MATHEMATICS PAPER IIA

TIME : 3hrs
Max. Marks. 75
Note: This question paper consists of three sections A, B and C.
SECTION A
VERY SHORT ANSWER TYPE QUESTIONS.
$10 \times 2=20$

1. Find the changes in the sign of the $x^{2}-5 x+6$ expression and find their extreme values.

$$
x^{2}-5 x+6
$$

2. Form the polynomial equation whose roots are the squares of the roots of $x^{3}+3 x^{2}-7 x+6=0$
3. Write $\mathrm{z}=-7+\mathrm{i} \sqrt{21}$ in the polar form.
4. Find the number of $15^{\text {th }}$ roots of unity, which are also $25^{\text {th }}$ roots of unity.
5.If $1, \omega, \omega^{2}$ are the cube roots of units then prove that $x+y+z \quad x+y \omega+z \omega \quad x+y \omega^{2}+2 \omega=x^{3}+y^{3}+z^{3}-3 x y z$
6.Find the number of ways of arranging theletters of the word TRIANGLE. So that the relative positions of the vowels and consonants are not distributed
5. Find the number of 4 letter words that can be formed using the letters of the word PISTON in which atleast one letter is repeated.
6. Fin the numerically greatest term (s) in the expansion of

$$
(4+3 x)^{15} \text { when } x=\frac{7}{2}
$$

9. A poisson variable satisfies $p(x=1)=p(x=2)$. Find $p(x=5)$
10. Find the mean deviation about the median for the following data.

$$
13,17,16,11,13,10,16,11,18,12,17
$$

SECTION B

SHORT ANSWER TYPE QUESTIONS. ANSWER ANY FIVE OF THE FOLLOWING

11.Solve the ineqaution $\sqrt{(x-3)(2-x)}<\sqrt{4 x^{2}+12 x+11}$.
12. If $z=3+5 i$ then show that $z^{3}-10 z^{2}+58 z-136=0$.
13.Find the number of ways of arranging 8 men and 4 women around a circular table. In how many of them
(i) all the women come together
(ii) no two women come together
14.Find the number of ways of selecting 11 members cricket team from 7 batsman, 6 bowlers and 2 wickets keepers so that team contains 2 wicket keepers and atleast 4 bowlers.
15. Resolve $\frac{x^{2}-x+1}{(x+1)(x-1)^{2}}$ into partial fractions
16. Suppose that an unbiased pair of dice is rolled. Let A denote the event that the same number shows on each die. Let B denote the event that the sum is greater than 7. Find (i) $\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)$, (ii) $\mathrm{P}\left(\frac{\mathrm{B}}{\mathrm{A}}\right)$.
17. State and prove Addition Theorem on Probability.

SECTION C

LONG ANSWER TYPE QUESTIONS. ANSWER ANY FIVE OF THE FOLLOWING
$5 \times 7=35$
18. Solve the following equations

$$
x^{4}-10 x^{3}+26 x^{2}-10 x+1=0
$$

19. If $\cos \alpha+\cos \square+\cos \square=0=\sin \square+\sin \square+\sin \square$ prove thats ${ }^{2} \alpha+\cos ^{2} \square+$ $\cos ^{2} \square=\frac{3}{2}=\sin ^{2} \square+\sin ^{2} \square+\sin ^{2} \square$.
20. If the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the expansion of $(a+x)^{\text {n }}$ are respectively 240 , 720,1080 , find $\mathrm{a}, \mathrm{x}, \mathrm{n}$.
21. Prove that

$$
\left({ }^{2 n} C_{0}\right)^{2}-\left({ }^{2 n} C_{1}\right)^{2}+\left({ }^{2 n} C_{2}\right)^{2}-\left({ }^{2 n} C_{3}\right)^{2}+\ldots+\left({ }^{2 n} C_{2 n}\right)^{2}=(-1)^{n}{ }^{2 n} C_{n}
$$

22.The range of a random variable x is $\{0,1,2\}$. Given that $\mathrm{p}(\mathrm{x}=0)=3 \mathrm{c}^{3}, \mathrm{p}(\mathrm{x}=$ 1) $=4 \mathrm{c}-10 \mathrm{c}^{2}, \mathrm{p}(\mathrm{x}=2)=5 \mathrm{c}-1$
i) Find the value of c
ii) $\mathrm{p}(\mathrm{x}<1), \mathrm{p}(1<\mathrm{x} \leq 3)$
23. From the prices of shares X and Y given below, for 10 days of trading, find out which share is more stable?

