MATHEMATICS PAPER IIA

TIME : 3hrsMax. Marks.75Note: This question paper consists of three sections A,B and C.

SECTION A VERY SHORT ANSWER TYPE QUESTIONS.

10X2 = 20

1.If $x^2 - 6x + 5 = 0$ and $x^2 - 3ax + 35 = 0$ have a common root, then find a.

2. If α , β , γ are the roots of the equation $x^3 - 3ax + b = 0$, then prove that $\Sigma(\alpha - \beta)(\alpha - \gamma) = 9a$.

- 3. If the amplitude of (z 1) is $\pi/2$ then find the locus of z.
- 4 If $z \neq 0$ find $\operatorname{Arg} z + \operatorname{Arg} \overline{z}$.
- 5. If $\frac{z_2}{z_1}$; $z_1 \neq 0$ is an imaginary number then find the value of $\left|\frac{2z_1 + z_2}{2z_1 z_2}\right|$.

6. Find the number of positive division of 1080.

7.Find the number of ways in which 4 letters can be put in 4 addressed envelopes so that no letter goes into the envelope meant for it.

8. Show that $C_0 + 2 \cdot C_1 + 4 \cdot C_2 + 8 \cdot C_3 + ... + 2^n \cdot C_n = 3^n$

9. For a binomial distribution with mean 6 and variance 2, find the first two terms of the distribution.

10. Find the mean for the following distribution.

Xi	10	11	12	13
$\mathbf{f}_{\mathbf{i}}$	3	12	18	12

SECTION B SHORT ANSWER TYPE QUESTIONS. ANSWER ANY FIVE OF THE FOLLOWING

11. If the roots of $ax^2 + bx + c = 0$ are real and equal to $\alpha = \frac{-b}{2a}$, $\alpha \neq x \in \mathbb{R}$, then prove that $ax^2 + bx + c$ and a will have same sign.

5 X 4 = 20

12. If
$$x + iy = \frac{3}{2 + \cos\theta + i\sin\theta}$$
 then show that $x^2 + y^2 = 4x - 3$.

13. If the letters of the word BRING are permuted in all possible ways and the words thus formed are arranged in the dictionary order, then find the 59th word.

14. A double decker mini bus has 8 seats in the lower and 10 seats in the upper deck. Find the no. of ways of arranging 18 persons in the bus, if 3 children want to go the upper deck and 4 old people cannot go to the upper deck?

- 15. resolve $\frac{x^2+1}{(x^2+x+1)^2}$ into partial fractions.
- 16. A, B, C are 3 newspaper from a city. 20% of the population read A, 16% read B, 14% read C, 8% both B and C, 2% all the three. Find the percentage of the population who read atleast one newspaper.

7. If A, B, C are independent events, show that $A \cup B$ and C are independent events.

SECTION C LONG ANSWER TYPE QUESTIONS. ANSWER ANY FIVE OF THE FOLLOWING

5 X 7 =35

18. Solve $18x^3 + 81x^2 + 21x + 60 = 0$ given that one root is equal to half the sum of the remaining roots.

19. Show that
$$\left\{\frac{1 + \sin\frac{\pi}{8} + i\cos\frac{\pi}{8}}{1 + \sin\frac{\pi}{8} - i\cos\frac{\pi}{8}}\right\}^{8/3} = -1$$

- 20. If the coefficients of r^{th} , $(r+1)^{th}$ and $(r+2)^{th}$ terms in the expansion of $(1 + x)^{th}$ are in A.P. then show that $n^2 (4r + 1)n + 4r^2 2 = 0$.
- 21. Find the sum of the infinite series $\frac{7}{5} \left(1 + \frac{1}{10^2} + \frac{1 \cdot 3}{1 \cdot 2} \frac{1}{10^4} + \frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \frac{1}{10^6} + \dots \right).$

22. The probabilities of three mutually exclusive events are respectively given as $\frac{1+3p}{3}, \frac{1-p}{4}, \frac{1-2p}{2}$. Prove that $\frac{1}{3} \le p \le \frac{1}{2}$.

