MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS.

TIME : 3hrs

Max. Marks. 75
Note: This question paper consists of three sections A,B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS. 10X2=20

1. If $x^{2}+y^{2}-4 x+6 y+c=0$ represents a circle with radius 6 then find the value of c.
2. Discuss the relative position of the pair of circles $x^{2}+y^{2}-4 x-6 y-12=0$ $x^{2}+y^{2}+6 x+18 y+26=0$.
3. Find ' k ' if the pair of circles $x^{2}+y^{2}+2 b y-k=0, x^{2}+y^{2}+2 a x+8=0$ are orthogonal.
4. Find the equation of the parabola whose focus is $s(1,-7)$ and vertex is $\mathrm{A}(1,-$ 2).
5. If the lines $3 x-4 y=12$ and $3 x+4 y=12$ meets on a hyperbola $S=0$ then find the eccentricity of the hyperbola $S=0$.
6. Evaluate $\int \mathrm{e}^{\mathrm{x}} \frac{\mathrm{x}+2}{(\mathrm{x}+3)^{2}} \mathrm{dx}$ on $\mathrm{I} \subset \mathrm{R} \backslash\{-3\}$
7. Evaluate $\int \frac{d x}{1+\cos ^{2} x}$
8.Evaluate $\int_{-\pi / 2}^{\pi / 2} \frac{\cos \mathrm{x}}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx}$
8. Evaluate $\int_{0}^{4}|2-\mathrm{x}| \mathrm{dx}$
9. Obtain the differential equation which corresponds to each of the following family of the circles which touch the Y-axis at the origin.

SECTION B

SHORT ANSWER TYPE QUESTIONS.

ANSWER ANY FIVE OF THE FOLLOWING
$5 \times 4=20$
11. Show that the tangent at $(-1,2)$ the Circle $x^{2}+y^{2}-4 x-8 y+7=0$ touches the Circle $x^{2}+y^{2}+4 x+6 y=0$ and also Find its point of contact.
12. Find the equation of a circle which passes through $(2,-3)$ and $(-4,5)$ and having the centre on

$$
4 x+3 y+1=0
$$

13. If d is the distance between the centers of two intersecting circles with radii r_{1}, r_{2} and θ is the angle between the circles then $\cos \theta=\frac{d^{2}-r_{1}^{2}-r_{2}^{2}}{2 r_{1} r_{2}}$.
14. Find the length of major axis, minor axis, latus rectum, eccentricity, coordinates of the centre, foci and equations of directrices of the ellipse.
$9 x^{2}+16 y^{2}=144$
15..Find the equations of the tangents to the hyperbola $x^{2}-4 y^{2}=4$ which are (i) parallel (ii) perpendicular to the line $x+2 y=0$.
15. Find the area of the region

$$
x, y / x^{2}-x-1 \leq y \leq-1
$$

17. Solve the differential equation $\cos x \frac{d y}{d x}+y \sin x=\sec ^{2} x$

SECTION C

LONG ANSWER TYPE QUESTIONS.

 ANSWER ANY FIVE OF THE FOLLOWING18. Find the pair of tangents drawn from $(1,3)$ to the circle $x^{2}+y^{2}-2 x+4 y-11$ $=0$
19.Find the equation of the circle passing through $(-1,0)$ and touching $x+y-7=0$ at $(3,4)$
19. The equation of a parabola in the standard form is $y^{2}=4 a x$.
21.Evaluate $\int a^{x} \cos 2 x d x$ on $R(a>0$ and $a \neq 1)$.
20. Evaluate $\int \frac{9 \cos x-\sin x}{4 \sin x+5 \cos x} d x$
21. Evaluate $\lim _{\mathrm{n} \rightarrow \infty}\left[\left(1+\frac{1}{\mathrm{n}^{2}}\right)\left(1+\frac{2^{2}}{\mathrm{n}^{2}}\right) \ldots\left(1+\frac{\mathrm{n}^{2}}{\mathrm{n}^{2}}\right)\right]^{1 / \mathrm{n}}$
22. Solve $1+e^{x / y} d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$.