X	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

24. Stete and prove Baye's Theorem or Inverse probability Theorem

solutions

1. Find the changes in the sign of the $x^{2}-5 x+6$ expression and find their extreme values.

$$
x^{2}-5 x+6
$$

Sol: i) $f(x)=x^{2}-5 x+6$

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=(\mathrm{x}-3)(\mathrm{x}-2) \\
& \mathrm{f}(\mathrm{x})<0 \\
& 2<\mathrm{x}<3 \\
& \text { and } \mathrm{f}(\mathrm{x})>0 \\
& (-\infty<\mathrm{x}<2) \cup(3<\mathrm{x}<\infty)
\end{aligned}
$$

$$
y=\left(x-\frac{5}{2}\right)^{2}+\frac{6-25}{4}
$$

$$
\mathrm{y}_{\min }=-\frac{1}{4}
$$

2. Form the polynomial equation whose roots are the squares of the roots of $x^{3}+3 x^{2}-7 x+6=0$

Sol: Given equation is

$$
f x=x^{3}+3 x^{2}-7 x+6=0
$$

Required equations is $f \sqrt{x}=0$

$$
\begin{aligned}
& \Rightarrow x \sqrt{x}+3 x-7 \sqrt{x}+6=0 \\
& \Rightarrow \sqrt{x} x-7=-3 x+6
\end{aligned}
$$

Squaring on both sides

$$
\begin{aligned}
& \Rightarrow x x-7^{2}=3 x+6^{2} \\
& \Rightarrow x x^{2}-14 x+49=9 x^{2}+36+36 x \\
& \Rightarrow x^{3}-14 x^{2}+49 x-9 x^{2}-36 x-36=0 \\
& \text { i.e., } x^{3}-23 x^{2}+13 x-36=0
\end{aligned}
$$

3. Write $\mathrm{z}=-7+\mathrm{i} \sqrt{21}$ in the polar form.

Sol: If $z=-7+i \sqrt{21}=x+i y$

$$
\text { then } \mathrm{x}=-\sqrt{7}, \mathrm{y}=\sqrt{21}, \mathrm{r}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}
$$

$$
=\sqrt{7+21}=\sqrt{28}=2 \sqrt{7}
$$

$$
\tan \theta=\frac{y}{x}=\frac{\sqrt{21}}{-\sqrt{7}}=-\sqrt{3}
$$

Since the given point lies in the second quadrant, we look for a solution of tan $\theta=-\sqrt{3}$ which lies in $\left(\frac{\pi}{2}, \pi\right)$. We find that $\theta=\frac{2 \pi}{3}$ is such a solution.

$$
\therefore-\sqrt{7}+\mathrm{i} \sqrt{21}=2 \sqrt{7} \text { cis } \frac{2 \pi}{3} \text { or }
$$

$$
2 \sqrt{7}\left[\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right]
$$

4. Find the number of $15^{\text {th }}$ roots of unity, which are also $25^{\text {th }}$ roots of unity.

Sol: $\quad \mathrm{x}=(1)^{1 / 15}$
$\mathrm{x}=[\cos 2 \mathrm{n} \pi+\mathrm{i} \sin 2 \mathrm{n} \pi]^{1 / 15}$
$\mathrm{x}=\cos \frac{2 \mathrm{n} \pi}{15}+\mathrm{i} \sin \frac{2 \mathrm{n} \pi}{15}$
$\mathrm{n}=0,1,2,3, \ldots 14$
$\mathrm{n}=3, \mathrm{~m}=5$
$\mathrm{x}=\cos \frac{2 \pi}{25}+\mathrm{i} \sin \frac{2 \pi}{25}$
$\mathrm{n}=9, \mathrm{~m}=15$
$\cos \frac{6 \pi}{5}+\mathrm{i} \sin \frac{6 \pi}{5}$
$\mathrm{x}=(1)^{1 / 25}$
$\mathrm{x}=[\cos 2 \mathrm{~m} \pi+\mathrm{i} \sin 2 \mathrm{~m} \pi]^{1 / 25}$
$\mathrm{x}=\cos \frac{2 \mathrm{~m} \pi}{25}+\mathrm{i} \sin \frac{2 \mathrm{~m} \pi}{25}$
$\mathrm{m}=0,1,2,3, \ldots 24$
$\mathrm{n}=6, \mathrm{~m}=10$
$\mathrm{x}=\cos \frac{4 \pi}{5}+\mathrm{i} \sin \frac{4 \pi}{5}$
$\mathrm{n}=12, \mathrm{~m}=20$
$\cos \frac{8 \pi}{5}+\mathrm{i} \sin \frac{8 \pi}{5}$
$\mathrm{n}=0, \mathrm{~m}=0$
5 roots common.
5. If $1, \omega, \omega^{2}$ are the cube roots of units then prove that $x+y+z \quad x+y \omega+z \omega \quad x+y \omega^{2}+2 \omega=x^{3}+y^{3}+z^{3}-3 x y z$

