## MATHEMATICS PAPER IB

COORDINATE GEOMETRY (2D \&3D) AND CALCULUS.

## TIME : 3hrs

Max. Marks. 75
Note: This question paper consists of three sections $A, B$ and $C$. SECTION A

## VERY SHORT ANSWER TYPE QUESTIONS. 10X2 = 20

1.If the portion of a straight line intercepted between the axes of co-ordinates is bisected at ( $2 \mathrm{p}, 2 \mathrm{q}$ ), write the equation of the straight line.
2. Transform equation $(2+5 k) x-3(1+2 k) y+(2-k)=0$ into form $\mathrm{L}_{1}+\lambda \mathrm{L}_{2}=0$ and find the point of concurrency of the family of straight lines represented by the equation.
3. P is a variable point which moves such that $3 \mathrm{PA}=2 \mathrm{~PB}$. If $\mathrm{A}=(-2,2,3)$ and B $=(13,-3,13)$ prove that $P$ satisfies the equation $x^{2}+y^{2}+z^{2}+28 x-12 y+10 z-247=0$.
4. Show that the plane through $(1,1,1),(1,-1,1)$ and $(-7,-3,-5)$ is parallel to $y$ axis.
5. Check the continuity of f given by $f x=\left\{\begin{array}{ccc}\frac{x^{2}-9}{x^{2}-2 x-3} & \text { if } & 0<x<5 \text { and } x \neq 3 \\ 1.5 & \text { if } & x=3\end{array}\right.$ At the point 3.
6. Show that f , given by $f x=\frac{x-|x|}{x} x \neq 0$ is continuous on $R-0$.
7. If $y=a e^{n x}+b e^{-n x}$ then prove that $y^{\prime \prime}=n^{2} y$
8. find the derivative of $\sin \left[\tan ^{-1} e^{-x}\right]$
9. Find approximate value of $\sqrt{\mathbf{8 2}}$
10. It is given that Rolle's theorem holds for the function $f(x)=x^{3}+b x^{2}+a x$ on $[1,3]$ with $c=2 t+\frac{1}{\sqrt{3}}$. Find the values of $a$ and $b$.

## SECTION B

## SHORT ANSWER TYPE QUESTIONS.

ANSWER ANY FIVE OF THE FOLLOWING

$$
5 \times 4=20
$$

11. Find the equation of locus of P , if the line segment joining $(2,3)$ and $(-1,5)$ subtends a right angle at P .
12. When the axes are rotated through an angle $\frac{\pi}{4}$, find the transformed equation of

$$
3 x^{2}+10 x y+3 y^{2}=9
$$

13. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units form the point $(3,2)$.
14. $\underset{x \rightarrow 0}{L t}\left[\frac{1+x^{\frac{1}{8}}-1-x^{\frac{1}{8}}}{x}\right]$
15. A container is in the shape of an inverted cone has height 8 m and radius 6 m at the top. If it is filled with water at the rate of $2 \mathrm{~m}^{3} /$ minute, how fast is the height of water changing when the level is 4 m ?
16. Find the angle between the curve $2 y=e^{\frac{-x}{2}}$ and $y$-axis.
17.. If $x^{y}=e^{x-y}$, then show that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.

## SECTION C

LONG ANSWER TYPE QUESTIONS. ANSWER ANY FIVE OF THE FOLLOWING

$$
5 \times 7=35
$$

18. If $(h, k)$ is the image of $\left(x_{1}, y_{1}\right)$ w.r.t the line $a x+b y+c=0(a \neq 0, b \neq 0)$, then prove that $\frac{h-x_{1}}{a}=\frac{k-y_{1}}{b}=\frac{-2\left(x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}$.
19. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of intersecting lines, then show that the square of the distance of their point of intersection from the origin is $\frac{c(a+b)-f^{2}-g^{2}}{a b-h^{2}}$. Also show that the square of this distance is $\frac{f^{2}+g^{2}}{h^{2}+b^{2}}$ if the given lines are perpendicular.
20. Show that the straight lines $y^{2}-4 y+3=0$ and $x^{2}+4 x y+4 y^{2}+5 x+10 y+4=0$ from a parallelogram and find the lengths of its sides.
21. If a ray makes angle $\alpha, \beta, \gamma$ and $\delta$ with the four diagonals of a cube find $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta$
22. If $y=x \sqrt{a^{2}+x^{2}}+a^{2} \log x+\sqrt{x^{2}+a^{2}}$, show that $\frac{d y}{d x}=2 \sqrt{a^{2}+x^{2}}$
23. If the tangent at any point on the curve $\mathbf{x}^{2 / 3}+y^{2 / 3}=\mathbf{a}^{2 / 3}$ intersects the coordinate axes in $\mathrm{A}, \mathrm{B}$ show that the length AB is constant.
24. A window is in the shape of a rectangle surmounted by a semi-circle. If the perimeter of the window be 20 feet, find the maximum area.

