} \boldsymbol{m}\right|=\left|\mathrm{y}_{1} \frac{-\mathrm{y}_{1}}{\mathrm{kx}_{1}}\right|=\frac{\mathrm{y}_{1}^{2}}{\mathrm{kx}_{1}}$
$=\frac{y_{1}^{2}}{k} \cdot \frac{y_{1}^{k}}{a^{k+1}}=\frac{y_{1}^{k+2}}{k \cdot a^{k+1}}$
Length of the sub-normal is constant at any point on the curve is independent of x_{1} and $\frac{y_{1}{ }^{k+2}}{k \cdot a^{k+1}}$ is independent of $\mathrm{y}_{1} \quad \Rightarrow \mathrm{k}+2=0 \Rightarrow \mathrm{k}=-2$
17. The volume of a cube is increasing at the rate of $8 \mathrm{~cm}^{3} / \mathrm{sec}$. How fast is the surface area increasing when the length of an edge is 12 cm ?
Sol. Suppose ' a ' is the edge of the cube and v be the volume of the cube.

$$
\begin{aligned}
& v=a^{3} \\
& \text { given } \frac{d v}{d t}=8 \mathrm{~cm}^{3} / \mathrm{sec} \\
& a=12 \mathrm{~cm}
\end{aligned}
$$

Surface area of cube $S=6 a^{2}$

$$
\begin{equation*}
\frac{\mathrm{ds}}{\mathrm{dt}}=12 \mathrm{a} \frac{\mathrm{da}}{\mathrm{dt}} \tag{2}
\end{equation*}
$$

From (1), $\frac{\mathrm{dv}}{\mathrm{dt}}=3 \mathrm{a}^{2} \frac{\mathrm{da}}{\mathrm{dt}}$

$$
8=3(144) \frac{\mathrm{da}}{\mathrm{dt}}
$$

$\frac{\mathrm{da}}{\mathrm{dt}}=\frac{8}{3(144)} \mathrm{cm} / \mathrm{s}$
$\frac{\mathrm{ds}}{\mathrm{dt}}=12 \mathrm{a} \frac{\mathrm{da}}{\mathrm{dt}}$

$$
=12(12) \frac{8}{3(144)}=144 \times \frac{8}{3(144)}=\frac{8}{3} \mathrm{~cm}^{2} / \mathrm{s}
$$

SECTION C

18. Find the equation of the straight lines passing through the point $(-3,2)$ and making an angle of 45° with the straight line $3 x-y+4=0$.
Sol. Given point $P(-3,2)$
Given line $3 x-y+4=0$
Slope $m_{1}=-\frac{a}{b}=3$

Let m be the slope of the required line.
Then $\tan 45^{\circ}=\frac{\mathrm{m}-3}{1+3 \mathrm{~m}}$

$$
\begin{aligned}
& \Rightarrow\left|\frac{\mathrm{m}-3}{1+3 \mathrm{~m}}\right|=1 \Rightarrow \frac{\mathrm{~m}-3}{1+3 \mathrm{~m}}=1 \\
& \Rightarrow \mathrm{~m}-3=1+3 \mathrm{~m} \Rightarrow 2 \mathrm{~m}=-4 \text { or } \mathrm{m}=-2 \\
& \Rightarrow \frac{\mathrm{~m}-3}{1+3 \mathrm{~m}}=-\Rightarrow \mathrm{m}-3=-1-3 \mathrm{~m} \\
& \Rightarrow 4 \mathrm{~m}=2 \Rightarrow \mathrm{~m}=1 / 2
\end{aligned}
$$

