MATHEMATICS PAPER IIB

COORDINATE GEOMETRY AND CALCULUS.
TIME : 3hrs
Max. Marks. 75
Note: This question paper consists of three sections A,B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS. 10X2 =20

1) Find the equation of circle with centre $(2,3)$ and touching the line $3 x-4 y+1=0$.
2. Find ' k ' if the following pair of circles are orthogonal.

$$
x^{2}+y^{2}+2 b y-k=0, x^{2}+y^{2}+2 a x+8=0
$$

3. A double ordinate of the curve $y^{2}=4 a x$ is of length $8 a$. Prove that the line from the vertex to its ends are at right angles.
4. Find the condition for the line $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$ to be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
5. If the angle between asymptotes is 30° then find its eccentricity.
${ }^{6}$ Evaluate $\iint \sec x d x$
6. Evaluate $\int \frac{\sin x}{\sin (a+x)} d x$ on $I \subset R-\{n \pi-a: n \in Z\}$.
7. Evaluate $\int_{0}^{a} \mathrm{x}\left(\mathrm{a}^{2}-\mathrm{x}^{2}\right)^{7 / 2} \mathrm{dx}$
8. Evaluate $\lim _{n \rightarrow \infty}\left[\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{6 n}\right]$
9. Find the general solution of $\sqrt{1-x^{2}} d y+\sqrt{1-y^{2}} d x=0$.

SECTION B

SHORT ANSWER TYPE QUESTIONS.

ANSWER ANY FIVE OF THE FOLLOWING
11. Find the equation of tangents the circle $x^{2}+y^{2}-10=0$ at the points whose abscissa are
12. Find the equation of the circle which passes through the point $(0,-3)$ and intersects the circles given by the equations $x^{2}+y^{2}-6 x+3 y+5=0, x^{2+}+y^{2}-x-7 y$ $=0$ orthogonally.
13) If the Straight line $2 x+3 y=1$ intersects the circle $x^{2}+y^{2}=4$ at the points A and B. Find the equation of the circle having $A B$ as diameter.
14. Show that the point of intersection of perpendicular tangents to an ellipse lie on a circle.
15. Find the equation of the hyperbola of given length of transverse axis is 6 whose vertex bisects the distance between the centre and the focus.
16. Evaluate $\int_{0}^{\pi / 4} \log (1+\tan x) d x$
17.find the differential equation corresponding to the family of curves by eliminating arbitrary constants given by the equation $\quad a^{2}+\mathrm{by}^{2}=1 ;(\mathrm{a}, \mathrm{b})$

SECTION C

LONG ANSWER TYPE QUESTIONS. ANSWER ANY FIVE OF THE FOLLOWING

$5 \times 7=35$
18. Find the locus of the point whose polars with respect to the circles $\mathrm{x}^{2}+\mathrm{y}^{2}-$ $4 x-4 y-8=0$ and $x^{2}+y^{2}-2 x+6 y-2=0$ are mutually perpendicular.
19. Find the equation of circle passing through the points $(3,4) ;(3,2) ;(1,4)$
20. Prove that the area of the triangle inscribed in the parabola $y^{2}=4 a x$ is
$\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|$ sq.units where y_{1}, y_{2}, y_{3} are the ordinates of its vertices.
21. Evaluate $\quad \int \frac{x^{2}+1}{x^{4}+1} d x$ on R.
22. Evaluate $\int \frac{d x}{1+\sin x+\cos x}$
23. Show that the area of the region bounded by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (ellipse) is $\pi \mathrm{ab}$. Also deduce the area of the circle $x^{2}+y^{2}=a^{2}$.
24. solve $\left(x^{2} y-2 x y^{2}\right) d x=\left(x^{3}-3 x^{2} y\right) d y$

SOLUTIONS

1. Find the equation of circle with centre $(2,3)$ and touching the line $3 x-4 y+1=0$. Sol.

$$
\text { Centre } \mathrm{C}=(2,3) \text {. }
$$

Radius $r=$ Perpendicular distance from C to $3 x-4 y+1=0=\left|\frac{3(2)-4(3)+1}{\sqrt{3^{2}+4^{2}}}\right|$
Equation of circle $(x-h)^{2}+(y-k)^{2}=r^{2}$
$(x-2)^{2}+(y-3)^{2}=1$
$x^{2}+y^{2}-4 x-6 y+12=0$
2. Find ' k ' if the following pair of circles are orthogonal.

