MATHEMATICS PAPER IIA

TIME : 3hrs
Max. Marks. 75
Note: This question paper consists of three sections A, B and C.

SECTION A

VERY SHORT ANSWER TYPE QUESTIONS.
$10 \times 2=20$
1.If $x^{2}-6 x+5=0$ and $x^{2}-3 a x+35=0$ have a common root, then find a.
2. If $\alpha, \quad \beta, \quad \gamma \quad$ are the roots of the equation $\mathrm{x}^{3}-3 \mathrm{ax}+\mathrm{b}=0$, then prove that $\Sigma(\alpha-\beta)(\alpha-\gamma)=9 \mathrm{a}$.
3. If the amplitude of $(z-1)$ is $\pi / 2$ then find the locus of z.

4 If $\mathrm{z} \neq 0$ find $\operatorname{Arg} \mathrm{z}+\operatorname{Arg} \overline{\mathrm{z}}$.
5. If $\frac{z_{2}}{z_{1}} ; z_{1} \neq 0$ is an imaginary number then find the value of $\left|\frac{2 z_{1}+z_{2}}{2 z_{1}-z_{2}}\right|$.
6.Find the number of positive division of 1080.
7.Find the number of ways in which 4 letters can be put in 4 addressed envelopes so that no letter goes into the envelope meant for it.
8. Show that $\mathrm{C}_{0}+2 \cdot \mathrm{C}_{1}+4 \cdot \mathrm{C}_{2}+8 \cdot \mathrm{C}_{3}+\ldots+2^{\mathrm{n}} \cdot \mathrm{C}_{\mathrm{n}}=3^{\mathrm{n}}$
9. For a binomial distribution with mean 6 and variance 2 , find the first two terms of the distribution.
10. Find the mean for the following distribution.

x_{i}	10	11	12	13
f_{i}	3	12	18	12

SECTION B

SHORT ANSWER TYPE QUESTIONS. ANSWER ANY FIVE OF THE FOLLOWING
$5 \times 4=20$
 that $a x^{2}+b x+c$ and a will have same sign.
12. If $x+i y=\frac{3}{2+\cos \theta+i \sin \theta}$ then show that $x^{2}+y^{2}=4 x-3$.
13. If the letters of the word BRING are permuted in all possible ways and the words thus formed are arranged in the dictionary order, then find the $59^{\text {th }}$ word.
14. A double decker mini bus has 8 seats in the lower and 10 seats in the upper deck. Find the no. of ways of arranging 18 persons in the bus, if 3 children want to go the upper deck and 4 old people cannot go to the upper deck?
15. resolve $\frac{x^{2}+1}{\left(x^{2}+x+1\right)^{2}}$ into partial fractions.
16. A, B, C are 3 newspaper from a city. 20% of the population read A, 16% read B, 14% read C, 8% both B and C, 2% all the three. Find the percentage of the population who read atleast one newspaper.
17. If $A, B, \quad C$ are independent events, show that $\mathrm{A} \cup \mathrm{B}$ and C are independent events.

SECTION C
 LONG ANSWER TYPE QUESTIONS. ANSWER ANY FIVE OF THE FOLLOWING

18. Solve $18 x^{3}+81 x^{2}+21 x+60=0$ given that one root is equal to half the sum of the remaining roots.
19. Show that $\left\{\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right\}^{8 / 3}=-1$
20. If the coefficients of $\mathrm{r}^{\text {th }},(\mathrm{r}+1)^{\text {th }}$ and $(\mathrm{r}+2)^{\text {th }}$ terms in the expansion of $(1+\mathrm{x})^{\text {th }}$ are in A.P. then show that $n^{2}-(4 r+1) n+4 r^{2}-2=0$.
21. Find the sum of the infinite series $\frac{7}{5}\left(1+\frac{1}{10^{2}}+\frac{1 \cdot 3}{1 \cdot 2} \frac{1}{10^{4}}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \frac{1}{10^{6}}+\ldots\right)$.
22. The probabilities of three mutually exclusive events are respectively given as $\frac{1+3 \mathrm{p}}{3}, \frac{1-\mathrm{p}}{4}, \frac{1-2 \mathrm{p}}{2}$. Prove that $\frac{1}{3} \leq \mathrm{p} \leq \frac{1}{2}$.
23. if A random variable x has the following probability distribution.

$\mathrm{X}=\mathrm{x}$	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0	k	2 k	2 k	3 k	K^{2}	$2 \mathrm{k}^{2} 7 \mathrm{k}^{2}+\mathrm{k}$	

Find i) k ii) the mean and iii) $p(0<x<5)$.
24. The scores of two cricketers A and B in 10 innings are given below. Find who is a better run getter and who is a more consistent player.

