MATHEMATICS PAPER IB

COORDINATE GEOMETRY(2D \&3D) AND CALCULUS.

TIME : 3hrs

Max. Marks. 75
Note: This question paper consists of three sections A, B and C. SECTION A

VERY SHORT ANSWER TYPE QUESTIONS. $10 \times 2=20$

1. Find the equation of the straight line passing through $(-4,5)$ and cutting off equal non- zero intercepts on the co- Ordinate axes.
2. Find the value of k, the straight lines $y-3 k x+4=0$ and $(2 k-1) x-(8 k-1)$ $y=6$ are perpendicular.
3. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedron, find the fourth vertex.
4. Verify the Rolle's theorem for the function $\left(x^{2}-1\right)(x-2)$ on $[-1,2]$. Find the point in the interval where the derivate vanishes.
5. Find the d.c.'s of the normal to the plane $x+2 y+2 z-4=0$.
6. Evaluate $\underset{x \rightarrow \frac{\pi}{2}}{\operatorname{Lt}} \frac{\cos x}{\left[x-\frac{\pi}{2}\right]}$
7. $\underset{x \rightarrow 0}{L t}\left[\frac{3^{x}-1}{\sqrt{1+x}-1}\right]$

Evaluate
8. Find the derivativie of $y=\cos \log \cot x$
9. Find the derivativie of Find the derivativie of $\tan ^{-1} \frac{a-x}{1+a x}$
10. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $\mathrm{t}=\mathbf{2 \pi} \sqrt{\frac{\mathbf{1}}{\mathbf{g}}}$ where g gravitational constant. Find the approximate percentage error in the calculated g, corresponding to an error of 0.01 percent is the value of t.

SECTION B

SHORT ANSWER TYPE QUESTIONS.
ANSWER ANY FIVE OF THE FOLLOWING

$$
5 \times 4=20
$$

11. Find the value of k, if the angle between the straight lines $4 x-y+7=0$ and $k x$ $-5 y-9=0$ is 45°.
12. A container is in the shape of an inverted cone has height 8 m and radius 6 m at the top. If it is filled with water at the rate of $2 \mathrm{~m}^{3} /$ minute, how fast is the height of water changing when the level is 4 m ?
13. If the transformed equation of a curve is $3 x^{2}+x y-y^{2}-7 x+y-7=0$ when the origin is shifted to the point $(1,2)$ by translation of axes, find the original equation of the curve.
14. Find the equation of locus of a point, the difference of whose distances from ($5,0)$ and $(5,0)$ is 8 units.
15. If f and g are two differentiable functions at x then the product function f . g is differentiable at x and $(f g)^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
16. Show that $f x\left\{\begin{array}{lll}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2} b^{2}-a^{2} & \text { if } x=0\end{array}\right.$

Where a and b are real constant, is continuous at 0 .
17. Find the length of normal and sub-normal at a point on the curve $y=\frac{a}{2} e^{x / a}+e^{-x / a}$.

SECTION C

LONG ANSWER TYPE QUESTIONS.
ANSWER ANY FIVE OF THE FOLLOWING
$5 \times 7=35$.
18. Find the circumcentre of the triangle whose sides are given by $x+y+2=0$, $5 x-y-2=0$ and $x-2 y+5=0$.
19. The area of triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=$ Oand $\boldsymbol{l x}+\boldsymbol{m} \boldsymbol{y}+\boldsymbol{n}=\mathbf{0}$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h \ell m+b \ell^{2}\right|}$
20. Write down the equation of the pair of straight lines joining the origin to the points of intersection of the lines $6 x-y+8=0$ with the pair of straight lines $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0$. Show that the lines so obtained make equal angles with the coordinate axes.
21. If $x^{y}=y^{x}$, show that $\frac{d y}{d x}=\frac{y x \log y-y}{x y \log x-x}$
22. Find the direction cosines of two lines which are connected by the relation $l-5 m+3 n=0$ and $7 l^{2}+5 m^{2}-3 n^{2}=0$
23. From a rectangular sheet of dimensions $30 \mathrm{~cm} \times 80 \mathrm{~cm}$ four equal squares of side xcm are removed at the corners and the sides are then tuned up so as to form an open rectangular box. What is the value of x, so that the volumes of the box is the greatest?
24. Find the angle between the curves $x y=2$ and $x^{2}+4 y=0$.