## SOLUTIONS

1. If the portion of a straight line intercepted between the axes of co-ordinates is bisected at ( $2 \mathrm{p}, 2 \mathrm{q}$ ), write the equation of the straight line.
Sol. Let $\mathrm{a}, \mathrm{b}$ be the intercepts of the line and AB be the line segment between the axes.
Then points $\mathrm{A}=(\mathrm{a}, 0)$ and $\mathrm{B}=(0, \mathrm{~b})$
Equation of the line in the intercept form is $\frac{x}{a}+\frac{y}{b}=1$


Mid -point of $A B$ is $M=\left(\frac{a}{2}, \frac{b}{2}\right)=(2 p, 2 q)$ given
$\Rightarrow \frac{\mathrm{a}}{2}=2 \mathrm{p}, \frac{\mathrm{b}}{2}=2 \mathrm{q} \Rightarrow \mathrm{a}=4 \mathrm{p}, \mathrm{b}=4 \mathrm{q}$
Substituting in (1), $\quad \frac{x}{4 p}+\frac{y}{4 q}=1 \Rightarrow \frac{x}{p}+\frac{y}{q}=4$
2. Transform equation $(2+5 k) x-3(1+2 k) y+(2-k)=0$ into form
$\mathrm{L}_{1}+\lambda \mathrm{L}_{2}=0$ and find the point of concurrency of the family of straight lines represented by the equation.
Sol. Given equation is
$(2+5 \mathrm{k}) \mathrm{x}-3(1+2 \mathrm{k}) \mathrm{y}+(2-\mathrm{k})=0 \quad \Rightarrow(2 \mathrm{x}-3 \mathrm{y}+2)+\mathrm{k}(5 \mathrm{x}-6 \mathrm{y}-1)=0$
which is of the form $L_{1}+\lambda L_{2}=0$ where $L_{1}=2 x-3 y+2=0$ and $L_{2}=5 x-6 y-1=0$ therefore given equation represents a family of straight lines.
Solving above two lines,

$$
\begin{aligned}
& \mathrm{x} \\
& 3+12 \\
& =\frac{\mathrm{y}}{10+2}=\frac{1}{-12+15} \Rightarrow \mathrm{x}=\frac{15}{3}=5, \mathrm{y}=\frac{12}{3}=4
\end{aligned}
$$

The point of concurrency is $\mathrm{P}(5,4)$.
3. P is a variable point which moves such that $3 \mathrm{PA}=2 \mathrm{~PB}$. If $\mathrm{A}=(-2,2,3)$ and B $=$ -3 , 13) prove that $P$ satisfies the equation $x^{2}+y^{2}+z^{2}+28 x-12 y+10 z-247=0$.

Sol. Given points are :

$$
\mathrm{A}(-2,2,3) \text { and } \mathrm{B}=(13,-3,13)
$$

Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be any point on the locus.
Given condition is: $3 \mathrm{PA}=2 \mathrm{~PB}$

$$
\begin{aligned}
& \quad \Rightarrow 9 P^{2}=4 \text { PB }^{2} \\
& 9\left[(x+2)^{2}+(y-2)^{2}+(z-3)^{2}\right] \\
& \quad=4\left[(x-13)^{2}+(y+3)^{2}+(z-13)^{2}\right] \\
& \Rightarrow 9\left(x^{2}+4 x+4+y^{2}-4 y+4+z^{2}-6 z+9\right) \\
& =4\left(x^{2}-26 x+169+y^{2}+6 y+9+z^{2}-26 z+169\right) \\
& 9 x^{2}+9 y^{2}+9 z^{2}+36 x-36 y-54 z+153=4 x^{2}+4 y^{2}+4 z^{2}-104 x+24 y-104 z \\
& +1388 \\
& 5 x^{2}+5 y^{2}+5 z^{2}+140 x-60 y+50 z-1235=0
\end{aligned}
$$

Dividing with 5 locus of P is :

$$
x^{2}+y^{2}+z^{2}+28 x-12 y+10 z-247=0
$$

4. Show that the plane through $(1,1,1),(1,-1,1)$ and $(-7,-3,-5)$ is parallel to $y$ axis.

Sol. Equation of the plane through $(1,1,1),(1,-1,1)$ and $(-7,-3,-5)$ is

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|=\mathbf{0}
$$

$\left|\begin{array}{ccc}x-1 & y-1 & z-1 \\ 0 & -2 & 0 \\ -8 & -4 & -6\end{array}\right|=0 \Rightarrow 3 x-4 z+1=0$
D.rs of normal to the plane aer 3,0,-4
d.rs of y axis are $0,1,0$
$\Rightarrow a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=3.0+0.1-4.0=0$
Normal to the plane is perpendicular to the y -axis.
henceplnae is parallel to Y -axis.
5. Check the continuity of f given by $f x=\left\{\begin{array}{ccc}\frac{x^{2}-9}{x^{2}-2 x-3} & \text { if } & 0<x<5 \text { and } x \neq 3 \\ 1.5 & \text { if } & x=3\end{array}\right.$ At the point 3.

Sol : Given $f(3)=1.5$.