Scores of A : x_{i}	40	25	19	80	38	8	67	121	66	76
Scores of B : y_{i}	28	70	31	0	14	111	66	31	25	4

SOLUTIONS

1.If $x^{2}-6 x+5=0$ and $x^{2}-3 a x+35=0$ have a common root, then find a.

Sol: $x^{2}-6 x+5=0$
$(x-5)(x-1)=0$
$\mathrm{x}=5,1$
Now, 5, 1 satisfy
$\mathrm{x}^{2}-3 \mathrm{ax}+35=0$
$25-15 a+35=0$
$60=15 \mathrm{a}$
$\mathrm{a}=4$
$1-3 a+35=0$
$3 \mathrm{a}=36$
$\mathrm{a}=12$.
2. If $\alpha, \quad \beta, \quad \gamma \quad$ are the roots of the equation $\mathrm{x}^{3}-3 \mathrm{ax}+\mathrm{b}=0$, then prove that $\Sigma(\alpha-\beta)(\alpha-\gamma)=9 \mathrm{a}$.
Sol: Given α, β, γ are the roots of

$$
x^{3}-3 a x+b=0
$$

$\therefore \alpha+\beta+\gamma=0, \alpha \beta+\beta \gamma+\gamma \alpha=-3 \mathrm{a}, \alpha \beta \gamma=-\mathrm{b}$ Now $\Sigma(\alpha-\beta)(\alpha-\gamma)=$ $=\Sigma\left[\alpha^{2}-\alpha \beta-\alpha \gamma+\beta \gamma\right]$
$=\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)-(\alpha \beta+\beta \gamma+\gamma \alpha)$
$=(\alpha+\beta+\gamma)^{2}-3(\alpha \beta+\beta \gamma+\gamma \alpha) \quad$ 16. i) If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $|\mathrm{z}|=1$, then find the locus
$=0-3(-3 \mathrm{a})$
$=9 \mathrm{a}$
$\therefore \Sigma(\alpha-\beta)(\alpha-\gamma)=9 a$
of Z .
3. If the amplitude of $(z-1)$ is $\pi / 2$ then find the locus of z.

Sol:

$$
\text { i) } \quad z=x+i y
$$

$$
\begin{aligned}
& \mathrm{z}-1=(\mathrm{x}-1)+\mathrm{iy} \\
& \quad \operatorname{Tan}^{-1} \frac{\mathrm{y}}{\mathrm{x}-1}=\frac{\pi}{2}
\end{aligned}
$$

$$
x-1=0, y \neq 0 \text { also } y>0 .
$$

4 If $z \neq 0$ find $\operatorname{Arg} z+\operatorname{Arg} \bar{z}$.

Sol: $\quad z=x+i y, \bar{z}=x-i y$

$$
\operatorname{Arg} z=\tan ^{-1} \frac{y}{x} \quad \operatorname{Arg} \bar{z}=\tan ^{-1}\left(\frac{-y}{x}\right)
$$

$\operatorname{Arg} z+\operatorname{Arg} \bar{z}$

$$
\tan ^{-1} \frac{y}{x}-\tan ^{-1}\left(\frac{-y}{x}\right)
$$

0 when $\operatorname{Arg} \mathrm{z} \neq \pi$
2π when $\operatorname{Arg} \mathrm{z}=\pi$
5. If $\frac{z_{2}}{z_{1}} ; z_{1} \neq 0$ is an imaginary number then find the value of $\left|\frac{2 z_{1}+z_{2}}{2 z_{1}-z_{2}}\right|$.

Sol. $\quad \frac{z_{2}}{z_{1}}=k i\left|\frac{2+\frac{z_{2}}{z_{1}}}{2-\frac{z_{2}}{z_{1}}}\right|$

$$
\left|\frac{2+\mathrm{ki}}{2-\mathrm{ki}}\right|=\frac{\sqrt{4+\mathrm{k}^{2}}}{\sqrt{4+\mathrm{k}^{2}}}=1
$$

6.Find the number of positive division of 1080.

Sol: $\quad 1080=2^{3} \times 3^{3} \times 5^{1}$
\therefore The number of positive divisions of 1080

$$
=3+1 \quad 3+1 \quad 1+1
$$

$$
=4 \times 4 \times 2=32
$$

7.Find the number of ways in which 4 letters can be put in 4 addressed envelopes so that no letter goes into the envelope meant for it.
Sol: Required number of ways is

$$
4!\left(\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}\right)=12-4+1=9
$$

8. Show that $\mathrm{C}_{0}+2 \cdot \mathrm{C}_{1}+4 \cdot \mathrm{C}_{2}+8 \cdot \mathrm{C}_{3}+\ldots+2^{\mathrm{n}} \cdot \mathrm{C}_{\mathrm{n}}=3^{\text {n }}$