23. if A random variable x has the following probability distribution.

X=x	0	1	2	3	4	5	6	7
P(X = x)	0	k	2k	2k	3k	\mathbf{K}^2	$2k^2$	$7k^2+k$
Find i) k	(ii)	the	me	an a	und i	iii) r	(0 < 0)	x < 5)

24. The scores of two cricketers A and B in 10 innings are given below. Find who is a better run getter and who is a more consistent player.

Scores of A : x _i	40	25	19	80	38	8	67	121	66	76
Scores of B : y _i	28	70	31	0	14	111	66	31	25	4

SOLUTIONS

1. If
$$x^2 - 6x + 5 = 0$$
 and $x^2 - 3ax + 35 = 0$ have a common root, then find a.
Sol: $x^2 - 6x + 5 = 0$
 $(x - 5)(x - 1) = 0$
 $x = 5, 1$
Now, 5, 1 satisfy
 $x^2 - 3ax + 35 = 0$
 $25 - 15a + 35 = 0$
 $60 = 15a$
 $a = 4$
 $1 - 3a + 35 = 0$
 $3a = 36$
 $a = 12$.
2. If α , β , γ are the roots of the equation $x^3 - 3ax + b = 0$
 $\therefore \alpha + \beta + \gamma = 0, \alpha\beta + \beta\gamma + \gamma\alpha = -3a, \alpha(\beta\gamma = -b \operatorname{Now} \Sigma(\alpha - \beta)(\alpha - \gamma) = 2\beta = 2\sum \left[\alpha^2 - \alpha\beta - \alpha\gamma + \beta\gamma\right]$
 $= (\alpha^2 + \beta^2 + \gamma^2) - (\alpha\beta + \beta\gamma + \gamma\alpha)$
 $= (\alpha + \beta + \gamma)^2 - 3(\alpha\beta + \beta\gamma + \gamma\alpha)$ 16, i) If $z = x + iy$ and $|z| = 1$, then find the locus $= 0 - 3(-3a)$
 $= 9a$
 $\therefore \Sigma(\alpha - \beta)(\alpha - \gamma) = 9a$
of z .
Sol: i) $z = x + iy$
 $z - 1 = (x - 1) + iy$
 $Tan^{-1} \frac{y}{x - 1} = \frac{\pi}{2}$

$$x - 1 = 0, y \neq 0$$
 also $y > 0$.
4 If $z \neq 0$ find $\operatorname{Arg} z + \operatorname{Arg} \overline{z}$.

Sol:
$$z = x + iy, \overline{z} = x - iy$$

Arg $z = \tan^{-1} \frac{y}{x}$ Arg $\overline{z} = \tan^{-1} \left(\frac{-y}{x}\right)$
Arg $z + \operatorname{Arg} \overline{z}$
 $\tan^{-1} \frac{y}{x} - \tan^{-1} \left(\frac{-y}{x}\right)$
0 when Arg $z \neq \pi$
 2π when Arg $z = \pi$

 $2z_1 + z_2$ If $\frac{z_2}{z_1}$; $z_1 \neq 0$ is an imaginary number then find the value of 5.

Sol.
$$\frac{z_2}{z_1} = ki \left| \frac{2 + \frac{z_2}{z_1}}{2 - \frac{z_2}{z_1}} \right|$$
$$\left| \frac{2 + ki}{2 - ki} \right| = \frac{\sqrt{4 + k^2}}{\sqrt{4 + k^2}} = 1$$

6. Find the number of positive division of 1080.

 \mathbf{Z}_1 **z**₂ \mathbf{Z}_1

 $1080 = 2^3 \times 3^3 \times 5^1$ Sol:

 \therefore The number of positive divisions of 1080

$$= 3+1 3+1 1+1$$
$$= 4 \times 4 \times 2 = 32$$

7 Find the number of ways in which 4 letters can be put in 4 addressed envelopes so that no letter goes into the envelope meant for it.