SOLUTIONS

1. Find the equation of the straight line passing through $(-4,5)$ and cutting off equal non- zero intercepts on the co- Ordinate axes.
Sol. Line is making equal intercepts, let the inter cepts be a,a
Equation of the line in the intercept from is

$$
\frac{x}{a}+\frac{y}{b}=1 \quad \Rightarrow \frac{x}{a}+\frac{y}{a}=1 \quad \Rightarrow x+y=a
$$

This line is passing through $p(-4,5) \Rightarrow-4+5=a \Rightarrow a=1$
Equation of the line is $x+y=1$
2. Find the value of k, the straight lines $y-3 k x+4=0$ and $(2 k-1) x-(8 k-1)$ $y=6$ are perpendicular.
Sol. Given lines are $-3 k x+y+4=0$
$(2 k-1) x-(8 k-1) y-6=0$
These lines are perpendicular $\Rightarrow a_{1} a_{2}+b_{1} b_{2}=0$

$$
\begin{aligned}
& \Rightarrow-3 \mathrm{k}(2 \mathrm{k}-1)-1(8 \mathrm{k}-1)=0 \Rightarrow-6 \mathrm{k}^{2}+3 \mathrm{k}-8 \mathrm{k}+1=0 \\
& 6 \mathrm{k}^{2}+5 \mathrm{k}-1=0 \Rightarrow(\mathrm{k}+1)(6 \mathrm{k}-1)=0 \\
& \mathrm{k}=-1 \text { or } 1 / 6
\end{aligned}
$$

3. If $(3,2,-1),(4,1,1)$ and $(6,2,5)$ are three vertices and $(4,2,2)$ is the centroid of a tetrahedron, find the fourth vertex.
Sol. $A(3,2,-1), B(4,1,1), C(6,2,5)$, let $\mathrm{D}=(\mathrm{x}, \mathrm{y}, \mathrm{z})$ are the vertices of the tetrahedron.
And centroid G $=(4,2,2)$
But $\mathrm{G}=\left(\frac{3+4+6+\mathrm{x}}{4}, \frac{2+1+2+\mathrm{y}}{4}, \frac{-1+1+5+\mathrm{z}}{4}\right)$

Therefore, $\quad\left(\frac{13+x}{4}, \frac{5+y}{4}, \frac{5+z}{4}\right)=(4,2,2)$

$$
\begin{aligned}
& \Rightarrow \frac{13+x}{4}=4, \frac{5+y}{4}=2, \frac{5+z}{4}=2 \\
& \Rightarrow 13+x=16,5+y=8,5+z=8 \\
& \Rightarrow x=3, y=3, z=3
\end{aligned}
$$

Coordinates of D are $(3,3,3)$
4. Verify the Rolle's theorem for the function $\left(x^{2}-1\right)(x-2)$ on $[-1,2]$. Find the point in the interval where the derivate vanishes.

Sol. Let $f(x)=\left(x^{2}-1\right)(x-2)=x^{3}-2 x^{2}-x+2$
f is continuous on $[-1,2]$
since $f(-1)=f(2)=0$ and
f is differentiable on $[-1,2]$
\therefore By Rolle's theorem $\exists \mathrm{c} \in(-1,2)$

Let $\mathrm{f}^{\prime}(\mathrm{c})=0$
$f^{\prime}(x)=3 x^{2}-4 x-1$
$3 c^{2}-4 c-1=0$
$c=\frac{4 \pm \sqrt{16+12}}{6}=\frac{4 \pm \sqrt{28}}{6}$
$\Rightarrow \mathrm{c}=\frac{2 \pm \sqrt{7}}{3}$
5. Find the d.c.'s of the normal to the plane $x+2 y+2 z-4=0$.

Sol. Equation of the plane is $x+2 y+2 z-4=0$
d.r.'s of the normal are $(1,2,2)$

Dividing with $\sqrt{1+4+4}=3$
d.c.'s of the normal to the plane are $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$.
6. Evaluate $\begin{gathered}\text { Lt } \\ x \rightarrow \frac{\pi}{2} \\ {\left[x-\frac{\pi}{2}\right]}\end{gathered}$

Sol : Let $y=x-\frac{\pi}{2}$ so that as $x \rightarrow \frac{\pi}{2}, y \rightarrow 0$ and $x=y+\frac{\pi}{2}$

$$
\begin{aligned}
& \therefore \operatorname{Lt}_{x \rightarrow \frac{\pi}{2}} \underset{x-\frac{\pi}{2}}{\cos x} \underset{y \rightarrow 0}{\operatorname{Lt}} \frac{\cos \frac{\pi}{2}+y}{y} \underset{y \rightarrow 0}{\operatorname{Lt}} \frac{-\sin y}{y}=-1 \\
& \quad \underset{x \rightarrow 0}{\operatorname{Lt}}\left[\frac{3^{x}-1}{\sqrt{1+x}-1}\right]
\end{aligned}
$$

7.