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 3} f x=\operatorname{Lt}_{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-2 x-3} \\
& =\operatorname{Lt}_{x \rightarrow 3} \frac{x-3 x+3}{x-3 x+1}=\frac{3+3}{3+1}=\frac{6}{4}=1.5=f 3
\end{aligned}
$$

$\therefore f x$ is continuous at $x=3$.
6. Show that f , given by $f x=\frac{x-|x|}{x} x \neq 0$ is continuous on $R-0$.

Sol : f $f x=\left\{\begin{array}{l}\frac{x-x}{x}, x>0 \\ \frac{x+x}{x}, x<0\end{array} \Rightarrow f x=\left\{\begin{array}{l}0, x>0 \\ \frac{2 x}{x}, x<0\end{array}\right.\right.$

$$
=>f(x)=\left\{\begin{array}{l}
0, x>0 \\
2, x<0
\end{array}\right.
$$

Left limit at $\mathrm{x}=0$ is $\underset{x \rightarrow 0^{-}}{L t} f x=\underset{x \rightarrow 0^{-}}{L t} 2=2$
Right limit at $\mathrm{x}=0$ is $\underset{x \rightarrow 0^{+}}{\operatorname{Lt}} f x=\underset{x \rightarrow 0^{+}}{\operatorname{Lt}} 0=0$
$\underset{x \rightarrow 0-}{L t} f x \neq \underset{x \rightarrow 0^{+}}{L t} f x \therefore \underset{x \rightarrow 0^{2}}{\operatorname{Lt}} f x$ does not exist.

Hence the function is not continuous at $\mathrm{x}=0$.

When $\mathrm{x}<0, \mathrm{f}(\mathrm{x})=2$, a constant. And it is continuous for all $\mathrm{x}<0$.
When $\mathrm{x}>0, \mathrm{f}(\mathrm{x})=0$, which is continuos for all $\mathrm{x}>0$.
Hence the function is continuous on $\mathrm{R}-\{0\}$.
7. If $y=a e^{n x}+b e^{-n x}$ then prove that $y^{\prime \prime}=n^{2} y$

Sol : $\quad y=a e^{n x}+b e^{-n x}$
$y_{1}=n a e^{n x}-n b e^{-n x}$
$y_{2}=n^{2} \cdot a e^{n x}+n^{2} b e^{-n x}$
$y^{\prime \prime}=n^{2} a e^{n x}+b \cdot e^{-n x}=n^{2} y$
8. find the derivative of $\sin \left[\tan ^{-1} e^{-x}\right]$

Diff. w.r.t.x,
$\frac{d y}{d x}=\frac{d}{d x} \sin \left[\tan ^{-1} e^{-x}\right]$
$=\cos \left[\tan ^{-1} e^{-x}\right] \cdot\left[\tan ^{-1} e^{-x}\right]^{1}$
$=\cos \tan ^{-1} e^{-x}-\frac{1}{1+e^{-x^{2}}} e^{-x}=\frac{-e^{-x}}{1+e^{-2 x}} \cdot \cos \left[\tan ^{-1} e^{-x}\right]$
9. Find approximate value of $\sqrt{\mathbf{8 2}}$

Sol: let $\mathrm{f}(\mathrm{x})=\sqrt{\mathrm{x}}, \mathrm{x}=81, \Delta \mathrm{x}=1$
Now

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x}+\delta \mathrm{x})=\mathrm{f} \mathrm{x}+\mathrm{f}^{1} \mathrm{x} \quad \delta \mathrm{x}=\sqrt{\mathrm{x}}+\frac{1}{2 \sqrt{\mathrm{x}}} \cdot \Delta \mathrm{x}, \text { put } \mathrm{x}=81, \Delta \mathrm{x}=1 \\
& =\sqrt{81}+\frac{1}{2 \sqrt{81}} \cdot 1=9+\frac{1}{2.9}=9+\frac{1}{18}=9+0.056=9.056
\end{aligned}
$$

10. It is given that Rolle's theorem holds for the function $f(x)=x^{3}+b x^{2}+a x$ on
$[1,3]$ with $c=2 t+\frac{1}{\sqrt{3}}$. Find the values of $a$ and $b$.
Sol. Given $f(x)=x^{3}+b x^{2}+a x$

$$
\begin{aligned}
& \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}+2 \mathrm{bx}+\mathrm{a} \\
& \therefore \mathrm{f}^{\prime}(\mathrm{x})=0 \Leftrightarrow 3 \mathrm{c}^{2}+2 \mathrm{bc}+\mathrm{a}=0 \\
& \Leftrightarrow \mathrm{c}=\frac{-2 \mathrm{~b} \pm \sqrt{4 \mathrm{~b}^{2}-12 \mathrm{a}}}{6} \\
& \mathrm{c}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-3 \mathrm{a}}}{3} \\
& 2+\frac{1}{\sqrt{3}}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-3 \mathrm{a}}}{3} \\
& \frac{-\mathrm{b}}{3}=2 \text { and } \frac{\sqrt{\mathrm{b}^{2}-3 a}}{3}=\frac{1}{\sqrt{3}} \\
& \Leftrightarrow \mathrm{~b}=6 \text { and } \mathrm{b}^{2}-3 \mathrm{a}=3 \\
& \Rightarrow 36-3=3 \mathrm{a} \Rightarrow 33=3 \mathrm{a} \Rightarrow \mathrm{a}=11
\end{aligned}
$$

Hence $\mathrm{a}=11, \mathrm{~b}=-6$.
11. Find the equation of locus of $P$, if the line segment joining $(2,3)$ and $(-1,5)$ subtends a right angle at $P$.
Sol. Given points $\mathrm{A}(2,3), \mathrm{B}(-1,5)$.
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point in the locus.