case (1) $\mathrm{m}=-2$ and point $(-3,2)$
Equation of the line is

$$
y-2=-2(x+3)=-2 x-6 \Rightarrow 2 x+y+4=0
$$

case (2) $\quad \mathrm{m}=\frac{1}{2}$, point $(-3,2)$
Equation of the line is

$$
y-2=\frac{1}{2}(x+3) \Rightarrow 2 y-4=x+3 \quad \Rightarrow x-2 y+7=0
$$

19. The product of the perpendiculars from $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ to the pair of lines $a x^{2}+2 h x y+b y^{2}=0$ is $\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|$ $\sqrt{a-b^{2}+4 h^{2}}$
Proof: Let $a x^{2}+2 h x y+b y^{2}=0$ represent the lines $l_{1} x+m_{1} y=0-$ (1) and $l_{2} x+m_{2} y=0-$ (2).
Then $l_{1} l_{2}=a, l_{1} m_{2}+l_{2} m_{1}=2 h, \mathrm{~m}_{1} \mathrm{~m}_{2}=\mathrm{b}$.
The lengths of perpendiculars from $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ to
the line (1) is $\mathrm{p}==\frac{\left|l_{1} \alpha+m_{1} \beta\right|}{\sqrt{l_{1}^{2}+m_{1}^{2}}}$
and to the line (2) is $q==\frac{\left|l_{2} \alpha+m_{2} \beta\right|}{\sqrt{l_{2}^{2}+m_{2}^{2}}}$
\therefore The product of perpendiculars is

$$
\begin{aligned}
& \mathrm{pq}=\left|\frac{l_{1} \alpha+m_{1} \beta}{\sqrt{l_{1}^{2}+m_{1}^{2}}}\right| \cdot\left|\frac{l_{2} \alpha+m_{2} \beta}{\sqrt{l_{2}^{2}+m_{2}^{2}}}\right| \\
& =\left|\frac{l_{1} l_{2} \alpha^{2}+\left(l_{1} m_{2}+l_{2} m_{1}\right) \alpha \beta+m_{1} m_{2} \beta^{2}}{\sqrt{l_{1}^{2} l_{2}^{2}+l_{1}^{2} m_{2}^{2}+l_{2}^{2} m_{1}^{2}+m_{1}^{2} m_{2}^{2}}}\right| \\
& =\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{\left(l_{1} l_{2}-m_{1} m_{2}\right)^{2}+2 l_{1} l_{2} m_{1} m_{2}+\left(l_{1} m_{2}+l_{2} m_{1}\right)^{2}-2 l_{1} m_{2} l_{2} m_{1}}}=\frac{\left|a \alpha^{2}+2 h \alpha \beta+b \beta^{2}\right|}{\sqrt{(a-b)^{2}+4 h^{2}}}
\end{aligned}
$$

20. Show that the straight lines represented by $3 x^{2}+48 x y+23 y^{2}=0$ and $3 x-2 y+13=0$ form an equilateral triangle of area $\frac{13}{\sqrt{3}}$ sq. units.
Sol. Equation of pair of lines is $3 x^{2}+48 x y+23 y^{2}=0$ \qquad
Equation of given line is $3 x-2 y+13=0$
\Rightarrow slope $=3 / 2$
\therefore the line (2) is making an angle of $\tan ^{-1} \frac{3}{2}$ with the positive direction of x -axis. Therefore no straight line which makes an angle of 60° with (2) is vertical.
Let m be the slope of the line passing through origin and making an angle of 60° with line (2).
$\therefore \tan 60^{\circ}=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \Rightarrow \sqrt{3}=\left|\frac{\frac{3}{2}-m}{1+\frac{3}{2} m}\right| \Rightarrow \sqrt{3}=\left|\frac{3-2 m}{2+3 m}\right|$
Squaring on both sides , $3=\frac{3-2 m^{2}}{2+3 m^{2}} \Rightarrow 23 m^{2}+48 m+3=0$, which is a quadratic equation in m.

Let the roots of this quadratic equation be $\mathrm{m}_{1}, \mathrm{~m}_{2}$, which are the slopes of the lines.
Now , $m_{1}+m_{2}=\frac{-48}{23}$ and $m_{1} \cdot m_{2}=\frac{3}{23}$.
The equation of the lines passing through origin and having slopes m_{1}, m_{2} are $m_{1} x$

$$
-\mathrm{y}=0 \text { and } \mathrm{m}_{2} \mathrm{x}-\mathrm{y}=0
$$

Their combined equation is $\quad\left(m_{1} x-y\right)\left(m_{2} x-y\right)=0$
$\Rightarrow m_{1} m_{2} x^{2}-m_{1}+m_{2} x y y^{2}=0$
$\Rightarrow \frac{3}{23} x^{2}-\left(-\frac{48}{23}\right) x y+y^{2}=0$
$\Rightarrow 3 x^{2}+48 x y+23 y^{2}=0$
Which is the given pair of lines.
Therefore, given lines form an equilateral triangle.