Required number of ways is Sol:

$$4!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right)=12-4+1=9.$$

8. Show that $C_0 + 2 \cdot C_1 + 4 \cdot C_2 + 8 \cdot C_3 + ... + 2^n \cdot C_n = 3^n$

Sol. L.H.S.=
$$C_0 + 2 \cdot C_1 + 4 \cdot C_2 + 8 \cdot C_3 + ... + 2^n \cdot C_n$$

= $C_0 + C_1(2) + C_2(2^2) + C_3(2^3) + ... + C_n(2^n)$
= $(1+2)^n = 3^n$
[$(1+x)^n = C_0 + C_1 \cdot x + C_2 x^2 + ... + C_n x^n$]

9. For a binomial distribution with mean 6 and variance 2, find the first two terms of the distribution.

Sol. Let n, p be the parameters of a binomial distribution

Mean (np) = 6 ...(1) and variance (n pq) = 2 ...(2) then $\frac{npq}{np} = \frac{2}{6} \Rightarrow q = \frac{1}{3} \Rightarrow \because p = 1 - q = 1 - \frac{1}{3} = \frac{2}{3}$ From (1) n p = 6 $n\left(\frac{2}{3}\right) = 6 \Rightarrow n = \frac{18}{2} = 9$

First two terms of the distribution are

p x = 0 =
$${}^{9}C_{0}\left(\frac{1}{3}\right)^{9} = \frac{1}{3^{9}}$$
 and
p x = 1 = ${}^{9}C_{1}\left(\frac{1}{3}\right)^{8}\left(\frac{2}{3}\right) = \frac{2}{3^{7}}$

10. Find the mean for the following distribution.

Xi	10	11	12	13
\mathbf{f}_{i}	3	12	18	12

Sol.

Xi	\mathbf{f}_{i}	$f_i \; x_i$	$ \mathbf{x}_i - \overline{\mathbf{x}} $	$f_i \mid x_i^{} - \overline{x} \mid$
10	3	30	1.87	5.61
11	12	132	0.87	10.44
12	18	216	0.13	2.24
13	12	156	1.13	13.56
	N = 45	$\Sigma f_i x_i = 534$		$\Sigma f_i \mid x_i - \overline{x} \mid = 31.95$

: Mean
$$(\bar{x}) = \frac{\sum f_i x_i}{N} = \frac{534}{45} = 11.87$$

11. If the roots of $ax^2 + bx + c = 0$ are real and equal to $\alpha = \frac{-b}{2a}$, then $\alpha \neq x \in R$, $ax^2 + bx + c$ and *a* will have same sign.

Proof:

The roots of $ax^2 + bx + c = 0$ are real and equal $\Rightarrow b^2 = 4ac \Rightarrow 4ac - b^2 = 0$ $\frac{ax^2 + bx + c}{a} = x^2 + \frac{b}{a}x + \frac{c}{a}$ $= \left(x + \frac{b}{2a}\right)^2 + \frac{c}{a} - \frac{b^2}{4a^2}$ $= \left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a^2}$ $= \left(x + \frac{b}{2a}\right)^2 > 0 \text{ for } \quad x \neq \frac{-b}{2a} = \alpha$

for $\alpha \neq x \in R, ax^2 + bx + c$ and a have the same sign.

12. If
$$x + iy = \frac{3}{2 + \cos\theta + i\sin\theta}$$
 then show that $x^2 + y^2 = 4x - 3$.
 $x + iy = \frac{3}{2 + \cos\theta + i\sin\theta}$
 $= \frac{3(2 + \cos\theta - i\sin\theta)}{(2 + \cos\theta)^2 - i^2 \sin^2\theta}$
 $= \frac{3(2 + \cos\theta - i\sin\theta)}{4 + \cos^2\theta + 4\cos\theta + \sin^2\theta}$
 $= \frac{6 + 3\cos\theta - 3i\sin\theta}{5 + 4\cos\theta}$
 $= \frac{6 + 3\cos\theta}{5 + 4\cos\theta} + \frac{-3i\sin\theta}{5 + 4\cos\theta}$
 $x = \frac{6 + 3\cos\theta}{5 + 4\cos\theta}, y = \frac{-3\sin\theta}{5 + 4\cos\theta}$