Given condition is : $\angle \mathrm{APB}=90^{\circ}$
$\Rightarrow($ slope of $\overline{\mathrm{AP}})($ slope of $\overline{\mathrm{BP}})=-1$
$\Rightarrow \frac{y-3}{x-2} \cdot \frac{y-5}{x+1}=-1$
$(y-3)(y-5)+(x-2)(x+1)=0$
$x^{2}+y^{2}-x-8 y+13=0$
$\therefore$ Locus of P is $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x}-8 \mathrm{y}+13=0$
12. When the axes are rotated through an angle $\frac{\pi}{4}$, find the transformed equation of

$$
\begin{equation*}
3 x^{2}+10 x y+3 y^{2}=9 \tag{1}
\end{equation*}
$$

Sol. Given equation is $3 x^{2}+10 x y+3 y-9=0$
Angle of rotation of axes is $\theta=\frac{\pi}{4}$. Let $(\mathrm{X}, \mathrm{Y})$ be the new co-ordinates of $x \cdot y$

$$
\begin{aligned}
& x=X \cos \theta-Y \sin \theta=X \cos \frac{\pi}{4}-y \sin \frac{\pi}{4}=\frac{X-Y}{\sqrt{2}} \\
& y=X \sin \theta+Y \cos \theta=X \sin \frac{\pi}{4}+Y \cos \frac{\pi}{4}=\frac{X+Y}{\sqrt{2}}
\end{aligned}
$$

Transformed equation of (1) is $3\left(\frac{X-Y}{\sqrt{2}}\right)^{2}+10\left(\frac{X-Y}{\sqrt{2}}\right)\left(\frac{X+Y}{\sqrt{2}}\right)+3\left(\frac{X+Y}{\sqrt{2}}\right)^{2}-9=0$

$$
\begin{aligned}
& \Rightarrow 3 \\
& \frac{X^{2}-2 X Y+Y^{2}}{2}+10 \frac{X^{2}-Y^{2}}{2}+3 \frac{X^{2}+2 X Y+Y^{2}}{2}-9=0 \\
& \Rightarrow 3 X^{2}-6 X Y+3 Y^{2}+10 X^{2}-10 Y^{2}+3 X^{2}+6 X Y+3 Y^{2}-18=0 \\
& \Rightarrow 16 X^{2}-4 Y^{2}-18=0 \Rightarrow 8 X^{2}-2 Y^{2}=9
\end{aligned}
$$

13. Find the points on the line $3 x-4 y-1=0$ which are at a distance of 5 units form the point $(3,2)$.
Sol. Equation of the line is $3 x-4 y-1=0 \Rightarrow$ slope of the line is $\tan \theta=3 / 4$
$\Rightarrow \sin \theta=3 / 5$ and $\cos \theta=4 / 5$
Given Point is $(3,2)=\left(x_{1}, y_{1}\right)$ and $r=5$.
Co-ordinates of any point on the given line at a distance $r$ are ( $\mathrm{x}_{1} \pm \mathrm{r} \cos \theta, \mathrm{y}_{1} \pm \mathrm{r} \sin \theta$ )
Co-ordinates of the points are $\left(3+5 \cdot \frac{4}{5}, 2+5 \cdot \frac{3}{5}\right)=(7,5)$ And
$\left(3-5 \cdot \frac{4}{5}, 2-5 \cdot \frac{3}{5}\right)=(-1,-1)$
14. $\underset{x \rightarrow 0}{L t}\left[\frac{1+x^{\frac{1}{8}}-1-x^{\frac{1}{8}}}{x}\right]$

$$
\begin{aligned}
& \text { Sol : } \begin{array}{l}
\operatorname{Lt}_{x \rightarrow 0} \frac{1+x^{\frac{1}{8}}-1-x^{\frac{1}{8}}}{x} \\
=\operatorname{Lt}_{x \rightarrow 0}^{\operatorname{Lt}} \frac{1+x^{\frac{1}{8}}-1+1-1-x^{\frac{1}{8}}}{x} \\
=\underset{1+x \rightarrow 1}{\operatorname{Lt}} \frac{1+x^{\frac{1}{8}}-1}{1+x-1}+\underset{1-x \rightarrow 1}{L t} \frac{1-x^{\frac{1}{8}}-1^{8}}{1-x-1} \\
\quad=\frac{1}{8} 1^{-7 / 8}+\frac{1}{8} 1^{-7 / 8}=\frac{1}{8}+\frac{1}{8}=\frac{1}{4}
\end{array} .
\end{aligned}
$$