Sol. L.H.S. $=\mathrm{C}_{0}+2 \cdot \mathrm{C}_{1}+4 \cdot \mathrm{C}_{2}+8 \cdot \mathrm{C}_{3}+\ldots+2^{\mathrm{n}} \cdot \mathrm{C}_{\mathrm{n}}$
$=\mathrm{C}_{0}+\mathrm{C}_{1}(2)+\mathrm{C}_{2}\left(2^{2}\right)+\mathrm{C}_{3}\left(2^{3}\right)+\ldots+\mathrm{C}_{\mathrm{n}}\left(2^{\mathrm{n}}\right)$
$=(1+2)^{n}=3^{n}$
$\left[(1+x)^{n}=C_{0}+C_{1} \cdot x+C_{2} x^{2}+\ldots+C_{n} x^{n}\right]$
9. For a binomial distribution with mean 6 and variance 2, find the first two terms of the distribution.
Sol. Let n, p be the parameters of a binomial distribution
Mean (np) $=6$
and variance $(\mathrm{n} p q)=2$
then $\frac{\mathrm{npq}}{\mathrm{np}}=\frac{2}{6} \Rightarrow \mathrm{q}=\frac{1}{3} \Rightarrow \because \mathrm{p}=1-\mathrm{q}=1-\frac{1}{3}=\frac{2}{3}$
From (1) n p $=6$

$$
\mathrm{n}\left(\frac{2}{3}\right)=6 \Rightarrow \mathrm{n}=\frac{18}{2}=9
$$

First two terms of the distribution are
p $\mathrm{x}=0={ }^{9} \mathrm{C}_{0}\left(\frac{1}{3}\right)^{9}=\frac{1}{3^{9}}$ and
p $\mathrm{x}=1={ }^{9} \mathrm{C}_{1}\left(\frac{1}{3}\right)^{8}\left(\frac{2}{3}\right)=\frac{2}{3^{7}}$
10. Find the mean for the following distribution.

x_{i}	10	11	12	13
f_{i}	3	12	18	12

Sol.

x_{i}	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|$	$\mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|$
10	3	30	1.87	5.61
11	12	132	0.87	10.44
12	18	216	0.13	2.24
13	12	156	1.13	13.56
	$\mathrm{~N}=45$	$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=$ 534		$\sum \mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|=31.95$

\therefore Mean $(\bar{x})=\frac{\sum f_{i} x_{i}}{N}=\frac{534}{45}=11.87$
11.If the roots of $a x^{2}+b x+c=0$ 0are real and equal to ${ }^{\alpha=\frac{-b}{2 a}}$, then $\alpha \neq \boldsymbol{x} \in \boldsymbol{R}, a x^{2}+b x$ $+c$ and a will have same sign.

Proof:

The roots of $a x^{2}+b x+c=0$ are real and equal

$$
\begin{aligned}
& \Rightarrow b^{2}=4 a c \Rightarrow 4 a c-b^{2}=0 \\
& \frac{a x^{2}+b x+c}{a}=x^{2}+\frac{b}{a} x+\frac{c}{a} \\
& =\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\frac{b^{2}}{4 a^{2}} \\
& \quad=\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}} \\
& =\left(x+\frac{b}{2 a}\right)^{2}>0 \text { for } \quad x \neq \frac{-b}{2 a}=\alpha
\end{aligned}
$$

for $\alpha \neq x \in R, a x^{2}+b x+c$ and a have the same sign.

$$
\begin{aligned}
& \text { 12. If } x+i y=\frac{3}{2+\cos \theta+i \sin \theta} \text { then show that } x^{2}+y^{2}=4 x-3 \text {. } \\
& \begin{aligned}
x+i y & =\frac{3}{2+\cos \theta+i \sin \theta} \\
& =\frac{3(2+\cos \theta-i \sin \theta)}{(2+\cos \theta)^{2}-i^{2} \sin ^{2} \theta} \\
& =\frac{3(2+\cos \theta-i \sin \theta)}{4+\cos ^{2} \theta+4 \cos \theta+\sin ^{2} \theta} \\
& =\frac{6+3 \cos \theta-3 i \sin \theta}{5+4 \cos \theta} \\
& =\frac{6+3 \cos \theta}{5+4 \cos \theta}+\frac{-3 i \sin \theta}{5+4 \cos \theta}
\end{aligned}
\end{aligned}
$$

$$
x=\frac{6+3 \cos \theta}{5+4 \cos \theta}, y=\frac{-3 \sin \theta}{5+4 \cos \theta}
$$