$$x^{2} + y^{2} = \left(\frac{6+3\cos\theta}{5+4\cos\theta}\right)^{2} + \left(\frac{-3\sin\theta}{5+4\cos\theta}\right)^{2}$$
$$= \frac{36+9\cos^{2}\theta+36\cos\theta+9\sin^{2}\theta}{(5+4\cos\theta)^{2}}$$
$$= \frac{45+36\cos\theta}{(5+4\cos\theta)^{2}}$$
$$= \frac{9(5+4\cos\theta)}{(5+4\cos\theta)^{2}}$$
$$x^{2} + y^{2} = \frac{9}{5+4\cos\theta}$$
$$R.H.S. =$$
$$4x - 3 = \frac{4(6+3\cos\theta)}{5+4\cos\theta} - 3$$
$$= \frac{24+12\cos\theta-15-12\cos\theta}{5+4\cos\theta}$$
$$= \frac{9}{5+4\cos\theta}$$
$$\therefore x^{2} + y^{2} = 4x - 3.$$

13. If the letters of the word BRING are permuted in all possible ways and the words thus formed are arranged in the dictionary order, then find the 59th word.

Sol: Given word is BRING.

 \therefore The alphabetical order of the letter is :

B, G, I, N, R.

In the dictionary order, first we write all words beginning with B.

Clearly the number of words beginning with B are 4! = 24.

Similarly the number of words begin with G are 4! = 24.

Since the words begin with b and G sum to 48, the 59th word must start with I.

Number of words given by IB = 3! = 6

Hence the 59th word must start with IG.

Number of words begin with IGB = 2! = 2

Number of words begin with IGN = 2! = 2

 \therefore Next word is 59th = IGRBN.

14. A double decker mini bus has 8 seats in the lower and 10 seats in the upper deck. Find the no. of ways of arranging 18 persons in the bus, if 3 children want to go the upper deck and 4 old people cannot go to the upper deck?

Sol: Allowing 3 children to the upper deck and 4 old people to the lower deck, we are left with 11 people and 11 seats (7 seats in the upper deck and 4in the lower deck). we can select 7 people in ${}^{11}C_7$ ways. The remaining 4 persons go to the lower deck.

Now, we can arrange 10 persons (3 children and 7 others) in the upper deck and 8 persons (4 old people and 4 others) in the lower deck in (10)! and (8)! ways respectively. Hence the required number of arrangements

 $= {}^{11}C_7 \times 10! 8!$ 15. resolve $\frac{x^2 + 1}{(x^2 + x + 1)^2}$ into partial fractions. Sol. Let $\frac{x^2 + 1}{(x^2 + x + 1)^2} = \frac{Ax + B}{x^2 + x + 1} + \frac{Cx + D}{(x^2 + x + 1)^2}$ Multiplying with $(x^2 + x + 1)^2$ $x^2 + 1 = (Ax + B)(x^2 + x + 1) + (Cx + D)$ Equating the coefficients of x^3 , A = 0Equating the coefficients of x^2 , $A + B = 1 \Rightarrow B = 1$ Equating the coefficients of x, A + B + C = 0 $\Rightarrow 1 + C = 0 \Rightarrow C = -1$ Equating the constant, B + D = 1 $\Rightarrow D = 1 - B = 1 - 1 = 0$ $\therefore Ax + B = 1$, Cx + D = -x $\therefore \frac{x^2 + 1}{(x^2 + x + 1)^2} = \frac{1}{x^2 + x + 1} - \frac{x}{(x^2 + x + 1)^2}$

16. A, B, C are 3 newspaper from a city. 20% of the population read A, 16% read B, 14% read C, 8% both B and C, 2% all the three. Find the percentage of the population who read atleast one newspaper.