SOLUTIONS

1. If $x^{2}+y^{2}-4 x+6 y+c=0$ represents a circle with radius 6 then find the value of c.
sol.
Centre $=(-\mathrm{g},-\mathrm{f})=(2,-3)$
$\mathrm{r}=\sqrt{g^{2}+f^{2}-c} ; \mathrm{g}=-2, \mathrm{f}=3$
$\Rightarrow 6=\sqrt{4+9-c}$
$36=13-c \Rightarrow c=-23$
. Discuss the relative position of the following pair of circles.
2. $x^{2}+y^{2}-4 x-6 y-12=0$
$x^{2}+y^{2}+6 x+18 y+26=0$.
Sol. Centers of the circles are A $(2,3), B(-3,-9)$
Radii are $\mathrm{r}_{1}=\sqrt{4+9+12}=5$
$\mathrm{r}_{2}=\sqrt{9+81-26}=8$
$\mathrm{AB}=\sqrt{(2+3)^{2}+(3+9)^{2}}$
$=\sqrt{25+144}=13=r_{1}+r_{2}$
\therefore The circle touches externally.
3 Find ' k ' if the following pair of circles are orthogonal.

$$
x^{2}+y^{2}+2 b y-k=0, x^{2}+y^{2}+2 a x+8=0
$$

Sol. Given circles are $x^{2}+y^{2}+2 b y-k=0, x^{2}+y^{2}+2 a x+8=0$
from above equations $g_{1}=0 ; f_{1}=b ; c_{1}=-k$

$$
\mathrm{g}_{2}=\mathrm{a} ; \quad \mathrm{f}_{1}=0 ; \mathrm{c}_{1}=8
$$

since the circles are orthogonal ,
$2 \mathrm{~g}_{1} \mathrm{~g}_{2}+2 \mathrm{f}_{1} \mathrm{f}_{2}=\mathrm{c}_{1}+\mathrm{c}_{2}$
$2(0)(a)+2(b)(0)=-k+8$
$0=-\mathrm{k}+8$
$\mathrm{K}=8$
4. Find the equation of the parabola whose focus is $s(1,-7)$ and vertex is $\mathrm{A}(1,-2)$. Sol.

Focus $\mathrm{s}=(1,-7)$, vertex $\mathrm{A}(1,-2)$
$\mathrm{h}=1, \mathrm{k}=-2, \mathrm{a}=-2+7=5$
since x coordinates of S and A are equal, axis of the parabola is parallel to y axis.
And the y coordinate of S is less than that of A , therefore the parabola is a down ward parabola.
Let equation of the parabola be

$$
\begin{aligned}
&(x-h)^{2}=-4 a(y-k) \\
&(x-1)^{2}=-20(y+2) \\
& x^{2}-2 x+1=-20 y-40 \\
& \Rightarrow x^{2}-2 x+20 y+41=0
\end{aligned}
$$

5. If the lines $3 x-4 y=12$ and $3 x+4 y=12$ meets on a hyperbola $S=0$ then find the eccentricity of the hyperbola $S=0$.
Sol.

$$
\text { Given lines } 3 x-4 y=12,3 x+4 y=12
$$

The combined equation of the lines is

$$
(3 x-4 y)(3 x+4 y)=144
$$

$$
9 x^{2}-16 y^{2}=144
$$

$$
\frac{x^{2}}{\frac{144}{9}}-\frac{y^{2}}{\frac{144}{16}}=1 \Rightarrow \frac{x^{2}}{16}-\frac{y^{2}}{9}=1
$$

$$
a^{2}=16, b^{2}=9
$$

eccentricity $e=\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}$

$$
=\sqrt{\frac{16+9}{16}}=\sqrt{\frac{25}{16}}=\frac{5}{4}
$$

6. $\int \mathrm{e}^{\mathrm{x}} \frac{\mathrm{x}+2}{(\mathrm{x}+3)^{2}} \mathrm{dx}$ on $\mathrm{I} \subset \mathrm{R} \backslash\{-3\}$

Sol. $\int \mathrm{e}^{\mathrm{x}} \frac{\mathrm{x}+2}{(\mathrm{x}+3)^{2}} \mathrm{dx}$
Hint : $\int e^{x} f(x)+f^{\prime}(x) d x=e^{x}-f(x)+C$
$=\int e^{x}\left\{\frac{x+3-1}{(x+3)^{2}}\right\} d x$
$=\int e^{x}\left\{\frac{1}{x+3}+\frac{(-1)}{(x+3)^{2}}\right\} d x=e^{x}\left(\frac{1}{x+3}\right)+C$
7. $\int \frac{d x}{1+\cos ^{2} x}$