L.H.S. =

$$
\begin{aligned}
& x^{2}+y^{2}=\left(\frac{6+3 \cos \theta}{5+4 \cos \theta}\right)^{2}+\left(\frac{-3 \sin \theta}{5+4 \cos \theta}\right)^{2} \\
& =\frac{36+9 \cos ^{2} \theta+36 \cos \theta+9 \sin ^{2} \theta}{(5+4 \cos \theta)^{2}} \\
& =\frac{45+36 \cos \theta}{(5+4 \cos \theta)^{2}} \\
& =\frac{9(5+4 \cos \theta)}{(5+4 \cos \theta)^{2}} \\
& x^{2}+y^{2}=\frac{9}{5+4 \cos \theta} \\
& \text { R.H.S. }= \\
& 4 x-3=\frac{4(6+3 \cos \theta)}{5+4 \cos \theta}-3 \\
& =\frac{24+12 \cos \theta-15-12 \cos \theta}{5+4 \cos \theta} \\
& =\frac{9}{5+4 \cos \theta} \\
& \therefore x^{2}+y^{2}=4 x-3 .
\end{aligned}
$$

13. If the letters of the word BRING are permuted in all possible ways and the words thus formed are arranged in the dictionary order, then find the $59^{\text {th }}$ word.
Sol: Given word is BRING.
\therefore The alphabetical order of the letter is :
B, G, I, N, R.
In the dictionary order, first we write all words beginning with B.
Clearly the number of words beginning with B are $4!=24$.
Similarly the number of words begin with G are $4!=24$.
Since the words begin with b and G sum to 48 , the $59^{\text {th }}$ word must start with I.
Number of words given by IB $=3!=6$
Hence the $59^{\text {th }}$ word must start with IG.
Number of words begin with IGB $=2!=2$
Number of words begin with IGN $=2!=2$
\therefore Next word is $59^{\text {th }}=$ IGRBN.
14. A double decker mini bus has 8 seats in the lower and 10 seats in the upper deck. Find the no. of ways of arranging 18 persons in the bus, if 3 children want to go the upper deck and 4 old people cannot go to the upper deck?
Sol: Allowing 3 children to the upper deck and 4 old people to the lower deck, we are left with 11 people and 11 seats (7 seats in the upper deck and 4 in the lower deck). we can select 7 people in ${ }^{11} \mathrm{C}_{7}$ ways. The remaining 4 persons go to the lower deck.

Now, we can arrange 10 persons (3 children and 7 others) in the upper deck and 8 persons (4 old people and 4 others) in the lower deck in (10)! and (8)! ways respectively. Hence the required number of arrangements

$$
={ }^{11} \mathrm{C}_{7} \times 10!8!
$$

15. resolve $\frac{x^{2}+1}{\left(x^{2}+x+1\right)^{2}}$ into partial fractions.

Sol. Let $\frac{x^{2}+1}{\left(x^{2}+x+1\right)^{2}}=\frac{A x+B}{x^{2}+x+1}+\frac{C x+D}{\left(x^{2}+x+1\right)^{2}}$
Multiplying with $\left(x^{2}+x+1\right)^{2}$
$\mathrm{x}^{2}+1=(\mathrm{Ax}+\mathrm{B})\left(\mathrm{x}^{2}+\mathrm{x}+1\right)+(\mathrm{Cx}+\mathrm{D})$
Equating the coefficients of $x^{3}, A=0$
Equating the coefficients of x^{2},
$A+B=1 \Rightarrow B=1$
Equating the coefficients of x ,

$$
\begin{gathered}
A+B+C=0 \\
\Rightarrow 1+C=0 \Rightarrow C=-1
\end{gathered}
$$

Equating the constant, $\mathrm{B}+\mathrm{D}=1$
$\Rightarrow \mathrm{D}=1-\mathrm{B}=1-1=0$
$\therefore \mathrm{Ax}+\mathrm{B}=1, \mathrm{Cx}+\mathrm{D}=-\mathrm{x}$
$\therefore \frac{\mathrm{x}^{2}+1}{\left(\mathrm{x}^{2}+\mathrm{x}+1\right)^{2}}=\frac{1}{\mathrm{x}^{2}+\mathrm{x}+1}-\frac{\mathrm{x}}{\left(\mathrm{x}^{2}+\mathrm{x}+1\right)^{2}}$
16. A, B, C are 3 newspaper from a city. 20% of the population read A, 16% read B, 14% read C, 8% both B and C, 2% all the three. Find the percentage of the population who read atleast one newspaper.
Sol. Given p A $=\frac{20}{100}=0.2$
p $B=\frac{16}{100}=0.16$
p C $=\frac{14}{100}=0.14$

$$
\begin{aligned}
& \text { p } \mathrm{A} \cap \mathrm{~B}=\frac{8}{100}=0.08 \\
& \text { p } \mathrm{B} \cap \mathrm{C}=\frac{4}{100}=0.04 \\
& \text { p } \mathrm{A} \cap \mathrm{C}=\frac{5}{100}=0.05 \\
& \text { p } \mathrm{A} \cap \mathrm{~B} \cap \mathrm{C}=\frac{2}{100}=0.02
\end{aligned}
$$

$$
\begin{gathered}
p A \cup B \cup C=p A+p B+p C-p A \cap B \\
-p B \cap C-p C \cap A+p A \cap B \cap C
\end{gathered}
$$