$$
x^{2}+y^{2}+2 b y-k=0, x^{2}+y^{2}+2 a x+8=0
$$

Sol. Given circles are $x^{2}+y^{2}+2 b y-k=0, x^{2}+y^{2}+2 a x+8=0$
from above equations $\mathrm{g}_{1}=0 ; \mathrm{f}_{1}=\mathrm{b} ; \mathrm{c}_{1}=-\mathrm{k}$

$$
\mathrm{g}_{2}=\mathrm{a} ; \quad \mathrm{f}_{1}=0 ; \mathrm{c}_{1}=8
$$

since the circles are orthogonal

$$
\begin{aligned}
& 2 \mathrm{~g}_{1} \mathrm{~g}_{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}=\mathrm{c}_{1}+\mathrm{c}_{2} \\
& \quad 2(0)(\mathrm{a})+2(\mathrm{~b})(0)=-\mathrm{k}+8 \\
& 0=-\mathrm{k}+8 \\
& \mathrm{~K}=8
\end{aligned}
$$

3. A double ordinate of the curve $y^{2}=4 a x$ is of length $8 a$. Prove that the line from the vertex to its ends are at right angles.
Sol. Let $\mathrm{P}=\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$ and $\mathrm{P}^{\prime}=\left(\mathrm{at}^{2},-2 \mathrm{at}\right)$ be the ends of double ordinate PP^{\prime}. Then

$$
\begin{aligned}
& 8 \mathrm{a}=\mathrm{PP}^{\prime}=\sqrt{0+(4 a t)^{2}}=4 \mathrm{at} \Rightarrow \mathrm{t}=2 \\
& \therefore \mathrm{P}=(4 \mathrm{a}, 4 \mathrm{a}), \mathrm{P}^{\prime}=(4 \mathrm{a},-4 \mathrm{a})
\end{aligned}
$$

Slope of $\overline{\mathrm{AP}} \times$ slope of $\overline{\mathrm{AP}^{\prime}}$

$$
=\left(\frac{4 \mathrm{a}}{4 \mathrm{a}}\right)\left(-\frac{4 \mathrm{a}}{4 \mathrm{a}}\right)=-1
$$

$$
\therefore \angle \mathrm{PAP}^{\prime}=\frac{\pi}{2}
$$

4. Find the condition for the line $x \cos \alpha+y \sin \alpha=p$ to be a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Sol. Equation of the ellipse is $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$
Equation of the line is $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{p}$

$$
y \sin \alpha=-x \cos \alpha+p
$$

$$
y=-x \frac{\cos \alpha}{\sin \alpha}+\frac{p}{\sin \alpha}
$$

$\therefore \mathrm{m}=-\frac{\cos \alpha}{\sin \alpha}, \mathrm{c}=\frac{\mathrm{p}}{\sin \alpha}$
Above line is a tangent to the ellipse
$\Rightarrow c^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}$

$$
\frac{\mathrm{p}^{2}}{\sin ^{2} \alpha}=\mathrm{a}^{2} \frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}+\mathrm{b}^{2}
$$

or $\mathrm{p}^{2}=\mathrm{a}^{2} \cos ^{2} \alpha+\mathrm{b}^{2} \sin ^{2} \alpha$.
5. If the angle between asymptotes is 30° then find its eccentricity.

Sol: Angle between asymptotes of hyperbola

$$
\begin{aligned}
& \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1 \text { is } 2 \sec ^{-1} \mathrm{e} . \\
& \therefore 2 \sec ^{-1} \mathrm{e}=30^{\circ} \Rightarrow \sec ^{-1} \mathrm{e}=15^{\circ} \\
& \Rightarrow \mathrm{e}=\sec 15^{\circ}=\frac{1}{\cos 15^{\circ}}=\frac{1}{\cos \left(45^{\circ}-30^{\circ}\right)} \\
& =\frac{1}{\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ}} \\
& =\frac{1}{1} \cdot \frac{\sqrt{3}}{\sqrt{2}}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2} \\
& =\frac{2 \sqrt{2}}{\sqrt{3}+1}=\frac{2 \sqrt{2}(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} \\
& =\frac{2 \sqrt{2}(\sqrt{3}-1)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{2}(\sqrt{3}-1) \\
& =\sqrt{6}-\sqrt{2} .
\end{aligned}
$$