Sol. $\int \frac{d x}{1+\cos ^{2} x}=\int \frac{\sec ^{2} d x}{\sec ^{2} x+1}=\int \frac{\sec ^{2} x d x}{\tan ^{2} x+2}$
Let $\tan \mathrm{x}=\mathrm{t} \Rightarrow \sec ^{2} \mathrm{xdx}=\mathrm{dt}$

$$
=\int \frac{\mathrm{dt}}{\mathrm{t}^{2}+(\sqrt{2})^{2}}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\mathrm{t}}{\sqrt{2}}\right)+\mathrm{C}
$$

$$
=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{\tan x}{\sqrt{2}}\right)+C
$$

8. $\int_{-\pi / 2}^{\pi / 2} \frac{\cos \mathrm{x}}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx}$

Sol. Let $\mathrm{I}=\int_{-\pi / 2}^{\pi / 2} \frac{\cos \mathrm{x}}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx} \ldots$ (i)

$$
\mathrm{I}=\int_{-\pi / 2}^{\pi / 2} \frac{\cos (\pi / 2-\pi / 2-\mathrm{x}) \mathrm{dx}}{1+\mathrm{e}^{-\mathrm{x}}}\left(\because \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{a}+\mathrm{b}-\mathrm{x}) \mathrm{dx}\right) \text { Adding (1) and (2) }
$$

$$
=\int_{-\pi / 2}^{\pi / 2} \frac{\mathrm{e}^{\mathrm{x}} \cos \mathrm{xdx}}{1+\mathrm{e}^{\mathrm{x}}}----(2)
$$

$$
2 \mathrm{I}=\int_{-\pi / 2}^{\pi / 2} \frac{\cos \mathrm{x}\left(1+\mathrm{e}^{\mathrm{x}}\right)}{1+\mathrm{e}^{\mathrm{x}}} \mathrm{dx}=\int_{-\pi / 2}^{\pi / 2} \cos \mathrm{xdx}
$$

$$
2 I=2 \int_{0}^{\pi / 2} \cos x d x \because \cos x \text { is even function }
$$

$$
\Rightarrow \mathrm{I}=\sin \mathrm{x}{ }_{0}^{\pi / 2} \Rightarrow \mathrm{I}=1
$$

9. $\int_{0}^{4}|2-x| d x$

Sol. $\quad \int_{0}^{2}|2-x| d x+\int_{2}^{4}|2-x| d x$

$$
\begin{aligned}
& =\int_{0}^{2}(2-x) d x+\int_{2}^{4}(x-2) d x \\
& =\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2}+\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4} \\
& =\left(4-\frac{4}{2}\right)-\left[(8-8)-\left(4-\frac{4}{2}\right)\right] \\
& =2-0+2=4
\end{aligned}
$$

10.Obtain the differential equation which corresponds to each of the family of The circles which touch the Y -axis at the origin.
Sol. Equation of the given family of circles is $x^{2}+y^{2}+2 g x=0 \quad, g$ arbitrary const \ldots (i)
$x^{2}+y^{2}=-2 g x$
Differentiating w.r.t. x
$2 x+2 y_{1}=-2 g$
Substituting in (i)

$$
\begin{aligned}
& x^{2}+y^{2}=x\left(2 x+2 y y_{1}\right) \text { by }(i i) \\
& \quad=2 x^{2}+2 x y y_{1} \\
& \mathrm{yy}^{2}-2 x^{2} y y_{1}-2 x^{2}=0 \\
& y^{2}-x^{2}=2 x y \frac{d y}{d x}
\end{aligned}
$$

11 Show that the tangent at $(-1,2)$ the Circle $x^{2}+y^{2}-4 x-8 y+7=0$ touches the Circle x^{2} $+y^{2}+4 x+6 y=0$ and also Find its point of contact.
Sol. $\quad S \equiv x^{2}+y^{2}-4 x-8 y+7=0$ equation of the tangent at $(-1,2)$ to $S=0$ is $S_{1}=0$
$\Rightarrow \mathrm{x}(-1)+\mathrm{y}(2)-2(\mathrm{x}-1)-4(\mathrm{y}+2)+7=0$
$\Rightarrow-3 x-2 y+1=0 \Rightarrow 3 x+2 y-1=0$.
Equation of the second circle is $x^{2}+y^{2}+4 x+6 y=0$
Centre $\mathrm{C}=(-2,-3)$ radius $\mathrm{r}=\sqrt{g^{2}+f^{2}-c}=\sqrt{4+9}=\sqrt{13}$
Perpendicular distance from C to the line is $d=\left|\frac{3(-2)+2(-3)-1}{\sqrt{3^{2}+2^{2}}}\right|=\left|\frac{-13}{\sqrt{13}}\right|=\sqrt{13}$