Evaluate
Sol : $\operatorname{Lt}_{x \rightarrow 0} \frac{3^{x}-1}{\sqrt{1+x}-1}=\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{3^{x}-1}{\sqrt{1+x}-1} \times \frac{\sqrt{1+x}+1}{\sqrt{1+x}+1}$ rationalise Dr .

$$
=\operatorname{Lt}_{x \rightarrow 0} \frac{3^{x}-1 \sqrt{1+x}+1}{1+x-1}=\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{3^{x}-1}{x} \cdot \operatorname{Lt}_{x \rightarrow 0} \sqrt{1+x}+1
$$

$$
=\log 3 \sqrt{1+0}+1=2 \cdot \log 3
$$

8. Find the derivativie of $y=\cos \log \cot x$
sol : $\frac{d y}{d x}=\frac{d}{d u} \cos \log \cot x$

$$
=-\sin \log \cot x \cdot \frac{1}{\cot x}-\operatorname{cosec}^{2} x
$$

$$
\begin{aligned}
& =\frac{1}{\sin ^{2} x} \cdot \frac{1}{\cos x} \cdot \sin \log \cot x \\
& =\frac{\sin \log \cot x \cdot \operatorname{cosec} x}{\cos x}
\end{aligned}
$$

9. Find the derivativie of Find the derivativie of $\tan ^{-1} \frac{a-x}{1+a x}$
sol : Put $a=\tan \alpha, x=\tan \theta$ then $\theta=\tan ^{-1} x$ and $\alpha=\tan ^{-1} a$

$$
\begin{aligned}
& y=\tan ^{-1} \frac{\tan \alpha-\tan \theta}{1+\tan \alpha \tan \theta} \\
& =\tan ^{-1} \tan \alpha-\theta=\alpha-\theta \\
& =\tan ^{-1} a-\tan ^{-1} x
\end{aligned}
$$

Differentiating with respect to x , we get

$$
\frac{d y}{d x}=0-\frac{1}{1+x^{2}}=-\frac{1}{1+x^{2}}
$$

10. The time t of a complete oscillation of a simple pendulum of length l is given by the equation $\mathrm{t}=2 \pi \sqrt{\frac{\mathbf{1}}{\mathrm{~g}}}$ where g gravitational constant. Find the approximate percentage error in the calculated g, corresponding to an error of 0.01 percent is the value of t.

Sol: percentage error in t is $\frac{\Delta \mathrm{t}}{\mathrm{t}} \times 100=0.01$
Given $\mathrm{t}=2 \pi \sqrt{\frac{1}{\mathrm{~g}}}$
Taking logs on both sides $\quad \log \mathrm{t}=\log (2 \pi)+\frac{1}{2}\{(\log (l)-\log g\}$

Taking differentials on both sides, $\quad \frac{1}{\mathrm{t}} \Delta \mathrm{t}=0+\frac{1}{2}\left\{\mathrm{o}-\frac{1}{\mathrm{~g}} . \Delta \mathrm{g}\right\}$
Multiplying with $100, \quad \frac{\Delta \mathrm{t}}{\mathrm{t}} \times 100=-\frac{1}{2} \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times 100$

$$
\rightarrow \frac{\Delta \mathrm{t}}{\mathrm{t}} \times 100=-\frac{1}{2} \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times 100 \quad \Rightarrow 0.001=-\frac{1}{2} \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times 100 \quad \Rightarrow \frac{\Delta \mathrm{~g}}{\mathrm{~g}} \times 100=-0.02
$$

\therefore Percentage error in $\mathrm{g}=-0.02$

SECTION B

ANSWER ANY 5 OF THE FOLLOWING.
 $5 \times 4=20$

11. Find the value of k, if the angle between the straight lines $4 x-y+7=0$ and $k x$ $-5 y-9=0$ is 45°.
Sol. $\quad \cos \theta=\frac{|4 \mathrm{k}+5|}{\sqrt{16+1} \sqrt{\mathrm{k}^{2}+25}}$

$$
\begin{aligned}
& \cos \theta=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \\
& \frac{1}{\sqrt{2}}=\frac{|4 \mathrm{k}+5|}{\sqrt{17} \sqrt{\mathrm{k}^{2}+25}}
\end{aligned}
$$

Squaring and cross multiplying

$$
\begin{aligned}
& 2(4 \mathrm{k}+5)^{2}=17\left(\mathrm{k}^{2}+25\right) \\
& 2\left(16 \mathrm{k}^{2}+40 \mathrm{k}+25\right)=17 \mathrm{k}^{2}+425 \\
& 32 \mathrm{k}^{2}+80 \mathrm{k}+50=17 \mathrm{k}^{2}+425 \\
& 15 \mathrm{k}^{2}+80 \mathrm{k}-375=0 \\
& 3 \mathrm{k}^{2}+16 \mathrm{k}-75=0 \\
& (\mathrm{k}-3)(3 \mathrm{k}+25)=0 \\
& \mathrm{k}=3 \text { or }-25 / 3
\end{aligned}
$$