6. $\int \sec x d x=\int \frac{\sec x(\sec x+\tan x)}{\sec x+\tan x} d x$

$$
=\int \frac{\sec ^{2} x+\sec x \tan x}{\sec x+\tan x} d x=\log |\sec x+\tan x|+c
$$

$$
=\log \left|\frac{1}{\cos x}+\frac{\sin x}{\cos x}\right|+c=\log \left|\frac{1+\sin x}{\cos x}\right|+c
$$

$$
=\log \left|\frac{1-\cos (\pi / 2+x)}{\sin (\pi / 2+x)}\right|+c
$$

$$
=\log \left|\frac{2 \sin ^{2}\left(\frac{\pi}{4}+\frac{x}{2}\right)}{2 \sin \left(\frac{\pi}{4}+\frac{x}{2}\right) \cos \left(\frac{\pi}{4}+\frac{x}{2}\right)}\right|+c
$$

$$
=\log \left|\tan \left(\frac{\pi}{4}+\frac{\mathrm{x}}{2}\right)\right|+\mathrm{c}
$$

7. $\int \frac{\sin x}{\sin (a+x)} d x$ on $I \subset R-\{n \pi-a: n \in Z\}$.

Sol: $\quad \int \frac{\sin x}{\sin (a+x)} d x=\int \frac{\sin (x+a-a)}{\sin (x+a)} d x$

$$
=\int\left[\frac{\sin (x+a) \cos a-\cos (x+a) \sin a}{\sin (x+a)}\right] d x
$$

$$
=\cos a \int d x-\sin a \int \frac{\cos (x+a)}{\sin (x+a)} d x
$$

$=x \cos a-\sin a-\log |\sin (x+a)|+c$.
8. $\int_{0}^{a} x\left(a^{2}-x^{2}\right)^{7 / 2} d x$

Sol. $\mathrm{x}=\mathrm{a} \sin \theta \quad \mathrm{a}=\mathrm{a} \sin \theta$
$\mathrm{dx}=\mathrm{a} \cos \theta \mathrm{d} \theta \theta=\pi / 2$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} a \sin \theta\left(a^{2}-a^{2} \sin ^{2} \theta\right)^{7 / 2} a \cos \theta d \theta \\
& =\int_{0}^{\pi / 2} a^{9} \cos ^{8} \theta \sin \theta d \theta=a^{9} \int_{0}^{\pi / 2} \cos ^{8} \theta \sin \theta \cdot d \theta
\end{aligned}
$$

$$
=\mathrm{a}^{9}\left(\frac{-\cos ^{9} \theta}{9}\right)_{0}^{\pi / 2}=\mathrm{a}^{9}\left(-0+\frac{1}{9}\right)=\frac{\mathrm{a}^{9}}{9}
$$

9. $\lim _{n \rightarrow \infty}\left[\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{6 n}\right]$

Sol: $\lim _{n \rightarrow \infty}\left[\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+5 n}\right]$

$$
\begin{aligned}
& \lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}}\left[\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\ldots+\frac{1}{1+\frac{5 n}{n}}\right] \\
& =\int_{0}^{5} \frac{1}{1+x} d x=\log (1+x){ }_{0}^{5}=\log 6
\end{aligned}
$$

10. Find the general solution of $\sqrt{1-x^{2}} d y+\sqrt{1-y^{2}} d x=0$.

Sol. Given d.e. is

$$
\begin{aligned}
& \sqrt{1-x^{2}} d y+\sqrt{1-y^{2}} d x=0 \\
& \sqrt{1-x^{2}} d y=-\sqrt{1-y^{2}} d x
\end{aligned}
$$

Integrating both sides

$$
\begin{aligned}
& \int \frac{d y}{\sqrt{1-y^{2}}}=-\int \frac{d x}{\sqrt{1-x^{2}}} \\
& \sin ^{-1} y=-\sin ^{-1} x+c
\end{aligned}
$$