$\mathrm{d}=\mathrm{r}$

Hence $3 x+2 y-1=0$ is also tangent to
$x^{2}+y^{2}+4 x+6 y=0$
Point of contact (foot of perpendicular)
Let (h, k) be foot of perpendicular from $(-2,-3)$ to the line $3 x+2 y-1=0$
$\frac{h+2}{3}=\frac{k+3}{2}=\frac{|3(-2)+2(-3)-1|}{9+4} \Rightarrow \frac{h+2}{3}=1$ and $\frac{k+3}{2}=1$
$\mathrm{h}=1, \mathrm{k}=-1$ therefore $(1,-1)$ is point of contact.
12. Find the equation of a circle which passes through $(2,-3)$ and $(-4,5)$ and having the centre on

$$
4 x+3 y+1=0
$$

sol.
Let $S(a, b)$ be the centre of the circle.
$S(a, b)$ is a point on the line $4 x+3 y+1=0$
$\Rightarrow 4 a+3 b+1=0$
$\mathrm{A}(2,-3)$ and $\mathrm{B}(-4,5)$ are two points on the circle.
Therefore, $\mathrm{SA}=\mathrm{SB} \Rightarrow \mathrm{SA}^{2}=\mathrm{SB}^{2}$
$=>(\mathrm{a}-2)^{2}+(\mathrm{b}+3)^{2}=(\mathrm{a}+4)^{2}+(\mathrm{b}-5)^{2}$
$\Rightarrow 3 a-4 b+7=0---(2)$
Solving (1) and (2), we get
$(\mathrm{a}, \mathrm{b})=(-1,1)=$ centre .
Raidus $=\mathrm{SA}=\sqrt{2+1^{2}+-3-1^{2}}$

$$
=5
$$

Equation of the circle is $(x+1)^{2}+(y-1)^{2}=5^{2}$
$: x^{2}+y^{2}+2 X-2 y-23=0$
13. If d is the distance between the centers of two intersecting circles with radii r_{1}, r_{2} and θ is the angle between the circles then $\cos \theta=\frac{d^{2}-r_{1}^{2}-r_{2}^{2}}{2 r_{1} r_{2}}$.

Proof:

Let $\mathrm{C}_{1}, \mathrm{C}_{2}$ be the centres of the two circles $\mathrm{S}=0, \mathrm{~S}^{\prime}=0$ with radii $\mathrm{r}_{1}, \mathrm{r}_{2}$ respectively. Thus $C_{1} C_{2}=d$. Let P be a point of intersection of the two circles. Let PB, PA be the tangents of the circles $\mathrm{S}=0, \mathrm{~S}^{\prime}=0$ respectively at P .

Now $\mathrm{PC}_{1}=\mathrm{r}_{1}, \mathrm{PC}_{2}=\mathrm{r}_{2}, \angle \mathrm{APB}=\theta$
Since PB is a tangent to the circle $\mathrm{S}=0, \angle \mathrm{C}_{1} \mathrm{~PB}=\pi / 2$
Since PA is a tangent to the circle $\quad \mathrm{S}^{\prime}=0, \angle \mathrm{C}_{2} \mathrm{PA}=\pi / 2$
Now $\angle \mathrm{C}_{1} \mathrm{PC}_{2}=\angle \mathrm{C}_{1} \mathrm{~PB}+\angle \mathrm{C}_{2} \mathrm{PA}-\angle \mathrm{APB}=\pi / 2+\pi / 2-\theta=\pi-\theta$
From $\Delta \mathrm{C}_{1} \mathrm{PC}_{2}$, by cosine rule,
$\mathrm{C}_{1}^{2} \mathrm{C}_{2}^{2}=\mathrm{PC}_{1}^{2}+\mathrm{PC}_{2}^{2}-2 \mathrm{PC}_{1} \cdot \mathrm{PC}_{2} \cos \angle \mathrm{C}_{1} \mathrm{PC}_{2} \Rightarrow$
$\mathrm{d}^{2}=\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-2 \mathrm{r}_{1} \mathrm{r}_{2} \cos (\pi-\theta) \Rightarrow \mathrm{d}^{2}=\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+2 \mathrm{r}_{1} \mathrm{r}_{2} \cos \theta$
$\Rightarrow 2 \mathrm{r}_{1} \mathrm{r}_{2} \cos \theta=\mathrm{d}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2} \Rightarrow \cos \theta=\frac{\mathrm{d}^{2}-\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}}{2 \mathrm{r}_{1} \mathrm{r}_{2}}$
14. Find the length of major axis, minor axis, latus rectum, eccentricity, coordinates of the centre, foci and equations of directrices of the following ellipse.