$=0.2+0.16+0.14-0.08-0.04-0.05+0.02$
$=0.52-0.17=0.35$
Percentage of population who read atleast one newspaper $=0.35 \times 100=35 \%$
17. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are independent events, show that $\mathrm{A} \cup \mathrm{B}$ and C are independent events.
Sol. $\because \mathrm{A}, \mathrm{B}, \mathrm{C}$ are independent events.
$\Rightarrow A, B ; B, C ; C, A$ are also independent events.
$\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})$
$\mathrm{P}(\mathrm{A} \cap \mathrm{C})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{C})$
$\mathrm{P}(\mathrm{B} \cap \mathrm{C})=\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})$
$P[(A \cup B) \cap C]=P[(A \cap C) \cup(B \cap C)]$
$=\mathrm{P}(\mathrm{A} \cap \mathrm{C})+\mathrm{P}(\mathrm{B} \cap \mathrm{C})-\mathrm{P}[(\mathrm{A} \cap \mathrm{C}) \cap(\mathrm{B} \cap \mathrm{C})]$
$=P(A) P(C)+P(B) P(C)-P(A \cap B \cap C)$
$=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{C})+\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})$
$=[\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})] \mathrm{P}(\mathrm{C})$
$=\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \cdot \mathrm{P}(\mathrm{C})$
$\therefore A \cup B$ and C are independent events.
18. Solve $18 x^{3}+81 x^{2}+21 x+60=0$ given that one root is equal to half the sum of the remaining roots.

Sol: Suppose α, β, γ are the roots of
$18 x^{3}+81 x^{2}+121 x+60=0$
$\operatorname{Sum} \alpha+\beta+\gamma=\frac{-81}{18}=\frac{-9}{2}$
$\alpha \beta+\beta \gamma+\gamma \alpha=\frac{121}{18}$
$\alpha \beta \gamma=\frac{-60}{18}=\frac{-10}{3}$
\because One root is equal to half of the sum of the remaining two
Let $\alpha=\frac{1}{2} \beta+\gamma$
Substitute in (1)

$$
\begin{aligned}
& \alpha+2 \alpha=-\frac{9}{2} \Rightarrow \alpha=\frac{-3}{2} \\
& \because \beta+\gamma=2 \alpha=2\left(-\frac{3}{2}\right)=-3
\end{aligned}
$$

From (3)

$$
\left(-\frac{3}{2}\right) \beta \gamma=\frac{-10}{3}
$$

$$
\Rightarrow \beta \gamma=\frac{20}{9}
$$

$$
\because \beta-\gamma^{2}=\beta+\gamma^{2}-4 \beta \gamma
$$

$$
=-3^{2}-4\left(\frac{20}{9}\right)=\frac{81-80}{9}=\frac{1}{9}
$$

$\therefore \beta-\gamma=\frac{1}{3}$
$\beta+\gamma=-3$
Add $2 \beta=\frac{1}{3}-3=\frac{-8}{3} \Rightarrow \beta=\frac{-4}{3}, \gamma=\frac{-5}{3}$
The roots of the given equation are
$\frac{-3}{2}, \frac{-4}{3}$ and $\frac{-5}{3}$
19. Show that $\left\{\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right\}^{8 / 3}=-1$

Solution : -

$$
\left.\begin{array}{l}
\text { LHS }=\left\{\frac{1+\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}}{1+\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}}\right\}^{8 / 3} \\
\left\{\frac{1+\cos \left(\frac{\pi}{2}-\pi / 8\right)+i \sin \left(\frac{\pi}{2}-\pi / 8\right)}{1+\cos \left(\frac{\pi}{2}-\pi / 8\right)-1 \sin \left(\frac{\pi}{2}-\pi / 3\right)}\right\} \\
\left\{\frac{1+\cos \frac{3 \pi}{8}+i \sin \frac{3 \pi}{8}}{1+\cos \frac{3 \pi}{8}-i \sin \frac{3 \pi}{8}}\right\}^{8 / 3}=\left\{\frac{2 \cos ^{2} \frac{3 \pi}{16}+2 i \sin \frac{3 \pi}{16} \cos \frac{3 \pi}{16}}{2 \cos ^{2} \frac{3 \pi}{16}-2 i \sin \frac{3 \pi}{16} \cos \frac{3 \pi}{16}}\right\}^{8 / 3} \\
{\left[\begin{array}{l}
2 \cos \frac{3 \pi}{16}\left\{\cos \frac{3 \pi}{16}+1 \sin \frac{3 \pi}{16}\right\} \\
2 \cos \frac{3 \pi}{16}\left(\cos \frac{3 \pi}{16}-i \sin \frac{3 \pi}{16}\right)
\end{array}\right]^{\frac{8}{3}}} \\
\left.\left[\frac{\left(\cos \frac{3 \pi}{16}+i \sin \frac{3 \pi}{16}\right)\left(\cos \frac{3 \pi}{16}+i \sin \frac{3 \pi}{16}\right)}{\left(\cos \frac{3 \pi}{16}-i \sin \frac{3 \pi}{16}\right)\left(\cos \left(\frac{3 \pi}{16}+i \sin \frac{3 \pi}{16}\right)\right)}\right]^{8 / 3}\right) \\
{\left[\left(\cos \frac{3 \pi}{16}+i \sin \frac{3 \pi}{16}\right)^{2}\right]^{8 / 3}} \\
\left.\cos \frac{3 \pi}{16}+\sin \frac{3 \pi}{16}\right]^{2} \\
\left(\cos \frac{3 \pi}{8}+i \sin \frac{3 \pi}{8}\right)^{8 / 3} \\
\cos \pi+i \sin \pi=-1
\end{array}\right]
$$