12. A container is in the shape of an inverted cone has height 8 m and radius 6 m at the top. If it is filled with water at the rate of $2 \mathrm{~m}^{3} /$ minute, how fast is the height of water changing when the level is 4 m ?
Sol. $h=8 \mathrm{~m}=\mathrm{OC}$

$$
\mathrm{r}=6 \mathrm{~m}=\mathrm{AB}
$$

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=2 \mathrm{~m}^{3} / \mathrm{minute}
$$

$\triangle \mathrm{OAB}$ and OCD are similar angle then

$$
\begin{aligned}
& \frac{\mathrm{CD}}{\mathrm{AB}}=\frac{\mathrm{OC}}{\mathrm{OA}} \\
& \frac{\mathrm{r}}{6}=\frac{\mathrm{h}}{8} \Rightarrow \mathrm{r}=\mathrm{h} \frac{3}{4}
\end{aligned}
$$

Volume of cone $v=\frac{1}{3} \pi r^{2} h$
$\mathrm{v}=\frac{1}{3} \pi \mathrm{~h}^{2} \frac{9}{16} \mathrm{~h}$
$\mathrm{v}=\frac{3}{16} \pi \mathrm{~h}^{3}$
$\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{3}{16} \pi 3 \mathrm{~h}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} \because \mathrm{h}=16$
$2=\frac{3}{16} \pi 3(16) \frac{\mathrm{dh}}{\mathrm{dt}} \Rightarrow \frac{2}{9 \pi}=\frac{\mathrm{dh}}{\mathrm{dt}}$
13. If the transformed equation of a curye is $3 x^{2}+x y-y^{2}-7 x+y-7=0$ when the origin is shifted to the point $(1,2)$ by translation of axes, find the original equation of the curve.
Sol. Given transformed equation is
$3 x^{2}+x y-y^{2}-7 x+y-7=0$
New origin $=(\mathrm{h}, \mathrm{k})=(1,2)$
Let x, y be the old co-ordinates of X, Y
$\mathrm{X}=\mathrm{x}-\mathrm{h}=\mathrm{x}-1 \quad$ and $\quad \mathrm{Y}=\mathrm{y}-\mathrm{k}=\mathrm{y}-2$
Therefore, original equation of (1) is
$\Rightarrow 3 x-1^{2}+x-1 \quad y-2-y-2^{2}-7 x-1+y-2+7=0$
$\Rightarrow 3 x^{2}-2 x+1+x y-2 y-y+2-y^{2}-4 y+4-7 x-1+y-2+7=0$
$\Rightarrow 3 x^{2}-6 x+3+x y-2 x-y+2-y^{2}+4 y-4-7 x+7+y-2+7=0$
$\therefore 3 x^{2}+x y-y^{2}-15 x+4 y+13=0$ is the original equation.
14. Find the equation of locus of a point, the difference of whose distances from ($5,0)$ and $(5,0)$ is 8 units.
Sol. Given points are $\mathrm{A}(5,0), \mathrm{B}(-5,0)$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point in the locus
Given $|\mathrm{PA}-\mathrm{PB}|=8$
$\Rightarrow \mathrm{PA}-\mathrm{PB}= \pm 8$
$\Rightarrow \mathrm{PA}= \pm 8+\mathrm{PB}$
Squaring on both sides
$\mathrm{PA}^{2}=64+\mathrm{PB}^{2} \pm 16 \mathrm{~PB}$
$\Rightarrow(\mathrm{x}-5)^{2}+\mathrm{y}^{2}-(\mathrm{x}+5)^{2}-\mathrm{y}^{2}-64= \pm 16 \mathrm{~PB}$
$-4 \cdot 5 \cdot x-64= \pm 16 \mathrm{~PB}$
$-5 \mathrm{x}-16= \pm 4 \mathrm{~PB}$
Squaring on both sides

$$
\begin{aligned}
25 \mathrm{x}^{2}+256 & +160 \mathrm{x}=16(\mathrm{~PB})^{2} \\
= & 16\left[(\mathrm{x}+5)^{2}+\mathrm{y}^{2}\right] \\
= & 16 \mathrm{x}^{2}+400+160 \mathrm{x}+16 \mathrm{y}^{2} \\
9 \mathrm{x}^{2}-16 \mathrm{y}^{2} & =144
\end{aligned}
$$

Dividing with 144 , locus of P is

$$
\frac{9 x^{2}}{144}-\frac{16 y^{2}}{144}=1 \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{9}=1
$$