Solution is $\sin ^{-1} x+\sin ^{-1} y=c$, where c is a constant.
11. Find the equation of tangents the circle $x^{2}+y^{2}-10=0$ at the points whose abscissa are
Sol. Equation of the circle is $S=x^{2}+y^{2}=10$
Let the point be $(1, y)$
$1+y^{2}=10 \Rightarrow y^{2}=9$
$Y= \pm 3$.
Co - ordinates of P are $(1,3)$ and $(1,-3)$
Equation of the tangent at $P(1,3)$ is $S_{1}=0$.
$\Rightarrow \mathrm{x} .1+\mathrm{y} .3=10$
$\Rightarrow x+3 y-10=0$
Equation of the tangent of $P(1,-3)$ is $S_{2}=0$
$\Rightarrow \mathrm{x} .1+\mathrm{y}(-3)=10 \Rightarrow \mathrm{x}-3 \mathrm{y}-10=0$
12.Find the equation of the circle which passes through the point $(0,-3)$ and intersects the circles given by the equations $x^{2}+y^{2}-6 x+3 y+5=0, x^{2+}+y^{2}-x-7 y$ $=0$ orthogonally.
Sol. Let circle be

$$
x^{2}+y^{2}+2 g x+2 f y+c=0------(1)
$$

(1) is orthogonal to $x^{2}+y^{2}-6 x+3 y+5=0$

$$
\begin{aligned}
& \therefore 2 \mathrm{~g}(-3)+2 \mathrm{f}\left(\frac{+3}{2}\right)=\mathrm{c}+5 \\
& -6 \mathrm{~g}+3 \mathrm{f}=\mathrm{c}+5-\cdots------(2)
\end{aligned}
$$

(1) is orthogonal to $x^{2}+y^{2}-x-7 y=0$

$$
\begin{gather*}
\therefore 2 \mathrm{~g}\left(\frac{+1}{2}\right)+2 \mathrm{f}\left(\frac{+7}{2}\right)=\mathrm{c} \\
\quad-\mathrm{g}-7 \mathrm{f}=\mathrm{c}---(3) \tag{3}
\end{gather*}
$$

Given (1) is passing through $(0,-3)$

$$
0+9-6 f+c=0
$$

(3) - (2)

$$
5 g-10 f=-5 \Rightarrow g-2 f=-1
$$

(iii) + (iv)

$$
9-\mathrm{g}-13 \mathrm{f}=0 \Rightarrow \mathrm{~g}+13 \mathrm{f}=9
$$

$$
\frac{g-2 f=-1}{15 f}=10
$$

$$
\mathrm{f}=\frac{2}{3} \Rightarrow \mathrm{~g}=2 \cdot \frac{2}{3}-1 \Rightarrow \mathrm{~g}=+\frac{1}{3}
$$

$$
\Rightarrow 9-6 \cdot \frac{2}{3}+c=0 \Rightarrow c=-5
$$

Therefore, eq of the circles are

$$
\begin{aligned}
& x^{2}+y^{2}+\frac{4}{3} y+\frac{4}{3} x-5=0 \\
& \text { (or) } 3 x^{2}+3 y^{2}+2 x+4 y-15=0
\end{aligned}
$$

13) If the Straight line $2 x+3 y=1$ intersects the circle $x^{2}+y^{2}=4$ at the points A and B . Find the equation of the circle having AB as diameter.
Sol. circle is $S=x^{2}+y^{2}=4$
Equation of the line is $L=2 x+3 y=1 \quad$ Equation of circle passing through $S=0$

$$
\text { and } \mathrm{L}=0 \text { is } \mathrm{S}+\lambda \mathrm{L}=0
$$

$$
\Rightarrow\left(x^{2}+y^{2}-4\right)+\lambda(2 x+3 y-1)=0
$$

$$
\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+2 \lambda x+3 \lambda \mathrm{y}-4-\lambda=0
$$

$$
\Rightarrow \text { Center }\left(-\lambda, \frac{-3 \lambda}{2}\right)
$$

Centre lies on $2 x+3 y-1=0$

$$
\begin{gathered}
\Rightarrow 2(-\lambda)+3 \frac{-3 \lambda}{2}-1=0 \\
\Rightarrow \lambda=\frac{-2}{13}
\end{gathered}
$$

\therefore Equation of circle be

$$
\begin{aligned}
& 13\left(x^{2}+y^{2}\right)-4 x 13-2(2 x+3 y-1)=0 \\
& 13\left(x^{2}+y^{2}\right)-4 x-6 y-50=0
\end{aligned}
$$