$$
9 x^{2}+16 y^{2}=144
$$

Sol. Given equation is $9 x^{2}+16 y^{2}=144$

$$
\Rightarrow \frac{x^{2}}{16}+\frac{y^{2}}{9}=1
$$

$\therefore \mathrm{a}=4, \mathrm{~b}=3$ where $\mathrm{a}>\mathrm{b}$

Length of major axis $=2 \mathrm{a}=2 \times 4=8$
Length of minor axis $=2 \mathrm{~b}=2 \times 3=6$
Length of latus rectum $=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{2 \cdot 9}{4}=\frac{9}{2}$
Eccentricity $=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}=\sqrt{\frac{16-9}{16}}=\frac{\sqrt{7}}{4}$
Centre is $\mathrm{C}(0,0)$
Foci are $(\pm \mathrm{ae}, 0)=(\pm \sqrt{7}, 0)$
Equations of the directrices are

$$
\begin{aligned}
& x= \pm \frac{\mathrm{a}}{\mathrm{e}} \Rightarrow \mathrm{x}= \pm 4 \cdot \frac{4}{\sqrt{7}}= \pm \frac{16}{\sqrt{7}} \\
& \Rightarrow \sqrt{7} x= \pm 16 \\
& \frac{x^{2}}{9}-\frac{y^{2}}{27}=1 \Rightarrow 3 x^{2}-y^{2}=27
\end{aligned}
$$

15. Find the equations of the tangents to the hyperbola $x^{2}-4 y^{2}=4$ which are (i) parallel (ii) perpendicular to the line $\mathrm{x}+2 \mathrm{y}=0$.
Sol. Equation of the hyperbola is $x^{2}-4 y^{2}=4$

$$
\frac{x^{2}}{4}-\frac{y^{2}}{1}=1 \Rightarrow a^{2}=4, b^{2}=1
$$

i)
given line is $x+2 y=0$
since tangent is parallel to $x+2 y=0$, slope of the tangent is $m=-\frac{1}{2}$

$$
\begin{aligned}
& \mathrm{c}^{2}=\mathrm{a}^{2} \mathrm{~m}^{2}-\mathrm{b}^{2}=4 \cdot \frac{1}{4}-1=1-1=0 \\
& \mathrm{c}=0
\end{aligned}
$$

Equation of the parallel tangent is :

$$
\begin{aligned}
& y=m x+c=-\frac{1}{2} x \\
& \Rightarrow 2 y=-x \Rightarrow x+2 y=0
\end{aligned}
$$

ii) The tangent is perpendicular to $x+2 y=0$

Slope of the tangent $m=\frac{-1}{(-1 / 2)}=2$

$$
c^{2}=a^{2} m^{2}-b^{2}=4 \cdot 4-1=15
$$

$$
c= \pm \sqrt{15}
$$

Equation of the perpendicular tangent is

$$
y=2 x \pm \sqrt{15} .
$$

16. Find the area of the region $x, y / x^{2}-x-1 \leq y \leq-1$

Sol. let the curves be $y=x^{2}-x-1-----(1)$
and $\quad \mathrm{y}=-1$
$y=x^{2}-x-1=\left(x-\frac{1}{2}\right)^{2}-\frac{5}{4}$

$$
\begin{aligned}
& \mathrm{y}=\frac{5}{4}-\left(\mathrm{x}-\frac{1}{2}\right)^{2} \text { is a parabola with } \\
& \text { vertex }\left(\frac{1}{2},-\frac{5}{4}\right)
\end{aligned}
$$

from (1) and (2),

$$
x^{2}-x-1=-1 \Rightarrow x^{2}-x=0 \Rightarrow x=0, x=1
$$

Given curves are intersecting at $\mathrm{x}=0$ and $\mathrm{x}=1$.