15. A container is in the shape of an inverted cone has height 8 m and radius 6 m at the top. If it is filled with water at the rate of $2 \mathrm{~m}^{3} /$ minute, how fast is the height of water changing when the level is 4 m ?
Sol. $\mathrm{h}=8 \mathrm{~m}=\mathrm{OC}$

$$
\begin{aligned}
& \mathrm{r}=6 \mathrm{~m}=\mathrm{AB} \\
& \frac{\mathrm{dv}}{\mathrm{dt}}=2 \mathrm{~m}^{3} / \mathrm{minute}
\end{aligned}
$$


$\triangle \mathrm{OAB}$ and OCD are similar angle then
$\frac{\mathrm{CD}}{\mathrm{AB}}=\frac{\mathrm{OC}}{\mathrm{OA}}$
$\frac{\mathrm{r}}{6}=\frac{\mathrm{h}}{8} \Rightarrow \mathrm{r}=\mathrm{h} \frac{3}{4}$
Volume of cone $v=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& \mathrm{v}=\frac{1}{3} \pi \mathrm{~h}^{2} \frac{9}{16} \mathrm{~h} \\
& \mathrm{v}=\frac{3}{16} \pi \mathrm{~h}^{3} \\
& \frac{\mathrm{dv}}{\mathrm{dt}}=\frac{3}{16} \pi 3 \mathrm{~h}^{2} \frac{\mathrm{dh}}{\mathrm{dt}} \because \mathrm{~h}=16 \\
& 2=\frac{3}{16} \pi 3(16) \frac{\mathrm{dh}}{\mathrm{dt}} \Rightarrow \frac{2}{9 \pi}=\frac{\mathrm{dh}}{\mathrm{dt}}
\end{aligned}
$$

16. Find the angle between the curve $2 y=e^{\frac{-x}{2}}$ and $y$-axis.

Sol: Equation of y -axis is $\mathrm{x}=0$
The point of intersection of the curve $2 y=e^{\frac{-x}{2}}$ and $x=0$ isP $\left(0, \frac{1}{2}\right)$
The angle $\psi$ made by the tangent to the curve $2 \mathrm{y}=\mathrm{e}^{2}$ at P with $\mathrm{x}-$ axis is given by $\tan \psi=\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right|_{\left(0, \frac{1}{2}\right)}=\left.\frac{-1}{4} \mathrm{e}^{\frac{-\mathrm{x}}{2}}\right|_{\left(0, \frac{1}{2}\right)}=\frac{-1}{4}$
Further, if $\phi$ is the angle between the $y-$ axis and $2 y=e^{\frac{-x}{2}}$, then we have $\tan \phi=\left|\tan \left(\frac{\pi}{2}-\psi\right)\right|-|\cot \psi|=4$
$\therefore$ The angle between the curve and the y -axis is $\tan ^{-1} 4$.
17.. If $x^{y}=e^{x-y}$, then show that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$.

Sol. $x^{y}=e^{x-y}$
$\log x^{y}=\log e^{x-y}$
$y \log x=x-y$

$$
\begin{aligned}
y & =\frac{x}{1+\log x} \\
\frac{d y}{d x} & =\frac{(1+\log x) \cdot 1-x \cdot \frac{1}{x}}{(1+\log x)^{2}} \\
& =\frac{1+\log x-1}{(1+\log x)^{2}}=\frac{\log x}{(1+\log x)^{2}}
\end{aligned}
$$

18. If $(h, k)$ is the image of $\left(x_{1}, y_{1}\right)$ w.r.t the line $a x+b y+c=0(a \neq 0, b \neq 0)$, then $\frac{h-x_{1}}{a}=\frac{k-y_{1}}{b}=\frac{-2\left(x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}$.

Proof:

| $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ |  |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
| (h. ha |  |

Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right), \mathrm{B}(\mathrm{h}, \mathrm{k})$
Mid pointof isP $=\left(\frac{x_{1}+h}{2}, \frac{y_{1}+k}{2}\right)$
Since B is the image of A,thereforemid pointP lies on $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$.
$\Rightarrow a\left(\frac{x_{1}+h}{2}\right)+b\left(\frac{y_{1}+k}{2}\right)+\mathrm{c}=0$
$\Rightarrow \mathrm{ax}_{1}+\mathrm{by}_{1}+\mathrm{ah}+\mathrm{bk}+2 \mathrm{c}=0$
$\Rightarrow \mathrm{ah}+\mathrm{bk}=-\mathrm{ax}_{1}+\mathrm{by}_{1}-2 \mathrm{c}$.
Slope of $\overline{A B}$ is $\frac{k-y_{1}}{h-x_{1}}$
And Slope of given line is $-\frac{a}{b}$
$\overline{A B}$ is perpendicular to the given line
$\Rightarrow\left(\frac{k-y_{1}}{h-x_{1}}\right)\left(-\frac{a}{b}\right)=-1$
$\Rightarrow \frac{k-y_{1}}{b}=\frac{h-x_{1}}{a}$
By the law of multipliers in ratio and proportion
$\frac{h-x_{1}}{a}=\frac{k-y_{1}}{b}=\frac{a h-x_{1}+b k-y_{1}}{a^{2}+b^{2}}$
$=\frac{a h+b k-a x_{1}-b y_{1}}{a^{2}+b^{2}}$
$=\frac{-a x_{1}-b y_{1}-2 c-a x_{1}-b y_{1}}{a^{2}+b^{2}}$
$=\frac{-2\left(a x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}$
Hence $\frac{h-x_{1}}{a}=\frac{k-y_{1}}{b}=\frac{-2\left(a x_{1}+b y_{1}+c\right)}{a^{2}+b^{2}}$
19. If the equation $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents a pair of intersecting lines, then show that the square of the distance of their point of intersection from the origin is $\frac{c(a+b)-f^{2}-g^{2}}{a b-h^{2}}$. Also show that the square of this distance is $\frac{f^{2}+g^{2}}{h^{2}+b^{2}}$ if the given lines are perpendicular.
Sol. Let the equation