Sol. Given p A
$$=\frac{20}{100}=0.2$$

p B $=\frac{16}{100}=0.16$
p C $=\frac{14}{100}=0.14$

p A
$$\cap$$
 B = $\frac{8}{100}$ = 0.08
p B \cap C = $\frac{4}{100}$ = 0.04
p A \cap C = $\frac{5}{100}$ = 0.05
p A \cap B \cap C = $\frac{2}{100}$ = 0.02

 $p A \cup B \cup C = p A + p B + p C - p A \cap B$ $-p B \cap C - p C \cap A + p A \cap B \cap C$

= 0.2 + 0.16 + 0.14 - 0.08 - 0.04 - 0.05 + 0.02= 0.52 - 0.17 = 0.35

Percentage of population who read atleast one newspaper = $0.35 \times 100 = 35\%$

independent 17. If Α, Β, С are events, show that $A \cup B$ and C are independent events. Sol. : A, B, C are independent events. \Rightarrow A, B; B, C; C, A are also independent events. $P(A \cap B \cap C) = P(A)P(B)P(C)$ $P(A \cap C) = P(A)P(C)$ $P(B \cap C) = P(B)P(C)$ $P(A \cap B) = P(A)P(B)$ $P[(A \cup B) \cap C] = P[(A \cap C) \cup (B \cap C)]$ $= P(A \cap C) + P(B \cap C) - P[(A \cap C) \cap (B \cap C)]$ $= P(A)P(C) + P(B)P(C) - P(A \cap B \cap C)$ P(A)P(C) + P(B)P(C) - P(A)P(B)P(C)= [P(A) + P(B) - P(A)P(B)]P(C) $= P(A \cup B) \cdot P(C)$

 \therefore A \cup B and C are independent events.

18. Solve $18x^3 + 81x^2 + 21x + 60 = 0$ given that one root is equal to half the sum of the remaining roots.

Sol: Suppose
$$\alpha, \beta, \gamma$$
 are the roots of
 $18x^3 + 81x^2 + 121x + 60 = 0$
Sum $\alpha + \beta + \gamma = \frac{-81}{18} = \frac{-9}{2}$ ------(1)
 $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{121}{18}$ ------(2)
 $\alpha\beta\gamma = \frac{-60}{18} = \frac{-10}{3}$ -------(3)
 \therefore One root is equal to half of the sum of the remaining two
Let $\alpha = \frac{1}{2}, \beta + \gamma$
Substitute in (1)
 $\alpha + 2\alpha = -\frac{9}{2} \Rightarrow \alpha = \frac{-3}{2}$
 $\therefore \beta + \gamma = 2\alpha = 2\left(-\frac{3}{2}\right) = -3$
From (3)
 $\left(-\frac{3}{2}\right), \beta\gamma = \frac{-10}{3}$
 $\Rightarrow \beta\gamma = \frac{20}{9}$
 $\therefore \beta - \gamma = \frac{2}{9}, \beta = \frac{81-80}{9} = \frac{1}{9}$
 $\therefore \beta - \gamma = \frac{1}{3}$
Add $2\beta = \frac{1}{3}, -3 = \frac{-8}{3} \Rightarrow \beta = \frac{-4}{3}, \gamma = \frac{-5}{3}$
At $2\beta = \frac{1}{3}, -3 = \frac{-8}{3} \Rightarrow \beta = \frac{-4}{3}, \gamma = \frac{-5}{3}$
Show that $\left\{\frac{1 + \sin\frac{\pi}{8} + i\cos\frac{\pi}{8}}{1 + \sin\frac{\pi}{8} - i\cos\frac{\pi}{8}}\right\}^{8/3} = -1$

19.