Required area $=\int_{0}^{1} y$ of $(1)-y$ of $2 d x$

$$
\begin{aligned}
& A=\left|\int_{0}^{1} x^{2}-x-1 d x-\int_{0}^{1}-1 d x\right| \\
& =\left|\int_{0}^{1}\left(\frac{x^{3}}{3}-\frac{x^{2}}{2}-x\right)-{ }_{0}^{1}-x\right|=\frac{1}{6} \text { sq.units }
\end{aligned}
$$

17. Solve the following differential equation.

$$
\cos x \frac{d y}{d x}+y \sin x=\sec ^{2} x
$$

Sol. $\frac{d y}{d x}+\tan x \cdot y=\sec ^{3} x$ which is 1.d.e in y

$$
\text { I.F. }=\mathrm{e}^{\int \tan x \mathrm{dx}}=\mathrm{e}^{\log \sec \mathrm{x}}=\sec \mathrm{x}
$$

Sol is y.I.F. $=$ y.I.F $=\int$ Q. I.F. $d x$

$$
\begin{aligned}
y \cdot \sec x & =\int \sec ^{4} x d x=\int\left(1+\tan ^{2} x\right) \sec ^{2} x d x \\
& =\tan x+\frac{\tan ^{3} x}{3}+c
\end{aligned}
$$

18. Find the pair of tangents drawn from $(1,3)$ to the circle $x^{2}+y^{2}-2 x+4 y-11$ $=0$
Sol. $S=x^{2}+y^{2}-2 x+4 y-11=0$
Equation of pair of tangents from (3,2) to $S=0$ is $S . S_{11}=S_{1}{ }^{2}$

$$
\begin{aligned}
& \left(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}+4 \mathrm{y}-11\right)(1+9-2+12-11) \\
& =[x+3 y-1(x+1)+2(y+3)-11]^{2} \\
& \left(\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}+4 \mathrm{y}-11\right) 9=(5 \mathrm{y}-6)^{2} \\
& \left.9 \mathrm{x}^{2}+9 \mathrm{y}^{2}-18 \mathrm{x}+36 \mathrm{y}-99\right) \\
& \quad=25 \mathrm{y}^{2}+36-60 \mathrm{y} \\
& 9 \mathrm{x}^{2}-16 \mathrm{y}^{2}-18 \mathrm{x}+96 \mathrm{y}-135=0
\end{aligned}
$$

Let θ be the angle between the pair of tangents. Then
$\operatorname{Cos} \theta=\frac{|a+b|}{\sqrt{(a-b)^{2}+4 h^{2}}}=\frac{|9-16|}{\sqrt{(25)^{2}}}$
$=\frac{|-7|}{25}=\frac{7}{25}$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{7}{25}\right)$
19. Find the equation of the circle passing through $(-1,0)$ and touching $x+y-7=0$ at $(3,4)$
Sol.
Let $\mathrm{C}(\mathrm{a}, \mathrm{b})$ be the centre of the circle $\mathrm{A}(-1,0)$ and $\mathrm{P}(3,4)$
Equation of the tangent is $x+y-7=0$

Now $\mathrm{CA}=\mathrm{CP}$
$\Rightarrow \mathrm{CA}^{2}=\mathrm{CP}^{2}$
$\Rightarrow a+1^{2}+b^{2}=a-3^{2}+b-4^{2}$
$\Rightarrow 8 \mathrm{a}+8 \mathrm{~b}-24=0 \Rightarrow \mathrm{a}+\mathrm{b}-3=0$
Line CP is perpendicular to tangent (1)
\therefore product of their slopes $=-1$
$\left(\frac{b-4}{a-3}\right)-1=-1 \Rightarrow \mathrm{a}-\mathrm{b}+1=0$
Solving (2) and (3), $\mathrm{a}=1$ and $\mathrm{b}=2$.
Centre C $=(1,2)$
radius $\mathrm{r}=\mathrm{CA}=\sqrt{1+1^{2}+2^{2}}=\sqrt{8}$
equation of the circle is $x-1^{2}+y-2^{2}=8$
i.e., $x^{2}+y^{2}-2 x-4 y-3=0$
20. The equation of a parabola in the standard form is $y^{2}=4 a x$.

Proof
Let S be the focus and $L=0$ be the directrix of the parabola.
Let P be a point on the parabola.
Let M, Z be the projections of P, S on the directrix $\mathrm{L}=0$ respectively.
Let N be the projection of P on SZ .
Let A be the midpoint of $S Z$.
Therefore, $\mathrm{SA}=\mathrm{AZ}, \Rightarrow \mathrm{A}$ lies on the parabola. Let $\mathrm{AS}=\mathrm{a}$.
Let AS, the principal axis of the parabola as x -axis and Ay perpendicular to SZ as y -axis.
Then $S=(a, 0)$ and the parabola is in the standard form.
Let $\mathrm{P}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$.