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

represent the lines

$$
\begin{equation*}
\mathrm{l}_{1} \mathrm{x}+\mathrm{m}_{1} \mathrm{y}+\mathrm{n}_{1}=0 \tag{1}
\end{equation*}
$$

$\mathrm{l}_{2} \mathrm{x}+\mathrm{m}_{2} \mathrm{y}+\mathrm{n}_{2}=0$
$\left(l_{1} x+m_{1} y+n_{1}\right)\left(l_{2} x+m_{2} y+n_{2}\right)=$

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c
$$

$\mathrm{l}_{1} \mathrm{l}_{2}=\mathrm{a}, \mathrm{m}_{1} \mathrm{~m}_{2}=\mathrm{b}, \mathrm{n}_{1} \mathrm{n}_{2}=\mathrm{c}$

$$
\mathrm{l}_{1} \mathrm{~m}_{2}+\mathrm{l}_{2} \mathrm{~m}_{1}=2 \mathrm{~h}, \mathrm{l}_{1} \mathrm{n}_{2}+\mathrm{l}_{2} \mathrm{n}_{1}=2 \mathrm{~g}
$$

$$
\mathrm{m}_{1} \mathrm{n}_{2}+\mathrm{m}_{2} \mathrm{n}_{1}=2 \mathrm{f}
$$

Solving (1) and (2)

$$
\frac{x}{m_{1} n_{2}-m_{2} n_{1}}=\frac{y}{l_{2} n_{1}-l_{1} n_{2}}=\frac{1}{l_{1} m_{2}-l_{2} m_{1}}
$$

The point of intersection,

$$
\begin{aligned}
& \mathrm{P}\left[\frac{\mathrm{~m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}}{1_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}}, \frac{\mathrm{l}_{2} \mathrm{n}_{1}-\mathrm{l}_{1} \mathrm{n}_{2}}{1_{1} \mathrm{~m}_{2}-1_{2} \mathrm{~m}_{1}}\right] \\
& \mathrm{OP}^{2}=\frac{\left(\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right)^{2}+\left(1_{2} \mathrm{n}_{1}-l_{1} \mathrm{n}_{2}\right)^{2}}{\left(\mathrm{l}_{1} \mathrm{~m}_{2}-\mathrm{l}_{2} \mathrm{~m}_{1}\right)^{2}} \\
& =\frac{\left(\mathrm{m}_{1} \mathrm{n}_{2}+\mathrm{m}_{2} \mathrm{n}_{1}\right)^{2}-4 \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{n}_{1} \mathrm{n}_{2}}{+\left(l_{1} \mathrm{~m}_{2}+\mathrm{l}_{2} \mathrm{~m}_{1}\right)^{2}-41_{1} 1_{2} \mathrm{~m}_{1} \mathrm{~m}_{2}} \\
& =\frac{4 \mathrm{f}^{2}-4 \mathrm{abc}+4 \mathrm{~g}^{2}-4 \mathrm{ac}}{4 \mathrm{~h}^{2}-4 \mathrm{ab}} \\
& =\frac{\mathrm{c}(\mathrm{a}+\mathrm{b})-\mathrm{f}^{2}-\mathrm{g}^{2}}{\mathrm{ab}-\mathrm{h}^{2}}
\end{aligned}
$$

If the given pair of lines are perpendicular, then $a+b=0$
$\therefore \mathrm{a}=-\mathrm{b}$
$\mathrm{OP}^{2}=\frac{0-\mathrm{f}^{2}-\mathrm{g}^{2}}{(-\mathrm{b}) \mathrm{b}-\mathrm{h}^{2}}=\frac{\mathrm{f}^{2}+\mathrm{g}^{2}}{\mathrm{~h}^{2}+\mathrm{b}^{2}}$.
20. Show that the straight lines $y^{2}-4 y+3=0$ and $x^{2}+4 x y+4 y^{2}+5 x+10 y+4=0$ from a parallelogram and find the lengths of its sides.