Solution : -

$$\begin{aligned} \text{LHS} &= \left\{ \frac{1 + \sin\frac{\pi}{8} + i\cos\frac{\pi}{8}}{1 + \sin\frac{\pi}{8} - i\cos\frac{\pi}{8}} \right\}^{8/3} \\ &\left\{ \frac{1 + \cos\left(\frac{\pi}{2} - \pi/8\right) + i\sin\left(\frac{\pi}{2} - \pi/8\right)}{1 + \cos\left(\frac{\pi}{2} - \pi/8\right) - 1\sin\left(\frac{\pi}{2} - \pi/3\right)} \right\}^{8/3} \\ &\left\{ \frac{1 + \cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8}}{1 + \cos\frac{3\pi}{8} - i\sin\frac{3\pi}{8}} \right\}^{8/3} = \left\{ \frac{2\cos^2\frac{3\pi}{16} + 2i\sin\frac{3\pi}{16}\cos\frac{3\pi}{16}}{2\cos^2\frac{3\pi}{16} - 2i\sin\frac{3\pi}{16}\cos\frac{3\pi}{16}} \right\}^{8/3} \\ &\left[\frac{2\cos\frac{3\pi}{16} \left\{ \cos\frac{3\pi}{16} + 1\sin\frac{3\pi}{16} \right\}}{2\cos\frac{3\pi}{16} - i\sin\frac{3\pi}{16}} \right]^{\frac{8}{3}} \\ &\left[\frac{\left(\cos\frac{3\pi}{16} + i\sin\frac{3\pi}{16} \right) \left(\cos\frac{3\pi}{16} + i\sin\frac{3\pi}{16} \right)}{\left(\cos\frac{3\pi}{16} - i\sin\frac{3\pi}{16} \right)} \right]^{\frac{8}{3}} \\ &\left[\frac{\left(\cos\frac{3\pi}{16} + i\sin\frac{3\pi}{16} \right) \left(\cos\left(\frac{3\pi}{16} + i\sin\frac{3\pi}{16} \right)}{\cos^2\frac{3\pi}{16} + i\sin\frac{3\pi}{16}} \right)^{\frac{8}{3}} \\ &\left[\frac{\left(\cos\frac{3\pi}{16} + i\sin\frac{3\pi}{16} \right) \left(\cos\left(\frac{3\pi}{16} + i\sin\frac{3\pi}{16} \right)}{\cos^2\frac{3\pi}{16} + i\sin\frac{3\pi}{16}} \right)^{\frac{8}{3}} \\ &\left[\frac{\left(\cos\frac{3\pi}{16} + i\sin\frac{3\pi}{16} \right) \left(\cos\left(\frac{3\pi}{16} + i\sin\frac{3\pi}{16} \right)}{\cos^2\frac{3\pi}{16} + i\sin\frac{3\pi}{16}} \right)^{\frac{8}{3}} \\ &\left[\frac{\cos\frac{3\pi}{16} + i\sin\frac{3\pi}{16}}{\cos^2\frac{3\pi}{16} + i\sin\frac{3\pi}{16}} \right]^{\frac{8}{3}} \\ &\left[\cos\frac{3\pi}{8} + i\sin\frac{3\pi}{8} \right]^{\frac{8}{3}} \end{aligned} \right\}^{\frac{8}{3}} \end{aligned}$$

20. If the coefficients of r^{th} , $(r+1)^{th}$ and $(r+2)^{th}$ terms in the expansion of $(1 + x)^{th}$ are in A.P. then show that $n^2 - (4r + 1)n + 4r^2 - 2 = 0$. Sol. Coefficient of $T_r = {}^nC_{r-1}$ Coefficient of $T_{r+1} = {}^{n}C_{r}$ Coefficient of $T_{r+2} = {}^{n}C_{r}$ Given ${}^{n}C_{r-1}$, ${}^{n}C_{r}$, ${}^{n}C_{r+1}$ are in A.P. $\Rightarrow 2 {}^{n}C_{r} = {}^{n}C_{r-1} + {}^{n}C_{r+1}$