$$
\begin{aligned}
& \therefore \text { Area of } \Delta=\left|\frac{\mathrm{n}^{2} \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{am}^{2}-2 \mathrm{~h} / \mathrm{m}+\mathrm{b} l^{2}}\right|=\frac{169 \sqrt{576-69}}{\left|3-2^{2}-48.3-2+233^{2}\right|} \\
& =\frac{169 \sqrt{507}}{|12+288+207|}=\frac{169.13 \sqrt{3}}{507}=\frac{13 \sqrt{3}}{3}=\frac{13}{\sqrt{3}} \text { sq.units. }
\end{aligned}
$$

21. The vertices of a triangle are $\mathrm{A}(1,4,2), \mathrm{B}(-2,1,2) \mathrm{C}(2,3,-4)$. Find $\lfloor A,\lfloor B, \mid C$

Vertices of the triangle are $A 1,4,2, B-2,1,2, C 2,3,-4$
D.rs of $A B$ are $3,3,0$ i.e., $1,1,0$
D.rs of $B C$ are $-4,-2,5$ i.e., 2, 1, -3
D.rs of AC are $-1,1,6$
$\cos \left\lfloor A B C=\frac{|1.2+1.0+0-3|}{\sqrt{1+1} \sqrt{4+1+9}}=\frac{3}{\sqrt{28}}=\frac{3}{2 \sqrt{7}} \quad \therefore \underline{B}=\cos ^{-1}\left(\frac{3}{2 \sqrt{7}}\right)\right.$
$\cos \left\lfloor B C A=\frac{1-1+1.1+-36}{\sqrt{4+1+9} \sqrt{1+1+36}}=\frac{19}{\sqrt{19} \sqrt{28}}=\sqrt{\frac{19}{28}} \therefore\left\lfloor C=\cos ^{-1}\left(\sqrt{\frac{19}{28}}\right)\right.\right.$
$\cos \left\lvert\, C A B=\frac{|-1.1+1.1+6.0|}{\sqrt{1+1+36} \sqrt{1+1+0}}=0 \Rightarrow\lfloor A=\pi / 2\right.$
22. If $y=\operatorname{Tan}^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)$ for
$0<|x|<1$, find $\frac{d y}{d x}$.
Sol. Put $x^{2}=\cos 2 \theta$

$$
\begin{aligned}
& y=\operatorname{Tan}^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}\right) \\
&=\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}\right) \\
&=\tan ^{-1}\left(\frac{\cos \theta+\sin \theta}{\cos \theta-\sin \theta}\right) \\
&=\tan ^{-1}\left(\frac{1+\tan \theta}{1-\tan \theta}\right) \\
&=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+\theta\right)\right) \\
&=\frac{\pi}{4}+\theta \\
&=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(x^{2}\right) \\
& \frac{d y}{d x}=\frac{1}{2} \frac{(-1)}{\sqrt{1-x^{4}}} \times 2 x=\frac{-x}{\sqrt{1-x^{4}}}
\end{aligned}
$$

23. Find the angle between the curves $\quad \mathbf{x}+\mathbf{y}+\mathbf{2}=\mathbf{0} ; \mathbf{x}^{2}+\mathbf{y}^{2}-\mathbf{1 0 y}=\mathbf{0}$

Sol: $x+y+2=0 \Rightarrow x=-y+2---(1)$
Equation of the curve $x^{2}+y^{2}-10 y=0--(2)$
Solving 1 and 2, $\quad y+2^{2}+y^{2}-10 y=0 \Rightarrow y^{2}+4 y+4+y^{2}-10 y=0$

$$
\begin{aligned}
& \Rightarrow 2 y^{2}-6 y+4=0 \quad \Rightarrow y^{2}-3 y+2=0 \Rightarrow y+1 \quad y-2=0 \\
& \Rightarrow y=1 \text { or } y=2 \\
& x=-y+2 \\
& y=1 \Rightarrow x=-1+2=-3
\end{aligned}
$$

$$
y=2 \Rightarrow x=-2+2=-4
$$

The points of intersection are $\mathrm{P}-3,1$ and $\mathrm{Q}-4,2$,
equation of the curve is $x^{2}+y^{2}-10 y=0$
Differente $x^{2}+y^{2}-10 y=0$ w.r.to x.