14. Show that the point of intersection of perpendicular tangents to an ellipse lie on a circle.
Sol. Equation of the ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be the point of intersection of the tangents.
Equation of the tangent is

$$
\mathrm{y}=\mathrm{mx} \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}}
$$

This tangent is passing through $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$

$$
\begin{aligned}
& \mathrm{y}_{1}=\mathrm{mx}_{1} \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}} \\
& \mathrm{y}_{1}-\mathrm{mx}_{1}= \pm \sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2}} \\
& \left(\mathrm{y}_{1}-\mathrm{mx}_{1}\right)^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}+\mathrm{b}^{2} \\
& \mathrm{~m}^{2} \mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}-2 \mathrm{mx}_{1} \mathrm{y}_{1}-\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2} \mathrm{x} \\
& \mathrm{~m}^{2}\left(\mathrm{x}_{1}^{2}-\mathrm{a}^{2}\right)-2 \mathrm{mx}_{1} \mathrm{y}_{1}+\left(\mathrm{y}_{1}^{2}-\mathrm{b}^{2}\right)=0
\end{aligned}
$$

This is a quadratic equation in m giving two values for m say m_{1} and m_{2}. These are the slopes of the tangents passing through $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.
The tangents are perpendicular $\Rightarrow \mathrm{m}_{1} \mathrm{~m}_{2}=-1$

$$
\begin{aligned}
& \frac{\mathrm{y}_{1}^{2}-\mathrm{b}^{2}}{\mathrm{x}_{1}^{2}-\mathrm{a}^{2}}=-1 \\
& \mathrm{y}_{1}^{2}-\mathrm{b}^{2}=-\mathrm{x}_{1}^{2}+\mathrm{a}^{2} \\
& \mathrm{x}_{1}^{2}+\mathrm{y}_{1}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}
\end{aligned}
$$

Locus of $\mathrm{P}\left(\mathrm{x}_{1}, y_{1}\right)$ is $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$ which is a circle.

This circle is called Director circle of the Ellipse.
15. Find the equation of the hyperbola of given length of transverse axis is 6 whose vertex bisects the distance between the centre and the focus.

Sol.

Let the hyperbola be $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Given CA $=\mathrm{AS}$

$$
\mathrm{a}=\mathrm{ae}-\mathrm{a} \Rightarrow 2 \mathrm{a}=\mathrm{ae} \Rightarrow \mathrm{e}=2
$$

Length of transverse axis is $2 \mathrm{a}=6 \Rightarrow \mathrm{a}=3$
$\mathrm{b}^{2}=\mathrm{a}^{2}\left(\mathrm{e}^{2}-1\right)=9(4-1)=27$
Equation of the hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

$$
\frac{x^{2}}{9}-\frac{y^{2}}{27}=1 \Rightarrow 3 x^{2}-y^{2}=27
$$

16. $\int_{0}^{\pi / 4} \log (1+\tan \mathrm{x}) \mathrm{dx}$

Sol. $\quad I=\int_{0}^{\pi / 4} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x$

$$
=\int_{0}^{\pi / 4} \log \left[1+\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right] d x
$$

$$
=\int_{0}^{\pi / 4} \log \left(1+\frac{1-\tan \mathrm{x}}{1+\tan \mathrm{x}}\right) \mathrm{dx}
$$

$$
\begin{aligned}
& =\int_{0}^{\pi / 4} \log \left(\frac{1+\tan \mathrm{x}+1-\tan \mathrm{x}}{1+\tan \mathrm{x}}\right) \mathrm{dx} \\
& =\int_{0}^{\pi / 4} \log 2-\log (1+\tan \mathrm{x}) \mathrm{dx} \\
& =\int_{0}^{\pi / 4} \log 2 \mathrm{dx}-\int_{0}^{\pi / 4} \log (1+\tan \mathrm{x}) \mathrm{dx} \\
& =\log 2(\mathrm{x})_{0}^{\pi / 4}-\mathrm{I} \\
& 2 \mathrm{I}=\frac{\pi}{4} \log 2 \Rightarrow \mathrm{I}=\frac{\pi}{8} \log 2
\end{aligned}
$$

17. $a x^{2}+b y^{2}=1 ;(a, b)$

Sol.
Given equation is
$a x^{2}+b y^{2}=1-----(1)$
Differentiating w.r.t. x

$$
\begin{aligned}
& \Rightarrow 2 a x+2 b y y_{1}=0 \\
& \Rightarrow a x+b y y_{1}=0------2
\end{aligned}
$$