$$\begin{aligned} \Rightarrow 2 \frac{n!}{(n-r)!!} &= \frac{n!}{(n-r+1)!(r-1)!} \\ &+ \frac{n!}{(n-r-1)!(r+1)!} \\ &\Rightarrow \frac{2}{(n-r)!} &= \frac{1}{(n-r+1)(n-r)} + \frac{1}{(r+1)r} \\ &\Rightarrow \frac{1}{n-r} \left[\frac{2}{r} - \frac{1}{n-r+1}\right] &= \frac{1}{(r+1)r} \\ &\Rightarrow \frac{1}{n-r} \left[\frac{2n-2r+2-r}{(n-r+1)}\right] &= \frac{1}{r(r+1)} \\ &\Rightarrow (2n-3r+2)(r+1) &= (n-r)(n-r+1) \\ &\Rightarrow 2nr+2n-3r^2 - 3r+2r+2 \\ &= n^2 - 2nr+r^2 + n-r \\ &\Rightarrow n^2 - 4nr + 4t^2 - n - 2 = 0 \\ &\therefore n^2 - (4r+1)n + 4r^2 - 2 = 0 \\ 21. Find the sum of the infinite series $\frac{7}{5} \left(1 + \frac{10^2}{12} + \frac{1+3}{12} \cdot \frac{1}{10} + \frac{1\cdot3\cdot5}{1\cdot2\cdot3} \cdot \frac{1}{10^6} + \dots \right). \\ Sol. \quad 1 + \frac{1}{10^2} + \frac{1\cdot3}{1\cdot2} \frac{1}{10^4} + \frac{1\cdot3\cdot5}{1\cdot2\cdot3} \frac{1}{10^6} + \frac{1\cdot3\cdot5}{3t} \left(\frac{1}{100} \right)^3 + \dots \\ &= 1 + \frac{1}{1!} \left(\frac{1}{100} \right) + \frac{1\cdot3}{2!} \left(\frac{1}{100} \right)^2 + \frac{3\cdot3}{3t} \left(\frac{1}{100} \right)^3 + \dots \\ Comparing with (1 + x)^{n/3} \\ &= 1 + \frac{p}{1!} \left(\frac{x}{q} \right) + \frac{p(p+q)}{2!} \left(\frac{x}{q} \right)^2 p = 1, p+q=3, q= 2 \\ &= \frac{x}{q} = \frac{1}{100} = x = \frac{9}{100} = \frac{2}{100} = 0.02 \\ &\therefore 1 + \frac{1}{10^2} + \frac{1\cdot3}{1\cdot2} \frac{1}{10^4} + \frac{1\cdot3\cdot5}{1\cdot2\cdot3} \frac{1}{10^6} + \dots \right] \\ &= (1 - 0.02)^{-1/2} = (0.98)^{-1/2} = \left(\frac{49}{50} \right)^{-1/2} = \left(\frac{50}{49} \right)^{1/2} = \frac{5\sqrt{2}}{7} \\ &\therefore \frac{7}{5} \left[1 + \frac{1}{10^2} + \frac{1\cdot3}{1\cdot2} \frac{1}{10^4} + \frac{1\cdot3\cdot5}{1\cdot2\cdot3} \frac{1}{10^6} + \dots \right] \end{aligned}$$$

22. The probabilities of three mutually exclusive events are respectively given

as
$$\frac{1+3p}{3}, \frac{1-p}{4}, \frac{1-2p}{2}$$
. Prove that $\frac{1}{3} \le p \le \frac{1}{2}$.