20. If the coefficients of $\mathrm{r}^{\text {th }},(\mathrm{r}+1)^{\text {th }}$ and $(\mathrm{r}+2)^{\text {th }}$ terms in the expansion of $(1+\mathrm{x})^{\text {th }}$
are in A.P. then show that $n^{2}-(4 r+1) n+4 r^{2}-2=0$.
Sol. Coefficient of $\mathrm{T}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}-1}$
Coefficient of $\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$
Coefficient of $\mathrm{T}_{\mathrm{r}+2}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}$
Given ${ }^{n} C_{r-1},{ }^{n} C_{r},{ }^{n} C_{r+1}$ are in A.P.
$\Rightarrow 2{ }^{n} C_{r}={ }^{n} C_{r-1}+{ }^{n} C_{r+1}$

$$
\begin{aligned}
& \Rightarrow 2 \frac{n!}{(n-r)!r!}=\frac{n!}{(n-r+1)!(r-1)!} \\
& +\frac{n!}{(n-r-1)!(r+1)!} \\
& \Rightarrow \frac{2}{(n-r) r}=\frac{1}{(n-r+1)(n-r)}+\frac{1}{(r+1) r} \\
& \Rightarrow \frac{1}{\mathrm{n}-\mathrm{r}}\left[\frac{2}{\mathrm{r}}-\frac{1}{\mathrm{n}-\mathrm{r}+1}\right]=\frac{1}{(\mathrm{r}+1) \mathrm{r}} \\
& \Rightarrow \frac{1}{\mathrm{n}-\mathrm{r}}\left[\frac{2 \mathrm{n}-2 \mathrm{r}+2-\mathrm{r}}{\mathrm{r}(\mathrm{n}-\mathrm{r}+1)}\right]=\frac{1}{\mathrm{r}(\mathrm{r}+1)} \\
& \Rightarrow(2 \mathrm{n}-3 \mathrm{r}+2)(\mathrm{r}+1)=(\mathrm{n}-\mathrm{r})(\mathrm{n}-\mathrm{r}+1) \\
& \Rightarrow 2 \mathrm{nr}+2 \mathrm{n}-3 \mathrm{r}^{2}-3 \mathrm{r}+2 \mathrm{r}+2 \\
& =\mathrm{n}^{2}-2 \mathrm{nr}+\mathrm{r}^{2}+\mathrm{n}-\mathrm{r} \\
& \Rightarrow \mathrm{n}^{2}-4 \mathrm{nr}+4 \mathrm{r}^{2}-\mathrm{n}-2=0 \\
& \therefore n^{2}-(4 r+1) n+4 r^{2}-2=0
\end{aligned}
$$

21. Find the sum of the infinite series $\frac{7}{5}\left(1+\frac{1}{10^{2}}+\frac{1 \cdot 3}{1 \cdot 2} \frac{1}{10^{4}}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \frac{1}{10^{6}}+\ldots\right)$.

Sol. $1+\frac{1}{10^{2}}+\frac{1 \cdot 3}{1 \cdot 2} \frac{1}{10^{4}}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \frac{1}{10^{6}}+\ldots$

$$
=1+\frac{1}{1!}\left(\frac{1}{100}\right)+\frac{1 \cdot 3}{2!}\left(\frac{1}{100}\right)^{2}+\frac{1 \cdot 3 \cdot 5}{3!}\left(\frac{1}{100}\right)^{3}+\ldots
$$