15. If f and g are two differentiable functions at x then the product function $f . g$ is differentiable at x and $(\mathrm{fg})^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})+\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}^{\prime}(\mathrm{x})$
Proof:
Since f and g are differentiable at x,therefore
$\mathrm{f}^{\prime}(\mathrm{x})$ and $\mathrm{g}^{\prime}(\mathrm{x})$ exist and
$\mathrm{f}^{\prime}(\mathrm{x})=\underset{h \rightarrow 0}{L t} \frac{f(x+h)-f(x)}{h}$
and $\underset{\substack{L t}}{ } \frac{g(x+h)-g(x)}{h}=\mathrm{g}^{\prime}(\mathrm{x})$
$\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{(f g)(x+h)-(f g)(x)}{h}=$
$=\operatorname{Lt}_{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}$
$=\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{1}{h}[f(x+h) \cdot g(x+h)-f(x) g(x+h)]+\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{1}{h}[f(x) g(x+h)-f(x) g(x)]$
$=\underset{h \rightarrow 0}{\operatorname{Lt}}\left[\frac{f(x+h)-f(x)}{h}\right] \underset{h \rightarrow 0}{\operatorname{Lt}} g(x+h)+\mathrm{f}(\mathrm{x}) . \underset{h \rightarrow 0}{\operatorname{Lt}}\left[\frac{g(x+h)-g(h)}{h}\right]$
$\therefore(\mathrm{fg})^{\prime}(\mathrm{x})=\mathrm{f}^{\prime}(\mathrm{x}) \mathrm{g}(\mathrm{x})+\mathrm{f}(\mathrm{x}) \mathrm{g}^{\prime}(\mathrm{x})$
16. Show that $f x \begin{cases}\frac{\cos a x-\cos b x}{x^{2}} & \text { if } x \neq 0 \\ \frac{1}{2} b^{2}-a^{2} & \text { if } x=0\end{cases}$

Where a and b are real constant, is continuous at 0 .
Sol : $\underset{x \rightarrow 0}{L t} f x=\underset{x \rightarrow 0}{L t} \frac{\cos a x-\cos b x}{x^{2}}$

$$
=\operatorname{Lt}_{x \rightarrow 0} \frac{2 \sin \frac{a+b x}{x} \sin \frac{b-a x}{2}}{x^{2}}
$$

$=2 \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sin a+b \frac{x}{2}}{x} \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\sin b-a \frac{x}{2}}{x}$
$=\frac{2 b+a}{2} \frac{b-a}{2}=\frac{b^{2}-a^{2}}{2}$
Given $f 0=\frac{b^{2}-a^{2}}{2} . \quad \therefore \operatorname{Lt}_{x \rightarrow 0} f x=f 0$
17. Find the length of normal and sub-normal at a point on the curve $y=\frac{a}{2} e^{x / a}+e^{-x / a}$.

Sol: Equation of the curve is $y=\frac{a}{2} e^{x / a}+e^{-x / a}=a \cdot \cosh \left(\frac{x}{a}\right)$
$\Rightarrow \frac{d y}{d x}=a \cdot \sinh \left(\frac{x}{a}\right) \frac{1}{a}=\sinh \frac{x}{a}=$ slope of tantent at any point $=m$
Length of the normal $\left|y_{1} \sqrt{1+m^{2}}\right| \quad=\left|a \cdot \cosh \frac{x}{a}\right| \sqrt{1+\sinh ^{2} \frac{x}{a}}$
$=a \cdot \cosh \frac{x}{a} \cdot \cosh \frac{x}{a}=a \cdot \cosh ^{2} \frac{x}{a}$
Length of the sub-normal $\left|y_{1} \boldsymbol{m}\right| \quad=\left|\mathrm{a} \cdot \cosh \left(\frac{\mathrm{x}}{\mathrm{a}}\right) \cdot \sinh \left(\frac{\mathrm{x}}{\mathrm{a}}\right)\right|$

$$
=\left|\frac{\mathrm{a}}{2}\left(2 \sinh \frac{\mathrm{x}}{\mathrm{a}} \cdot \cosh \frac{\mathrm{x}}{\mathrm{a}}\right)\right| \quad=\left|\frac{\mathrm{a}}{2} \cdot \sinh \frac{2 \mathrm{x}}{\mathrm{a}}\right|
$$

SECTION C

ANSWER ANY 5 OF THE FOLLOWING.

$$
5 \times 7=35
$$

18. Find the circumcentre of the triangle whose sides are given by $x+y+2=0$, $5 x-y-2=0$ and $x-2 y+5=0$.
Sol: Given lines are $\quad x+y+2=0$