Sol. Equation of the first pair of lines is

$$
\begin{align*}
& y^{2}-4 y+3=0, \Rightarrow y-1 \quad y-3=0 \\
& \Rightarrow y-1=0 \text { or } y-3=0 \\
& \Rightarrow \text { Equations of the lines are } y-1=0 \quad \ldots \ldots . .(1) \text { and } y-3=0 \tag{2}
\end{align*}
$$

Equations of (1) and (2) are parallel.
Equation of the second pair of lines is $x^{2}+4 x y+4 y^{2}+5 x+10 y+4=0$
$\Rightarrow x+2 y^{2}+5 x+2 y+4=0$

$$
\begin{aligned}
& \Rightarrow x+2 y^{2}+4 x+2 y+x+2 y+4=0 \\
& \Rightarrow x+2 y \quad x+2 y+4+1 x+2 y+4=0 \\
& \Rightarrow x+2 y+1 \quad x+2 y+4=0
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow x+2 y+1=0, x+2 y+4=0 \tag{4}
\end{equation*}
$$

Equations of the lines are $x+2 y+1=0 \ldots \ldots$.(3)and $x+2 y+4=0 \ldots \ldots$. Equations of (3) and (4) are parallel .


Solving (1), (3) $x+2+1=0, x=-3$
Co-ordinates of A are $(-3,1)$
Solving (2), (3) $x+6+1=0, x=-7$
Co-ordinates of D are $(-7,3)$
Solving (1), (4) $x+2+4=0, x=-6$
Co-ordinates of B are $(-6,1)$

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{-3+6^{2}+1-1^{2}}=\sqrt{9+0}=3 \\
& \mathrm{AD}=\sqrt{-3+7^{2}+1-3^{2}}=\sqrt{16+4}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

Length of the sides of the parallelogram are $3,2 \sqrt{5}$
21. If a ray makes angle $\alpha, \beta, \gamma$ and $\delta$ with the four diagonals of a cube find $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta$


## Sol: Z

Let OABC; PQRS be the cube.
Let a be the side of the cube. Let one of the vertices of the cube be the origin O and the co-ordinate axes be along the three edges $\overline{O A}, \overline{O B}$ and $\overline{O C}$ passing through the origin.
The co-ordinate of the vertices of the cube with respect to the frame of reference
$O A B C$ are as shown in figure are $A(a, o, o), B(o, a, o), C(0, o, a) P(a, a, a) Q(a, a, o)$
$R(o, a, a)$ and $S(a, o, a)$
The diagonals of the cube are $\overline{O P}, \overline{C Q}, \overline{A R}$ and $\overline{B S} \quad$. and their d.rs are respectively $(a, a, a),(a, a,-a),(-a, a, a)$ and $(a,-a, a)$.
Let the direction cosines of the given ray be $l, m, n$.
Then $l^{2}+m^{2}+n^{2}=1$
If this ray is making the angles $\alpha, \beta, \gamma$ and $\delta$ with the four diagonals of the cube, then
$\cos \alpha=\frac{|a \times l+a \times m+a \times n|}{\sqrt{a^{2}+a^{2}+a^{2}} \cdot 1}=\frac{|l+m+n|}{\sqrt{3}}$
Similarly, $\cos \beta=\frac{|l+m-n|}{\sqrt{3}}$
$\cos \gamma=\frac{|-l+m+n|}{\sqrt{3}}$ and $\cos \delta=\frac{|-l+m+n|}{\sqrt{3}}$
$\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=$
$\frac{1}{3}\left\{|l+m+n|^{2}+|l+m-n|^{2}+|-l+m+n|^{2}+|l-m+n|^{2}\right\}$
$\frac{1}{3}\left[l+m+n^{2}+l+m-n^{2}+-l+m+n^{2}+l-m+n^{2}\right]$
$\frac{1}{3}\left[4 l^{2}+m^{2}+n^{2}\right]=\frac{4}{3} \quad\left(\right.$ since $\left.l^{2}+m^{2}+n^{2}=1\right)$
22. If $y=x \sqrt{a^{2}+x^{2}}+a^{2} \log x+\sqrt{x^{2}+a^{2}}$, show that $\frac{d y}{d x}=2 \sqrt{a^{2}+x^{2}}$
sol : $\quad y=x \sqrt{a^{2}+x^{2}}+a^{2} \log x+\sqrt{a^{2}+x^{2}}$
diff. w.r.t x,

$$
\begin{aligned}
& \frac{d}{d x} y=\frac{d}{d x} x \sqrt{a^{2}+x^{2}}+a^{2} \log x+\sqrt{a^{2}+x^{2}} \\
& \Rightarrow \frac{d y}{d x}=x \cdot \frac{1}{2 \sqrt{a^{2}+x^{2}}} \sqrt{2} x+\sqrt{a^{2}+x^{2}} \cdot 1 \\
& +\frac{a^{2}}{x+\sqrt{a^{2}+x^{2}}}\left(1-\frac{1}{2 \sqrt{a^{2}+x^{2}}} 2 x\right) \\
& =\frac{x^{2}}{\sqrt{a^{2}+x^{2}}}=\sqrt{a^{2}+x^{2}}+\frac{a^{2}}{x+\sqrt{a^{2}+x^{2}}} \cdot \frac{\sqrt{a^{2}+x^{2}}+x}{\sqrt{a^{2}+x^{2}}} \\
& =\frac{x^{2}}{\sqrt{a^{2}+x^{2}}}+\sqrt{a^{2}+x^{2}}+\frac{a^{2}}{\sqrt{a^{2}+x^{2}}} \\
& =\frac{x^{2}+a^{2}}{\sqrt{a^{2}+x^{2}}}+\sqrt{a^{2}+x^{2}} \\
& =\sqrt{a^{2}+x^{2}}+\sqrt{a^{2}+x^{2}}=2 \sqrt{a^{2}+x^{2}}
\end{aligned}
$$