Comparing with $(1-x)^{-p / q}$
$=1+\frac{p}{1!}\left(\frac{x}{q}\right)+\frac{p(p+q)}{2!}\left(\frac{x}{q}\right)^{2} p=1, p+q=3, q=2$
$\frac{\mathrm{x}}{\mathrm{q}}=\frac{1}{100} \Rightarrow \mathrm{x}=\frac{\mathrm{q}}{100}=\frac{2}{100}=0.02$
$\therefore 1+\frac{1}{10^{2}}+\frac{1 \cdot 3}{1 \cdot 2} \cdot \frac{1}{10^{4}}+\ldots=(1-\mathrm{x})^{-\mathrm{p} / \mathrm{q}}$
$=(1-0.02)^{-1 / 2}=(0.98)^{-1 / 2}=\left(\frac{49}{50}\right)^{-1 / 2}=\left(\frac{50}{49}\right)^{1 / 2}=\frac{5 \sqrt{2}}{7}$
$\therefore \frac{7}{5}\left[1+\frac{1}{10^{2}}+\frac{1 \cdot 3}{1 \cdot 2} \frac{1}{10^{4}}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \frac{1}{10^{6}}+\ldots\right]$
$=\frac{7}{5} \frac{5 \sqrt{2}}{7}=\sqrt{2}$
22. The probabilities of three mutually exclusive events are respectively given as $\frac{1+3 \mathrm{p}}{3}, \frac{1-\mathrm{p}}{4}, \frac{1-2 \mathrm{p}}{2}$. Prove that $\frac{1}{3} \leq \mathrm{p} \leq \frac{1}{2}$.
Sol. Suppose A, B, C are exclusive events such that

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A})=\frac{1+3 \mathrm{p}}{3} \\
& \mathrm{P}(\mathrm{~B})=\frac{1-\mathrm{p}}{4} \\
& \mathrm{P}(\mathrm{C})=\frac{1-2 \mathrm{p}}{2}
\end{aligned}
$$

We know that

$0 \leq \mathrm{P}(\mathrm{A}) \leq 1$	$0 \leq \mathrm{P}(\mathrm{B}) \leq 1$
$0 \leq \frac{1+3 \mathrm{p}}{3} \leq 1$	$0 \leq \frac{1-\mathrm{p}}{4} \leq 1$
$0 \leq 1+3 \mathrm{p} \leq 3$	$0 \leq 1-\mathrm{p} \leq 4$
$-1 \leq 3 \mathrm{p} \leq 3-1$	$-1 \leq-\mathrm{p} \leq 4-1$
$\frac{-1}{3} \leq \mathrm{p} \leq \frac{2}{3} \ldots(1)$	$1 \geq \mathrm{p} \geq-3$
$0 \leq \mathrm{P}(\mathrm{C}) \leq 1$	$-3 \leq \mathrm{p} \leq 1$
$0 \leq \frac{1-2 \mathrm{p}}{2} \leq 1$	

$0 \leq 1-2 p \leq 2$
$-1 \leq-2 p \leq 2-1$
$1 \geq 2 p \geq-1$
$\frac{1}{2} \geq \mathrm{p} \geq-\frac{1}{2}$
$\frac{-1}{2} \leq \mathrm{p} \leq \frac{1}{2}$...(3)
Since A, B, C are exclusive events,
$0 \leq \mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \leq 1$
$\Rightarrow 0 \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C}) \leq 1$
$\Rightarrow 0 \leq \frac{4+12 \mathrm{P}+3-3 \mathrm{P}+6-12 \mathrm{P}}{12} \leq 1$
$\Rightarrow 0 \leq \frac{13-3 \mathrm{P}}{12} \leq 1$

$$
\begin{align*}
& \Rightarrow 0 \leq 13-3 \mathrm{P} \leq 12 \\
& \Rightarrow-13 \leq-3 \mathrm{P} \leq 12-13 \\
& \Rightarrow 13 \geq 3 \mathrm{P} \geq 1 \\
& \Rightarrow \frac{13}{3} \geq \mathrm{P} \geq \frac{1}{3} \\
& \Rightarrow \frac{1}{3} \leq \mathrm{P} \leq \frac{13}{3} \tag{4}
\end{align*}
$$

Max. of $\left\{\frac{-1}{3},-3, \frac{-1}{2}, \frac{1}{3}\right\}=\frac{1}{3}$
Min. of $\left\{\frac{2}{3}, 1, \frac{1}{2}, \frac{13}{3}\right\}=\frac{1}{2}$
(1), (2), (3) and (4) holds .
23. if A random variable x has the following probability distribution.