Sol. Suppose A, B, C are exclusive events such that

$$P(A) = \frac{1+3p}{3}$$
$$P(B) = \frac{1-p}{4}$$
$$P(C) = \frac{1-2p}{2}$$

We know that

$$0 \le P(A) \le 1 \qquad 0 \le P(B) \le 1$$

$$0 \le \frac{1+3p}{3} \le 1 \qquad 0 \le \frac{1-p}{4} \le 1$$

$$0 \le 1+3p \le 3 \qquad 0 \le 1-p \le 4$$

$$-1 \le 3p \le 3-1 \qquad -1 \le -p \le 4-1$$

$$-1 \le -p \le 4-1$$

$$1 \ge p \ge -3$$

$$-3 \le p \le 1 \qquad ...(2)$$

$$0 \le P(C) \le 1$$

$$0 \le \frac{1-2p}{2} \le 1$$

$$0 \le 1-2p \le 2$$

$$-1 \le -2p \le 2-1$$

$$1 \ge 2p \ge -1$$

$$\frac{1}{2} \ge p \ge -\frac{1}{2}$$

$$\frac{-1}{2} \le p \le \frac{1}{2} \qquad ...(3)$$

Since A, B, C are exclusive events,

$$0 \le P(A \cup B \cup C) \le 1$$

$$\Rightarrow 0 \le P(A) + P(B) + P(C) \le 1$$

$$\Rightarrow 0 \le \frac{4+12P+3-3P+6-12P}{12} \le 1$$

$$\Rightarrow 0 \le \frac{13-3P}{12} \le 1$$

$$\Rightarrow 0 \le 13 - 3P \le 12$$

$$\Rightarrow -13 \le -3P \le 12 - 13$$

$$\Rightarrow 13 \ge 3P \ge 1$$

$$\Rightarrow \frac{13}{3} \ge P \ge \frac{1}{3}$$

$$\Rightarrow \frac{1}{3} \le \frac{1}{3} \ge \frac{1}{3} = \frac{1}{2}$$

$$(1), (2), (3) and (4) holds.$$

$$23. if A random variable x has the following probability distribution.$$

$$\hline \frac{X = x}{|P(X = x)|} 0 | \frac{1}{|2|} \ge \frac{1}{3} \frac{4}{|3|} \frac{5}{|6|} \frac{6}{|7|} \frac{7}{|P(X = x)|} 0 | \frac{1}{|2|} \frac{2}{|3|} \frac{4}{|2|x|} \frac{1}{3|x|} \frac{1}{|2|x|^2} \frac{$$

$$= 66\left(\frac{1}{100}\right) + 30 \times \left(\frac{1}{10}\right)$$

= 0.66 + 3 = 3.66
iii) p(0 < x < 5)
p(0 < x < 5) =
p(x = 1) + p(x = 2) + p(x = 3) + p(x = 4)
= k + 2k + 2k + 3k = 8k
= 8\frac{1}{10} = 8\frac{1}{10} = \frac{4}{5}

24. The scores of two cricketers A and B in 10 innings are given below. Find who is a better run getter and who is a more consistent player.

Scores of A : x_i	40	25	19	80	38	8	67	121	66	76
Scores of B : y_i	28	70	31	0	14	111	66	31	25	4

Sol. For cricketer A :
$$\overline{x} = \frac{540}{10} = 54$$

For cricketer B : $\overline{y} = \frac{380}{10} = 38$

Xi	(x _i - median)	$(x_i-median)^2$	yi	(y _i - y median)	$(y_i - y median)^2$
40	-14	196	28	-10	100
25	29	841	70	32	1024
19	-35	1225	31	-7	49
80	26	676	0	-38	1444
38	-16	256	14	-24	576
8	-46	2116	111	73	5329
67	13	169	66	28	784
121	67	4489	31	-7	49
66	12	144	25	-13	169
76	22	484	4	-34	1156

www.sakshieducation.com

$$\Sigma x_i = 540$$
 10596 $\Sigma y_i = 380$ 10680

Standard deviation of scores of A = $\sigma_x = \sqrt{\frac{1}{n}\Sigma(x_i - \overline{x})^2} = \sqrt{\frac{10596}{10}} = \sqrt{1059.6} = 32.55$ Standard deviation of scores of B = $\sigma_y = \sqrt{\frac{1}{n}\Sigma(y_i - \overline{y})^2} = \sqrt{\frac{10680}{10}} = \sqrt{1068} = 32.68$ C.V. of A = $\frac{\sigma_x}{\overline{x}} \times 100 = \frac{32.55}{54} \times 100 = 60.28$ C.V. of B = $\frac{\sigma_y}{\overline{y}} \times 100 = \frac{32.68}{38} \times 100 = 86$ Since $\overline{x} > \overline{y}$, cricketer A is a better run getter (scorer).

Since C.V. of A < C.V. of B, cricketer A is also a more consistent player.