Point of intersection of (1) and (2) is $A=0,-2$
Point of intersection of (2) and (3) is B=1,3
Point of intersection of (1) and (3) is $\mathrm{C}=-3,1$
Let $\mathrm{S}=\alpha, \beta$ the orthocentre of $\triangle \mathrm{ABC}$ then $\mathrm{SA}=\mathrm{SB}=\mathrm{SC}$
$\Rightarrow \mathrm{SA}^{2}=\mathrm{SB}^{2}=\mathrm{SC}^{2}$
$\Rightarrow \alpha-0^{2}+\beta+2^{2}=\alpha-1^{2}+\beta-3^{2}=\alpha+3^{2}+\beta-1^{2}$
$\Rightarrow \alpha^{2}+\beta^{2}+4 \beta+4=\alpha^{2}+\beta^{2}-2 \alpha-6 \beta+10$
$=\alpha^{2}+\beta^{2}+6 \alpha-2 \beta+10$
$S A S^{2}=S B^{2} \Rightarrow \alpha^{2}+\beta^{2}+4 \beta+4=\alpha^{2}+\beta^{2}-2 \alpha-6 \beta+10$
$\Rightarrow 2 \alpha+10 \beta-6=0 \Rightarrow \alpha+5 \beta-3=0$
$S A^{2}=S C^{2} \Rightarrow \alpha^{2}+\beta^{2}+4 \beta+4=\alpha^{2}+\beta^{2}+6 \alpha-2 \beta+10$
$\Rightarrow 6 \alpha-6 \beta+6=0 \Rightarrow \alpha-\beta+1=0$
From (4) and (5)

1

$\frac{\alpha}{5-3}=\frac{\beta}{-3-1}=\frac{1}{-1-5} \Rightarrow \frac{\alpha}{2}=\frac{\beta}{-4}=\frac{1}{-6}$
$\alpha=-\frac{2}{6}=-\frac{1}{3}$
$\beta=-\frac{4}{-6}=\frac{2}{3}$
\therefore Circumcentre $S=\left(-\frac{1}{3}, \frac{2}{3}\right)$
19. The area of triangle formed by the lines $a x^{2}+2 h x y+b y^{2}=$ Oand $\boldsymbol{x}+\boldsymbol{m} \boldsymbol{y}+\boldsymbol{n}=\mathbf{0}$ is $\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h \ell m+b \ell^{2}\right|}$
Let $a x^{2}+2 h x y+b y^{2}=0$ represent the lines $l_{1} x+m_{1} y=0-$ - (1) and $l_{2} x+m_{2} y=0-$ - (2). Then $l_{1} l_{2}=a, l_{1} m_{2}+l_{2} m_{1}=2 h, \mathrm{~m}_{1} \mathrm{~m}_{2}=\mathrm{b}$.

The given straight line is $\boldsymbol{l x}+\boldsymbol{m y} \boldsymbol{+} \boldsymbol{n}=\mathbf{0}$
 (3) Clearly (1) and (2) intersect at

 the origin.Let A be the point of intersection of (1) and (3). Then

$\begin{aligned} & \mathrm{x} \quad \mathrm{x}_{1} \mathrm{c}^{\mathrm{c}} \\ & \mathrm{~m}_{1} \\ & \mathrm{~m} \quad \mathrm{n} \quad l \\ & \frac{x}{m_{1} n-0}=\frac{y}{0-n l_{1}}=\frac{1}{l_{1} m-l m_{1}} \\ & x=\frac{m_{1} n}{l_{1} m-l m_{1}} \text { and } y=\frac{-n l_{1}}{l_{1} m-l m_{1}} \\ & \mathrm{~A}=\left(\frac{m_{1} n}{l_{1} m-l m_{1}}, \frac{l_{1} n}{l_{1} m-l m_{1}}\right)=\left(x_{1}, y_{1}\right) \\ & =\left(\frac{m_{2} n}{l_{2} m-l m_{2}}, \frac{-l_{2} n}{l_{2} m-l m_{2}}\right)=\left(x_{2}, y_{2}\right) \end{aligned}$		

The area of $\triangle O A B=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$
$=\frac{1}{2}\left|\left(\frac{m_{1} n}{l_{1} m-l m_{1}}\right)\left(\frac{-l_{2} n}{l_{2} m-l m_{2}}\right)-\left(\frac{m_{2} n}{l_{2} m-l m_{2}}\right)\left(\frac{-n l_{1}}{l_{1} m-l m_{1}}\right)\right|$
$\frac{1}{2}\left|\frac{l_{1} m_{2} n^{2}-l_{2} m_{1} n^{2}}{l_{1} m-l m_{1} \quad l_{2} m-l m_{2}}\right|$
$=\frac{n^{2}}{2}\left|\frac{\left(l_{1} m_{2}-l_{2} m_{1}\right)}{l_{1} l_{2} m^{2}-\left(l_{1} m_{2}+l_{2} m_{1}\right) l m+m_{1} m_{2} l^{2}}\right|=$
$=\frac{n^{2}}{2}\left|\frac{\sqrt{\left(l_{1} m_{2}+l_{2} m_{1}\right)^{2}-4 l_{1} m_{2} l_{2} m_{1}}}{a m^{2}-2 h l m+b l^{2}}\right|$
$=\frac{n^{2}}{2} \frac{\sqrt{4 h^{2}-4 a b}}{\left|a m^{2}-2 h l m+b l^{2}\right|}=\frac{n^{2} \sqrt{h^{2}-a b}}{\left|a m^{2}-2 h l m+b l^{2}\right|}$
20. Write down the equation of the pair of straight lines joining the origin to the points of intersection of the lines $6 x-y+8=0$ with the pair of straight lines $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0$. Show that the lines so obtained make equal angles with the coordinate axes.