$\mathrm{X}=\mathrm{x}$	0	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0	k	2 k	2 k	3 k	K^{2}	$2 \mathrm{k}^{2} 7 \mathrm{k}^{2}+\mathrm{k}$	

Find i) k ii) the mean and iii) $p(0<x<5)$.
Sol.
We know that $\sum_{i=1}^{n} p x_{i}=1$
i) $k=\frac{1}{10}$
ii)

$\mathrm{X}=\mathrm{x}$	0	1	2	3	4	5	6
$\mathrm{P}(\mathrm{X}=\mathrm{x})$	0	k	2 k	2 k	3 k	K^{2}	$2 \mathrm{k}^{2}$
$\mathrm{X}_{\mathrm{i}} \cdot \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)$	0	k	4 k	6 k	6 k	12 k	$5 \mathrm{k}^{2}$

Mean $=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{p} \quad \mathrm{x}=\mathrm{x}_{\mathrm{i}}$

$$
=0+\mathrm{k}+4 \mathrm{k}+6 \mathrm{k}+12 \mathrm{k}+5 \mathrm{k}^{2}+12 \mathrm{k}^{2}+49 \mathrm{k}^{2}+7 \mathrm{k}
$$

$$
=66 \mathrm{k}^{2}+30 \mathrm{k}
$$

$$
\begin{aligned}
& 0+\mathrm{k}+2 \mathrm{k}+2 \mathrm{k}+3 \mathrm{k}+\mathrm{K}^{2}+2 \mathrm{k}^{2}+7 \mathrm{k}^{2}+\mathrm{k}=1 \\
& \Rightarrow 10 \mathrm{k}^{2}+9 \mathrm{k}=1 \Rightarrow 10 \mathrm{k}^{2}+9 \mathrm{k}-1=0 \\
& \Rightarrow 10 \mathrm{k}^{2}+10 \mathrm{k}-\mathrm{k}-1=0 \\
& \Rightarrow 10 \mathrm{k}(\mathrm{k}+1)-1(\mathrm{k}+1)=0 \\
& \Rightarrow(10 \mathrm{k}-1)(\mathrm{k}+1)=0 \\
& \mathrm{~K}=\frac{1}{10},-1 \text { Since } \mathrm{k}>0 \quad \therefore \mathrm{k}=\frac{1}{10}
\end{aligned}
$$

$=66\left(\frac{1}{100}\right)+30 \times\left(\frac{1}{10}\right)$
$=0.66+3=3.66$
iii) $p(0<x<5)$
$p(0<x<5)=$
$\mathrm{p}(\mathrm{x}=1)+\mathrm{p}(\mathrm{x}=2)+\mathrm{p}(\mathrm{x}=3)+\mathrm{p}(\mathrm{x}=4)$
$=\mathrm{k}+2 \mathrm{k}+2 \mathrm{k}+3 \mathrm{k}=8 \mathrm{k}$
$=8 \frac{1}{10}=8 \frac{1}{10}=\frac{4}{5}$
24. The scores of two cricketers A and B in 10 innings are given below. Find who is a better run getter and who is a more consistent player,

Scores of A : x_{i}	40	25	19	80	38	8	67	121	66	76
Scores of B : y_{i}	28	70	31	0	14	111	66	31	25	4

Sol. For cricketer A : $\overline{\mathrm{x}}=\frac{540}{10}=54$
For cricketer B: $\overline{\mathrm{y}}=\frac{380}{10}=38$

x_{i}	$\left(x_{i^{-}}\right.$ median $)$	$\left.\begin{array}{c}\left(x_{i^{-}}\right. \\ \text {median }\end{array}\right)^{2}$	y_{i}	$\left(y_{i^{-}} y\right.$ median $)$	$\left(y_{i^{-}} y\right.$ median $)^{2}$
40	-14	196	28	-10	100
25	29	841	70	32	1024
19	-35	1225	31	-7	49
80	26	676	0	-38	1444
38	-16	256	14	-24	576
8	-46	2116	111	73	5329
67	13	169	66	28	784
121	67	4489	31	-7	49
66	12	144	25	-13	169
76	22	484	4	-34	1156

| $\Sigma \mathrm{x}_{\mathrm{i}}=540$ | 10596 | $\Sigma \mathrm{y}_{\mathrm{i}}=380$ |
| :--- | :--- | :--- | :--- |
| | | 10680 |

Standard deviation of scores of $A=\sigma_{x}=\sqrt{\frac{1}{n} \Sigma\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}=\sqrt{\frac{10596}{10}}=\sqrt{1059.6}=32.55$
Standard deviation of scores of $B=\sigma_{y}=\sqrt{\frac{1}{n} \Sigma\left(y_{i}-\bar{y}\right)^{2}}=\sqrt{\frac{10680}{10}}=\sqrt{1068}=32.68$
C.V. of $A=\frac{\sigma_{x}}{\overline{\mathrm{x}}} \times 100=\frac{32.55}{54} \times 100=60.28$
C.V. of $B=\frac{\sigma_{y}}{\bar{y}} \times 100=\frac{32.68}{38} \times 100=86$

Since $\bar{x}>\bar{y}$, cricketer A is a better run getter (scorer).
Since C.V. of A < C.V. of B, cricketer A is also a more consistent player.