Solution: -

$$
\begin{array}{ll}
x+y+z & x+y \omega+z \omega^{2} \quad x+y \omega^{2}+z \omega \\
x+y+z & x^{2}+x y \omega^{2}+x z \omega+x y \omega+x y \omega+y^{2} \omega^{3}+y z \omega^{2}+x z \omega^{2}+y z \omega+z^{2} \omega^{3} \\
x+y+z & x^{2}+y^{2}+z^{2}+x y \omega^{2}+\omega+y z \omega+\omega^{2}+z x \omega+\omega^{2} \\
x+y+z & x^{2}+y^{2}+z^{2}-x y-y z-z x
\end{array}
$$

$$
x^{3}+y^{3}+z^{3}-3 x y z
$$

6.Find the number of ways of arranging theletters of the word TRIANGLE. So that the relative positions of the vowels and consonants are not distributed

Sol:
In the given, word
Number of vowels is 3
Number of consonants is 5
C CVVCCCV
Since the relative positions of the vowels and consonants are not disturbed.
The 3 vowels can be arranged in their relative positions in
3! Ways and the 5 consonants can be arranged in their
relative positions in 5 ! Ways.
\therefore The number of required arrangements $=3!5!=6 \quad 120=720$
7. Find the number of 4 letter words that can be formed using the letters of the word PISTON in which atleast one letter is repeated.
Sol: The word PISTON has 6 letters
The number of 4 letter words that can be formed using these 6 letters
(i) When repetition is allowed $=6^{4}$
(ii) When repetition is not allowed $={ }^{6} P_{4}$

The number of 4 letter words in which at least one letter repeated is

$$
=6^{4}-{ }^{6} P_{4}=1296-360=936
$$

8.Fin the numerically greatest term (s) in the expansion of

$$
(4+3 x)^{15} \text { when } x=\frac{7}{2}
$$

Sol. Write $(4+3 x)^{15}=\left[4\left(1+\frac{3}{4} x\right)\right]^{15}$

$$
\begin{equation*}
=4^{15}\left(1+\frac{3}{4} \mathrm{x}\right)^{15} \tag{1}
\end{equation*}
$$

First we find the numerically greatest term in the expansion of $\left(1+\frac{3}{4} \mathrm{x}\right)^{15}$
Write $X=\frac{3}{4} x$ and calculate $\frac{(n+1)|x|}{1+|x|}$
Here $|X|=\left(\frac{3}{4} X\right)=\frac{3}{4} \times \frac{7}{2}=\frac{21}{8}$
Now $\frac{(\mathrm{n}+1)|\mathrm{x}|}{1+|\mathrm{x}|}=\frac{15+1}{1+\frac{21}{8}} \cdot \frac{21}{8}$

$$
=\frac{16 \times 21}{29}=\frac{336}{29}=11 \frac{17}{29}
$$

Its integral part $\mathrm{m}=\left[11 \frac{17}{29}\right]=11$
$\mathrm{T}_{\mathrm{m}+1}$ is the numerically greatest term in the expansion $\left(1+\frac{3}{4} \mathrm{x}\right)^{15}$ and

$$
\mathrm{T}_{\mathrm{m}+1}=\mathrm{T}_{12}={ }^{15} \mathrm{C}_{11}\left(\frac{3}{4} \mathrm{x}\right)^{4}={ }^{15} \mathrm{C}_{11}\left(\frac{3}{4} \cdot \frac{7}{2}\right)^{11}
$$

\therefore Numerically greatest term in $(4+3 x)^{15}$

$$
=4^{15}\left[{ }^{15} \mathrm{C}_{11}\left(\frac{21}{8}\right)^{11}\right]={ }^{15} \mathrm{C}_{4} \frac{(21)^{11}}{2^{3}}
$$

9. A poisson variable satisfies $p(x=1)=p(x=2)$. Find $p(x=5)$

Sol. Given $p(x=1)=p(x=2)$

$$
\begin{aligned}
& \mathrm{p} \mathrm{x}=\mathrm{r}=\frac{\lambda^{\mathrm{r}} \mathrm{e}^{-\lambda}}{\mathrm{r}!}, \lambda>0 \\
& \frac{\lambda^{r} \mathrm{e}^{-\lambda}}{1!}=\frac{\lambda^{2} \mathrm{e}^{-\lambda}}{2!} \\
& \lambda=2,(\therefore \lambda>0) \\
& \therefore \mathrm{p} \mathrm{x}=5=\frac{2^{5} \mathrm{e}^{-2}}{5!} \\
& =\frac{32}{120 \mathrm{e}^{2}}=\frac{4}{15 \mathrm{e}^{2}}
\end{aligned}
$$