Sol. Given pair of line is $3 x^{2}+4 x y-4 y^{2}-11 x+2 y+6=0 \ldots$ (1)
Given line is $6 x-y+8=0 \Rightarrow \frac{6 x-y}{-8}=1 \Rightarrow \frac{y-6 x}{8}=1----(2)$
Homogenising (1) w.r.t (2)

$$
\begin{aligned}
& 3 x^{2}+4 x y-4 y^{2}-11 x-2 y\left(\frac{y-6 x}{8}\right)+6\left(\frac{y-6 x}{8}\right)^{2}=0 \\
& 64\left[3 x^{2}+4 x y-4 y^{2}\right]-8\left[11 x y-66 x^{2}-2 y^{2}+12 x y\right]+6\left[y^{2}+36 x^{2}-12 x y\right]=0 \\
& \Rightarrow 936 x^{2}+256 x y-256 x y-234 y^{2}=0 \\
& \Rightarrow 468 x^{2}-117 y^{2}=0 \quad \Rightarrow 4 x^{2}-y^{2}=0---(3)
\end{aligned}
$$

is eq. of pair of lines joining the origin to the point of intersection of (1) and (2).

The eq. pair of angle bisectors of (3) is $h x^{2}-y^{2}-a-b x y=0$

$$
\Rightarrow 0 x^{2}-y^{2}-4-1 x y=0 \quad \Rightarrow x y=0
$$

$x=0$ or $y=0$ which are the eqs. is of co-ordinates axes
\therefore The pair of lines are equally inclined to the co-ordinate axes
21. If $x^{y}=y^{x}$, show that $\frac{d y}{d x}=\frac{y x \log y-y}{x y \log x-x}$
sol: Given $x^{y}=y^{x} ; \log x^{y}=\log y^{x}$
$y \log x=x \log y$
Differentiating w. r. to x
$\frac{d}{d x} y \log x=\frac{d}{d x} x \log y$
$y \cdot \frac{1}{x} \log x \cdot \frac{d y}{d x}=x \frac{1}{y} \cdot \frac{d y}{d x}+\log y$
$\therefore \log x \cdot \frac{d y}{d x}-\frac{x}{y} \cdot \frac{d y}{d x}=\log y-\frac{y}{x}$
$\left(\log x-\frac{x}{y}\right) \frac{d y}{d x}=\log y-\frac{y}{x}$
$\frac{y \log x-x}{y} \cdot \frac{d y}{d x}=\frac{x \log y-y}{x}$
$\frac{d y}{d x}=\frac{y x \log y-y}{x y \log x-x}$
22. Find the direction cosines of two lines which are connected by the relation $l-5 m+3 n=0$ and $7 l^{2}+5 m^{2}-3 n^{2}=0$
Sol. Given $l-5 m+3 n=0$

$$
\Rightarrow l=5 m-3 n-----1
$$

and
$7 l^{2}+5 m^{2}-3 n^{2}=0--2$
Substituting the value of l in (2)

$$
\begin{aligned}
& 75 m-3 n^{2}+5 m^{2}-3 n^{2}=0 \\
& \Rightarrow 725^{2}+9 n^{2}-30 m n+5 m^{2}-3 n^{2}=0 \\
& \Rightarrow 175 m^{2}+63 n^{2}-210 m n+5 m^{2}-3 n^{2}=0 \\
& \Rightarrow 180 m^{2}-210 m n+60 n^{2}=0 \\
& \Rightarrow 6 m^{2}-7 m n+2 n^{2}=0 \\
& \Rightarrow 3 m-2 n \quad 2 m-n=0
\end{aligned}
$$