Differentiating w.r.t. x

$$
\begin{aligned}
& \Rightarrow a+b \quad y y_{2}+y_{1} y_{1}=0 \Rightarrow a+b \quad y y_{2}+y_{1}^{2}=0 \\
& \Rightarrow a x+b x \quad y y_{2}+y_{1}^{2}=0-\cdots(3) \\
& 3-2 \Rightarrow b x \quad y y_{2}+y_{1}^{2}-b y y_{1}=0 \\
& \Rightarrow x \quad y y_{2}+y_{1}^{2}-y y_{1}=0
\end{aligned}
$$

18. Find the locus of the point whose polars with respect to the circles $x^{2}+y^{2}-$ $4 x-4 y-8=0$ and $x^{2}+y^{2}-2 x+6 y-2=0$ are mutually perpendicular.
Sol. Equation of the circles is
$S=x^{2}+y^{2}-4 x-4 y-8=0-(1)$
$S^{\prime}=x^{2}+y^{2}-2 x+6 y-2=0-(2)$
let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any position in the locus.
Equation of the polar of p w.r.to circle (1) is
$\mathrm{xx}_{1} \mathrm{yy}_{1}-2\left(\mathrm{x}+\mathrm{x}_{1}\right)-2\left(\mathrm{y}+\mathrm{y}_{1}\right)-8=0$
$x\left(x_{1}-2\right)+y\left(y_{1}-2\right)-\left(2 x_{1}+2 y_{1}+8\right)=0(3)$
Polar of P w.r. to circle (2) is
$\mathrm{xx}_{1}+\mathrm{yy}_{1}-1\left(\mathrm{x}+\mathrm{x}_{1}\right)-3\left(\mathrm{y}+\mathrm{Y}_{1}\right)-2=0$

$$
\begin{aligned}
& \mathrm{x}_{1}+\mathrm{yy}_{1}-\mathrm{x}-\mathrm{x}_{1}+3 \mathrm{y}+3 \mathrm{y}_{1}-2=0 \\
& \mathrm{x}\left(\mathrm{x}_{1}-1\right)+\mathrm{y}\left(\mathrm{y}_{1}+3\right)-\left(\mathrm{x}_{1}+3 \mathrm{y}_{1}+2\right)=0 \\
& (3) \text { and }(4) \text { are perpendicular } \\
& \Rightarrow \mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}=0 \\
& \left(\mathrm{x}_{1}-2\right)\left(\mathrm{x}_{1}-1\right)+\left(\mathrm{y}_{1}-2\right)\left(\mathrm{y}_{1}+3\right)=0 \\
& \Rightarrow x_{1}^{2}+y_{1}^{2}-3 x_{1}+y_{1}-6=0
\end{aligned}
$$

Locus of $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{x}^{2}+\mathrm{y}^{2}-3 \mathrm{x}+\mathrm{y}-4=0$
19. Find the equation of circle passing through the points $(3,4) ;(3,2) ;(1,4)$

Let the equation of circle be $x^{2}+y^{2}+2 g x+2 f y+c=0$
it is passing through $(3,4) ;(3,2) ;(1,4)$
\therefore Given points satisfy above equation then
$9+16+6 g+8 f+c=0$
$25+6 \mathrm{~g}+8 \mathrm{f}+\mathrm{c}=0$
$9+4+6 \mathrm{~g}+4 \mathrm{f}+\mathrm{c}=0$
$13+6 \mathrm{~g}+4 \mathrm{f}+\mathrm{c}=0$ \qquad
$1+16+2 \mathrm{~g}+8 \mathrm{f}+\mathrm{c}=0$
$17+2 \mathrm{~g}+8 \mathrm{f}+\mathrm{c}=0$ \qquad
(ii) - (i) we get
$-12-4 \mathrm{f}=0$ (or) $\mathrm{f}=-3$
(ii) - (iii) we get $-4+4 g-4 f=0$
$\mathrm{g}-\mathrm{f}=1 \quad \Rightarrow \mathrm{~g}=-2$
Now substituting g, f in equation (i) we get
$25+6(-2)+8(-3)+\mathrm{c}=0$
We get $\mathrm{c}=11$
Required equation of circle be
$X^{2}+y^{2}-4 x-6 y+11=0$
20. Prove that the area of the triangle inscribed in the parabola $y^{2}=4 a x$ is
$\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|$ sq. units where y_{1}, y_{2}, y_{3} are the ordinates of its vertices.
Sol.
Given parabola $y^{2}=4 a x$
let $\mathrm{P}\left(\mathrm{at}_{1}^{2}, 2 \mathrm{at}_{1}\right), \mathrm{Q}\left(\mathrm{at}_{2}^{2}, 2 \mathrm{at}_{2}\right), \mathrm{R}\left(\mathrm{at}_{3}^{2}, 2 \mathrm{at}_{3}\right)$ be the vertices of $\triangle \mathrm{PQR}$.