$$
\Rightarrow 2 x+2 y \frac{d y}{d x}-10 \frac{d y}{d x}=0 \Rightarrow 2 \frac{d y}{d x} y-5=-2 x \Rightarrow \frac{d y}{d x}=-\frac{x}{y-5}
$$

Equation of the line is $x+y+2=0$
Slope is $\mathrm{m}_{2}=-1$.
Case (i):
\Rightarrow slope $m_{1}=\frac{d y}{d x}$ at $P=-\frac{-3}{1-5}=-\frac{3}{4}$ and Slope is $m_{2}=-1$.
Let θ be the angle between the curves, then $\tan \theta=\left|\frac{\boldsymbol{m}_{\mathbf{1}}-\boldsymbol{m}_{\mathbf{2}}}{\boldsymbol{1}+\boldsymbol{m}_{1} \boldsymbol{m}_{\mathbf{2}}}\right|$

$$
=\left|\frac{-\frac{3}{4}+1}{1+\frac{3}{4}}\right|=\frac{1}{7} \Rightarrow \theta=\tan ^{-1}\left(\frac{1}{7}\right)
$$

Case (ii):
\Rightarrow slope $m_{1}=\frac{d y}{d x}$ at $Q=-\frac{4}{2-5}=-\frac{4}{3}$ and Slope is $m_{2}=-1$.

$$
\begin{gathered}
\Rightarrow \boldsymbol{\operatorname { t a n }} \theta=\left|\frac{\boldsymbol{m}_{\mathbf{1}}-\boldsymbol{m}_{\mathbf{2}}}{\boldsymbol{1}+\boldsymbol{m}_{\mathbf{1}} \boldsymbol{m}_{\mathbf{2}}}\right|=\left|\frac{-\frac{4}{3}+1}{1+\frac{4}{3}}\right|=\frac{1}{7} \\
\Rightarrow \theta=\tan ^{-1}\left(\frac{1}{7}\right)
\end{gathered}
$$

24. Find the point on the graph $\mathrm{y}^{2}=\mathrm{x}$ which is the nearest to the point $(4,0)$. Sol.

$$
\begin{equation*}
\mathrm{D}=\sqrt{(\mathrm{x}-4)^{2}+(\mathrm{y}-0)^{2}} \tag{1}
\end{equation*}
$$

$P(x, y)$ lies on the curve, therefore

$$
\begin{equation*}
y^{2}=x \tag{2}
\end{equation*}
$$

from (1) and (2), we have

$$
\mathrm{D}=\sqrt{(\mathrm{x}-4)^{2}+\mathrm{x}}
$$

$$
\begin{equation*}
\mathrm{D}=\sqrt{\left(\mathrm{x}^{2}-7 \mathrm{x}+16\right)} \tag{3}
\end{equation*}
$$

Differentiating (3) w.r.t. x, we get

$$
\frac{\mathrm{dD}}{\mathrm{dx}}=\frac{2 \mathrm{x}-7}{2} \cdot \frac{1}{\sqrt{\mathrm{x}^{2}-7 \mathrm{x}+16}}
$$

Now $\frac{\mathrm{dD}}{\mathrm{dx}}=0$
Gives $x=7 / 2$. Thus $7 / 2$ is a stationary point of the function D . We apply the first derivative test to verify whether D is minimum at $x=7 / 2$
$\left(\frac{\mathrm{dD}}{\mathrm{dx}}\right)_{\mathrm{x}=3}=-\frac{1}{2} \cdot \frac{1}{\sqrt{9-12+16}}$
and it is negative
$\left(\frac{\mathrm{dD}}{\mathrm{dx}}\right)_{\mathrm{x}=4}=\frac{1}{2} \cdot \frac{1}{\sqrt{16-28+16}}$
and it is positive
$\frac{d D}{d x}$ changes sign from negative to positive. Therefore, D is minimum at $x=7 / 2$. Substituting $x=7 / 2$ in (2) we have $\mathrm{y}^{2}=7 / 2$.
$\therefore \mathrm{y}= \pm \sqrt{\frac{7}{2}}$
Thus the points $\left(\frac{7}{2}, \sqrt{\frac{7}{2}}\right)$ and $\left(\frac{7}{2},-\sqrt{\frac{7}{2}}\right)$ are nearest to $A(4,0)$.