Now $\mathrm{PM}=\mathrm{NZ}=\mathrm{NA}+\mathrm{AZ}=\mathrm{x}_{1}+\mathrm{a}$
P lies on the parabola $\Rightarrow \frac{\mathrm{PS}}{\mathrm{PM}}=1 \Rightarrow \mathrm{PS}=\mathrm{PM}$

$$
\begin{aligned}
& \Rightarrow \sqrt{\left(\mathrm{x}_{1}-\mathrm{a}\right)^{2}+\left(\mathrm{y}_{1}-0\right)^{2}}=\mathrm{x}_{1}+\mathrm{a} \\
& \Rightarrow\left(\mathrm{x}_{1}-\mathrm{a}\right)^{2}+\mathrm{y}_{1}^{2}=\left(\mathrm{x}_{1}+\mathrm{a}\right)^{2} \\
& \Rightarrow \mathrm{y}_{1}^{2}=\left(\mathrm{x}_{1}+\mathrm{a}\right)^{2}-\left(\mathrm{x}_{1}-\mathrm{a}\right)^{2} \Rightarrow \mathrm{y}_{1}^{2}=4 \mathrm{ax}_{1}
\end{aligned}
$$

The locus of P is $\mathrm{y}^{2}=4 \mathrm{ax}$.
\therefore The equation to the parabola is $\mathrm{y}^{2}=4 \mathrm{ax}$.
21. $\int a^{x} \cos 2 x d x$ on $R(a>0$ and $a \neq 1)$.

Sol. $\int a^{x} \cos 2 x d x$

$$
\begin{aligned}
& =a^{x} \frac{\sin 2 x}{2}-\frac{1}{2} \int \sin 2 x \cdot a^{x} \log a d x \\
& =\frac{a^{x} \cdot \sin 2 x}{2}+\frac{\log a}{2} \int a^{x}(-\sin 2 x) d x \\
& =\frac{a^{x} \sin 2 x}{2}+\frac{\log a}{2}\left(a^{x} \cdot \cos \frac{2 x}{2}\right. \\
& \left.-\frac{1}{2} \int \cos 2 x \cdot a^{x} \log a d x\right) \\
& =\frac{a^{x} \sin 2 x}{2}+\frac{a^{x} \log a \cos 2 x}{4}-\frac{(\log a)^{2}}{4} I \\
& \left(1+\frac{(\log a)^{2}}{4}\right) I=\frac{a^{x}[2 \sin 2 x+(\log a) \cos 2 x]}{4} \\
& \frac{4+(\log a)^{2}}{4} I=\frac{a^{x}[2 \sin 2 x+(\cos 2 x) \log a]}{4} \\
& \therefore I=\frac{2 \cdot a^{x} \cdot \sin 2 x+\left(a^{x} \cdot \log a\right) \cos 2 x}{(\log a)^{2}+4}+c
\end{aligned}
$$

22. $\int \frac{9 \cos x-\sin x}{4 \sin x+5 \cos x} d x$

Sol. $\int \frac{9 \cos x-\sin x}{4 \sin x+5 \cos x} d x$
let $9 \cos x-\sin x=A \frac{d}{d x} 4 \sin x+5 \cos x+B 4 \sin x+5 \cos x$
$9 \cos x-\sin x=A \quad 4 \cos x-5 \sin x+B 4 \sin x+5 \cos x$
Comparing the coefficients of \sin and cos, we get
$9=4 \mathrm{~A}+5 \mathrm{~B}$ and $-5=-5 \mathrm{~A}+4 \mathrm{~B}$
Solving these equations, $\mathrm{A}=1$ and $\mathrm{B}=1$.
$\therefore 9 \cos x-\sin x=14 \cos x-5 \sin x+14 \sin x+5 \cos x$
$=14 \cos x-5 \sin x+14 \sin x+5 \cos x$

$$
\begin{aligned}
& \int \frac{9 \cos x-\sin x}{4 \sin x+5 \cos x} d x=\int \frac{(4 \sin x+5 \cos x)+(4 \cos x-5 \sin x)}{4 \sin x+5 \cos x} d x \\
& =\int d x+\int \frac{4 \cos x-5 \sin x}{4 \sin x+5 \cos x} d x \\
& =x+\log |4 \sin x+5 \cos x|+C
\end{aligned}
$$