$$
\begin{aligned}
\text { Area of } \triangle \mathrm{PQR}= & =\frac{1}{2}\left|\begin{array}{ll}
a \mathrm{t}_{1}^{2}-a t_{2}^{2} & a a_{2}^{2}-a t_{1}^{2} \\
22 t_{1}-2 a t_{2} & 2 a t_{2}-2 a t_{3}
\end{array}\right|=\frac{1}{2}\left|2 a^{2} t_{1}^{2}-t_{2}^{2}\left(t_{2}-t_{3}\right)-2 a^{2} t_{2}^{2}-t_{3}^{2}\left(t_{1}-t_{2}\right)\right| \\
& =a^{2}\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right) t_{1}+t_{2}-t_{2}-t_{3}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =a^{2}\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right| \\
& =\frac{a^{3}}{a}\left|\left(t_{1}-t_{2}\right)\left(t_{2}-t_{3}\right)\left(t_{3}-t_{1}\right)\right| \\
& =\frac{1}{8 a}\left|\left(2 a t_{1}-2 a t_{2}\right)\left(2 a_{2}-2 a_{3}\right)\left(2 a_{3}-2 a t_{1}\right)\right| \\
& =\frac{1}{8 a}\left|\left(y_{1}-y_{2}\right)\left(y_{2}-y_{3}\right)\left(y_{3}-y_{1}\right)\right|
\end{aligned}
$$

Where $P\left(x_{1}, y_{1}\right), Q\left(x_{2}, y_{2}\right), R\left(x_{3}, y_{3}\right)$ are the vertices of $\triangle P Q R$.
21. $\int \frac{x^{2}+1}{x^{4}+1} d x$ on R.

Sol: $\quad \int \frac{x^{2}+1}{x^{4}+1} d x=\int \frac{1+\frac{1}{x^{2}}}{x^{2}+\frac{1}{x^{2}}} d x$

$$
=\int \frac{\left[1+\frac{1}{x^{2}}\right]}{\left[x-\frac{1}{x}\right]^{2}+2} \cdot d x
$$

$$
\left(\because \mathrm{a}^{2}+\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})^{2}-2 \mathrm{ab}\right)
$$

Take $\mathrm{x}-\frac{1}{\mathrm{x}}=\mathrm{t}$ then $\left(1+\frac{1}{\mathrm{x}^{2}}\right) \mathrm{dx}=\mathrm{dt}$
$\therefore \int \frac{\mathrm{x}^{2}+1}{\mathrm{x}^{4}+1} \mathrm{dx}=\int \frac{\mathrm{dt}}{\mathrm{t}^{2}+2}=\int \frac{\mathrm{dt}}{\mathrm{t}^{2}+(\sqrt{2})^{2}}$
$=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{t}{\sqrt{2}}\right)+c$
$=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x-\frac{1}{x}}{\sqrt{2}}\right)+c$
$=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^{2}-1}{\sqrt{2} x}\right)+c$.
22. $\int \frac{d x}{1+\sin x+\cos x}$

Sol. \qquad

$$
\begin{aligned}
& =\int \frac{d x}{\left[1+\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}+\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right]} \\
& =\int \frac{\sec ^{2} \frac{x}{2} d x}{1+\tan ^{2} \frac{x}{2}+2 \tan \frac{x}{2}+1-\tan ^{2} \frac{x}{2}} \\
& =\int \frac{\sec ^{2} \frac{x}{2}}{2+2 \tan \frac{x}{2}} \operatorname{put} \tan \frac{x}{2}=t \Rightarrow \frac{1}{2} \sec ^{2} \frac{x}{2} d x=d t \\
& =2 \int \frac{d t}{2+2 t}=\int \frac{d t}{1+t} \log |1+t|+C \\
& \quad=\log \left|1+\tan \frac{x}{2}\right|+C
\end{aligned}
$$

23. Show that the area of the region bounded by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (ellipse) is $\pi \mathrm{ab}$. Also deduce the area of the circle $x^{2}+y^{2}=a^{2}$.