Case (i) : $3 m_{1}=2 n_{1} \Rightarrow \frac{m_{1}}{2}=\frac{n_{1}}{3}$
Then $m_{1}=\frac{2}{3} n_{1}$
From $1 l_{1}=5 m_{1}-3 n_{1}=\frac{10}{3} n_{1}-3 n_{1}$

$$
\begin{aligned}
& =\frac{10 n_{1}-9 n_{1}}{3}=\frac{n_{1}}{3} \\
& \therefore \frac{l_{1}}{1}=\frac{m_{1}}{2}=\frac{n_{1}}{3}
\end{aligned}
$$

d.rs of the first line are $(1,2,3)$

Dividing with $\sqrt{1+4+9}=\sqrt{14}$
d.cs of the first line are $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$

Case (ii) $2 m_{2}=n_{2}$
From (1) $l_{2}-5 m_{2}+3 n_{2}=0$
$\Rightarrow l_{2}-5 m_{2}+6 m_{2}=0$
$\Rightarrow-l_{2}=m_{2}$
$\therefore \frac{l_{2}}{-1}=\frac{m_{2}}{1}=\frac{n_{2}}{2}$
d.rs of the second line are $-1,1,2$

Dividing with $\sqrt{1+1+4}=\sqrt{6}$
d.cs of the second line are $\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right)$
23. From a rectangular sheet of dimensions $30 \mathrm{~cm} \times 80 \mathrm{~cm}$ four equal squares of side xcm are removed at the corners and the sides are then tuned up so as to form an open rectangular box. What is the value of x, so that the volumes of the box is the greatest?
Sol: length of the sheet $=80$, breadth $=30$.
Side of the square $=x$
Length of the box $=80-2 \mathrm{x}=l$
Breadth of the box $=30-2 x=b$

Height of the box $=x=h$
Volume $=l \mathrm{bh}=80-2 \mathrm{x} \quad 30-2 \mathrm{x} . \mathrm{x}$
$=x 2400-200 x+4 x^{2}$
f $x=4 x^{3}-220 x^{2}+2400 x$
$\Rightarrow \mathrm{f}^{\prime} \mathrm{x}=12 \mathrm{x}^{2}-440 \mathrm{x}+2400$
$=4\left[3 \mathrm{x}^{2}-110 \mathrm{x}+600\right]$ and $f^{\prime \prime}=46 x-110$
For max $/ \min f^{\prime} x=0 \Rightarrow 3 x^{2}-110 x+600=0$
$\mathrm{x}=\frac{110 \pm \sqrt{12100-7200}}{6}$
$=\frac{110 \pm 70}{6}=\frac{180}{6}$ or $\frac{40}{6}=30$ or $\frac{20}{3}$
If $x=30, b=30-2 x=30-230=-30<0$
$\Rightarrow \mathrm{x} \neq 30$
$\therefore \mathrm{x}=\frac{20}{3}$
$f^{\prime \prime} x=24 x-440$
When $\mathrm{x}=\frac{20}{3}, \mathrm{f}^{\prime \prime} \mathrm{x}=24 \cdot \frac{20}{3}-440$
$=160-440=-280<0$
$\Rightarrow f(x)$ is maximum when $x=\frac{20}{3}$
Volume of the box is maximum when $x=\frac{20}{3} \mathrm{~cm}$.
24. Find the angle between the curves $x y=2$ and $x^{2}+4 y=0$.

Sol. Solving $x y=2$ and $x^{2}+4 y=0$

$$
y=\frac{-x^{2}}{4}
$$

But $x y=2$

$$
\begin{aligned}
& \Rightarrow x\left(\frac{-x^{2}}{4}\right)=2 \Rightarrow x^{3}=-8 \Rightarrow x=-2 \\
& y=\frac{-x^{2}}{4}=-\frac{4}{4}=-1
\end{aligned}
$$

Point of intersection is $\mathrm{P}(-2,-1)$

$$
\begin{aligned}
& x y=2 \Rightarrow y=\frac{2}{x} \\
& \frac{d y}{d x}=-\frac{2}{x^{2}} \\
& m_{1}=\left(\frac{d y}{d x}\right)_{P}=-\frac{2}{4}=-\frac{1}{2} \\
& x^{2}+4 y=0 \Rightarrow y=-\frac{x^{2}}{4} \\
& \frac{d y}{d x}=-\frac{2 x}{4}=-\frac{x}{2} \\
& m_{2}=\left(\frac{d y}{d x}\right)_{P}=\frac{-2}{-2}=1
\end{aligned}
$$

Let ϕ be the angle between the given curves
$\tan \phi=\left|\frac{\mathrm{m}_{1}-\mathrm{m}_{2}}{1+\mathrm{m}_{1} \mathrm{~m}_{2}}\right|=\left|\frac{-\frac{1}{2}-1}{1+\left(-\frac{1}{2}\right) 1}\right|=\left|\frac{-\frac{3}{2}}{\frac{1}{2}}\right|=3$
$\phi=\tan ^{-1}(3)$