23. $\lim _{\mathrm{n} \rightarrow \infty}\left[\left(1+\frac{1}{\mathrm{n}^{2}}\right)\left(1+\frac{2^{2}}{\mathrm{n}^{2}}\right) \ldots\left(1+\frac{\mathrm{n}^{2}}{\mathrm{n}^{2}}\right)\right]^{1 / n}$

Sol: Let

$$
\begin{aligned}
& y=\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n^{2}}\right)\left(1+\frac{2^{2}}{n^{2}}\right) \ldots\left(1+\frac{n^{2}}{n^{2}}\right)\right]^{1 / n} \\
& =\lim _{n \rightarrow \infty}\left[\left(\frac{n^{2}+1^{2}}{n^{2}}\right)\left(\frac{n^{2}+2^{2}}{n^{2}}\right) \ldots\left(\frac{n^{2}+n^{2}}{n^{2}}\right)\right]^{1 / n} \\
& =\lim _{n \rightarrow \infty}\left(\frac{n^{2}+i^{2}}{n^{2}}\right)^{1 / n}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \mathrm{y}=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\mathrm{n}^{2}+\mathrm{i}^{2}}{\mathrm{n}^{2}}\right)^{1 / \mathrm{n}} \\
& \therefore \log \mathrm{y}=\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \log \left(\frac{\mathrm{n}^{2}+\mathrm{i}^{2}}{\mathrm{n}^{2}}\right)^{1 / \mathrm{n}} \\
& =\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{\mathrm{n}} \log \left[1+\left(\frac{\mathrm{i}}{\mathrm{n}}\right)^{2}\right] \\
& =\int_{0}^{1} \log \left(1+\mathrm{x}^{2}\right) \mathrm{dx}
\end{aligned}
$$

(using integration by parts)

$$
\begin{aligned}
& =\left[x \log \left(1+x^{2}\right)\right]_{0}^{1}-\int_{0}^{1} x \frac{2 x}{1+x^{2}} d x \\
& =\log 2-2 \int_{0}^{1}\left(\frac{x^{2}+1-1}{x^{2}+1}\right) d x \\
& =\log 2-2 x{ }_{0}^{1}+2\left[\tan ^{-1} x\right]_{0}^{1} \\
& =\log 2-2+2\left(\tan ^{-1} 1\right)
\end{aligned}
$$

$$
=\log 2-2+2 \frac{\pi}{4}
$$

$$
\therefore \log _{\mathrm{e}} \mathrm{y}=\log 2-2+\frac{\pi}{2}
$$

$$
y=e^{\log 2-2+\pi / 2}
$$

$$
=e^{\log _{e} 2 \cdot e^{\frac{\pi}{2}-2}}
$$

$$
=2 \mathrm{e}^{\frac{\pi-4}{2}}
$$

$$
\therefore \lim _{\mathrm{n} \rightarrow \infty}\left[\left(1+\frac{1}{\mathrm{n}^{2}}\right)\left(1+\frac{2^{2}}{\mathrm{n}^{2}}\right) \ldots\left(1+\frac{\mathrm{n}^{2}}{\mathrm{n}^{2}}\right)\right]^{1 / \mathrm{n}}=2 \mathrm{e}^{\frac{\pi-4}{2}} .
$$

24. Solve $1+e^{x / y} d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$.

Sol. $1+e^{x / y} d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$
$\Rightarrow \frac{d x}{d y}=-\frac{e^{x / y}\left(1-\frac{x}{y}\right)}{1+e^{x / y}}$ which is a homogeneous d.e.

Put $\quad x=v y \Rightarrow \frac{d x}{d y}=v+y \frac{d v}{d y}$

$$
\begin{aligned}
& \left(1+e^{v}\right) \frac{d x}{d y}+e^{v}(1-v)=0 \\
& \left(1+e^{v}\right)\left(v+y \frac{d v}{d y}\right)+e^{v}(1-v)=0 \\
& v+e^{v}+y\left(1+e^{v}\right) \frac{d v}{d y}+e^{v}-v e^{v}=0 \\
& y\left(1+e^{v}\right) d v=-\left(v+e^{v}\right) d y \\
& \int \frac{1+e^{v}}{v+e^{v}} d v=-\int \frac{d y}{y}
\end{aligned}
$$

$$
\log \left(v+e^{v}\right)=-\log y+\log c \Rightarrow v+e^{v}=\frac{c}{y}
$$

$$
\frac{x}{y}+e^{x / y}=\frac{c}{y} \Rightarrow x+y \cdot e^{x / y}=c
$$