Sol:

The ellipse is symmetrical about X and Y axis Area of the ellipse $=4$ Area of $\mathrm{CAB}=4 \cdot \frac{\pi}{4} \mathrm{ab}$

Equation of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
y=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

$C A B=\frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d n$

$$
\begin{aligned}
& =\frac{\mathrm{b}}{\mathrm{a}}\left(\frac{\mathrm{x} \sqrt{\mathrm{a}^{2}-\mathrm{x}^{2}}}{2}+\frac{\mathrm{a}^{2}}{2} \sin ^{-1} \frac{\mathrm{x}}{\mathrm{a}}\right)_{0} \\
& =\frac{\mathrm{b}}{\mathrm{a}}\left(0+\frac{\mathrm{a}^{2}}{2} \cdot \frac{\pi}{2}-\mathrm{ab}\right)=\frac{\pi \mathrm{a}^{2}}{4} \cdot \frac{\mathrm{~b}}{\mathrm{a}}=\frac{\pi}{4} \mathrm{ab}
\end{aligned}
$$

$($ from prob. 8 in ex $10(\mathrm{a}))=\pi \mathrm{ab}$
Substituting $\mathrm{b}=\mathrm{a}$, we get the circle

$$
x^{2}+y^{2}=a^{2}
$$

Area of the circle $=\pi \mathrm{a} a=\pi \mathrm{a}^{2}$ sq. units.
24. $\left(x^{2} y-2 x y^{2}\right) d x=\left(x^{3}-3 x^{2} y\right) d y$

Sol. $\quad\left(x^{2} y-2 x y^{2}\right) d x=\left(x^{3}-3 x^{2} y\right) d y$
$\frac{d y}{d x}=\frac{x^{2} y-2 x y^{2}}{x^{3}-3 x^{2} y}$ which is a homogeneous d.e.
Put $y=v x$ so that $\frac{d y}{d x}=v+x \frac{d v}{d x}$

$$
\begin{aligned}
& \begin{array}{l}
v+x \frac{d v}{d x}=\frac{x^{3} v-2 v^{2} x^{3}}{x^{3}-3 v x^{3}} \\
=\frac{\left(v-2 v^{2}\right) x^{3}}{(1-3 v) x^{3}}=\frac{v-2 v^{2}}{1-3 v} \\
x \frac{d v}{d x}=\frac{v-2 v^{2}}{1-3 v}-v
\end{array}
\end{aligned}
$$

$$
=\frac{v-2 v^{2}-v(1-3 v)}{1-3 v}=\frac{-2 v^{2}+3 v^{2}}{1-3 v}
$$

$$
\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{v}^{2}}{1-3 \mathrm{v}} \Rightarrow \frac{1-3 \mathrm{v}}{\mathrm{v}^{2}} \mathrm{dv}=\frac{\mathrm{dx}}{\mathrm{x}}
$$

$$
\int\left(\frac{1}{v^{2}}-\frac{3}{v}\right) d v=\int \frac{d x}{x}
$$

$$
\frac{-1}{v}-3 \log v=\log x+\log c
$$

$$
\begin{aligned}
& \frac{-x}{y}=3 \log \left(\frac{y}{x}\right)=\log x+\log c \\
& \frac{-x}{y}-\log \left(\frac{y}{x}\right)^{3}=\log x c \\
& \frac{-x}{y}=\log x c+\log \frac{y^{3}}{x^{3}} \\
& \frac{-x}{y}=\log \left(c x \cdot \frac{y^{3}}{x^{3}}\right)=\log \left(\frac{c y^{3}}{x^{2}}\right) \\
& \frac{c y^{3}}{x^{2}}=e^{-x / y} \Rightarrow c y^{3}=\frac{x^{2}}{e^{x / y}} \\
& c y^{3} \cdot e^{x / y}=x^{2}
\end{aligned}
$$