## 23. If the tangent at any point on the curve

$x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ intersects the coordinate axes in $\mathrm{A}, \mathrm{B}$ show that the length AB is constant,


Sol: Equation of the curve is

$$
x^{2 / 3}+y^{2 / 3}=a^{2 / 3}
$$

Let $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$
be the parametric equations of the curve.
Then any point $P$ on the curve is $a \cos ^{3} \theta, a \sin ^{3} \theta$
$\Rightarrow \frac{d y}{d x}=\frac{a \cdot 3 \sin ^{2} \theta \cdot \cos \theta}{a \cdot 3 \cos ^{2} \theta \cdot-\sin \theta}=\frac{-\sin \theta}{\cos \theta}$
Equation of the tangent at P is

$$
\begin{aligned}
& y-a \sin ^{3} \theta=\frac{-\sin \theta}{\cos \theta} x-a \cos ^{3} \theta \\
& \Rightarrow \frac{y}{\sin \theta}-a \sin ^{2} \theta=-\frac{x}{\cos \theta}+a \cos ^{2} \theta \\
& \Rightarrow \frac{x}{\cos \theta}+\frac{y}{\sin \theta}=a \sin ^{2} \theta+\cos ^{2} \theta=a \\
& \Rightarrow \frac{x}{a \cos \theta}+\frac{y}{a \sin \theta}=1 \\
& \Rightarrow x-\text { int ercept } O A=a \cos \theta \\
& y-\text { int ercept } O B=a \sin \theta
\end{aligned}
$$

$$
\text { Now } \mathrm{AB}^{2}=\mathrm{OA}^{2}+\mathrm{OB}^{2}
$$

$$
=a \cos \theta^{2}+a \sin \theta^{2}
$$

$$
=\mathrm{a}^{2} \sin ^{2} \theta+\cos ^{2} \theta=\mathrm{a}^{2}
$$

$\Rightarrow \mathrm{AB}=\mathrm{a}, \mathrm{acons} \tan \mathrm{t}$
24. A window is in the shape of a rectangle surmounted by a semi-circle. If the perimeter of the window be 20 feet, find the maximum area.
Sol: Let the length of the rectangle be 2 x and breadth be y so that radius of the semi-circle is x .


Perimeter $=2 \mathrm{x}+2 \mathrm{y}+\pi \cdot \mathrm{x}=20$
$2 y=20-2 x-\pi x$
$y=10-x-\frac{\pi}{2} . x$
Area $=2 x y+\frac{\pi}{2} \cdot x^{2}$

$$
\begin{aligned}
& =2 \mathrm{x}\left(10-\mathrm{x}-\frac{\pi \mathrm{x}}{2}\right)+\frac{\pi}{2} \mathrm{x}^{2} \\
& =20 \mathrm{x}-2 \mathrm{x}^{2}-\pi \mathrm{x}^{2}+\frac{\pi}{2} \mathrm{x}^{2}
\end{aligned}
$$

Let $f(x)=20 x-2 x^{2}-\pi x^{2}+\frac{\pi}{2} x^{2}$
$\Rightarrow f^{\prime}=20-4 x-2 \pi x+\pi x$ and $\mathrm{f}^{\prime \prime}=-4-2 \pi+\pi=-4-\pi$ for max or min for max or min $\mathrm{f}^{\prime} \mathrm{x}=0 \Rightarrow 20-4 \mathrm{x}-\pi \mathrm{x}=0$

$$
\begin{aligned}
& \Rightarrow \pi+4 \mathrm{x}=20 \\
& \Rightarrow \mathrm{x}=\frac{20}{\pi+4} \\
& \mathrm{f}^{\prime \prime} \mathrm{x}=-4-\pi<0
\end{aligned}
$$

$\Rightarrow \mathrm{f} x$ has a maximum when $\mathrm{x}=\frac{20}{\pi+4}$
$\mathrm{y}=10-\mathrm{x}-\frac{\pi}{2} \mathrm{x}=10-\frac{20}{\pi+4}-\frac{\pi}{2} \frac{20}{\pi+4}$
$=\frac{10 \pi+40-20-10 \pi}{\pi+4}$
$=\frac{20}{\pi+4}$
Maximum area $=2 x y+\frac{\pi}{2} \cdot x^{2}$
$=\frac{40}{\pi+4} \cdot \frac{20}{\pi+4}+\frac{\pi}{2} \frac{400}{\pi+4^{2}}$
$=\frac{800+200 \pi}{\pi+4^{2}}=\frac{200 \pi+4}{\pi+4^{2}}$
$=\frac{200}{\pi+4}$ sq.feet.