10. Find the mean deviation about the median for the following data.
$13,17,16,11,13,10,16,11,18,12,17$
Sol. Expressing the given data in the ascending order.
We get $10,11,11,12,13,13,16,16,17,17,18$
Mean (M) of these 11 observations is 13 .
The absolute values of deviations are $\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|=3,2,2,1,0,0,3,3,4,4,5$
\therefore Mean deviation about Median $=\frac{\sum_{\mathrm{i}=1}^{11}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|}{\mathrm{n}}=\frac{3+2+2+1+0+0+3+3+4+4+5}{11}$

$$
=\frac{27}{11}=2.45
$$

11. Solve the ineqaution $\sqrt{(x-3)(2-x)}<\sqrt{4 x^{2}+12 x+11}$.

Sol. The given inequation is equivalent to the following two inequalities.

$$
\begin{aligned}
& (x-3)(2-x) \geq 0 \text { and } \\
& \quad(x-3)(2-x)<4 x^{2}+12 x+11 \\
& (x-3)(2-x) \geq 0 \\
& \Leftrightarrow(x-2)(x-3) \leq 0 \\
& \Leftrightarrow 2 \leq x \leq 3 \\
& -x^{2}+5 x-6<4 x^{2}+12 x+11 \\
& \Leftrightarrow 5 x^{2}+7 x+17=0
\end{aligned}
$$

The discriminant of the quadratic expression $5 x^{2}+7 x+17$ is negative.
Hence $5 x^{2}+7 x+17>0 \forall x \in \mathbf{R}$.
Hence the solution set of the given inequation is $\{x \in \mathbf{R}: 2 \leq x \leq 3\}$.
12. If $\mathrm{z}=3+5 \mathrm{i}$ then show that $\mathrm{z}^{3}-10 \mathrm{z}^{2}+58 \mathrm{z}-136=0$.

Sol: $\quad z=3+5 i$

$$
(\mathrm{z}-3)^{2}=(5 \mathrm{i})^{2}
$$

$z^{2}-6 z+9=25 i^{2}$
$z^{2}-6 z+9=-25$
$z^{2}-6 z+34=0$
$z^{3}-6 z^{2}+34 z=0$
$\left(z^{3}-10 z^{2}+58 z-136\right)+4 z^{2}-24 z+136=0$
$\left(z^{3}-10 z^{2}+58 z-136\right)+4\left(z^{2}-6 z+34\right)=0$
$\therefore z^{3}-10 z^{2}+58 z-136=0$
13. Find the number of ways of arranging 8 men and 4 women around a circular table. In how many of them
(i) all the women come together
(ii) no two women come together

Sol. Total number of persons $=12(8$ men +4 women $)$
Therefore, the number of circular permutations is (11)!
(i) Treat the 4 women as one unit. Then we have 8 men +1 unit of women $=9$ entities.

Which can be arranged around a circle in 8 ! ways. Now, the 4 women among themselves can be arranged in 4 ! ways. Thus, the number of required arrangements is $8!\times 4!$.
(ii) First arrange 8 men around a circle in 7 ! ways. Then there are 8 places in between them as shown in fig by the symbol x (one place in between any two consecutive men). Now, the 4 women can be arranged in these 8 places in ${ }^{8} P_{4}$ ways.

Therefore, the number of circular arrangements in which no two women come together is $7!\mathrm{X}^{8} \mathrm{P}_{4}$.
14.Find the number of ways of selecting 11 members cricket team from 7 batsman, 6 bowlers and 2 wickets keepers so that team contains 2 wicket keepers and atleast 4 bowlers.
Sol: The required teams can contains the following compositions.

Bowlers	Wicket keepers	Batsmen	Number of ways of selecting team
4	2	5	${ }^{6} \mathrm{C}_{4} \times{ }^{2} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{5}$ $=15 \times 1 \times 21=315$
5	3	4	${ }^{6} \mathrm{C}_{5} \times{ }^{2} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{4}$ $=6 \times 1 \times 35=210$
6	2	3	${ }^{6} \mathrm{C}_{6} \times{ }^{2} \mathrm{C}_{2} \times{ }^{7} \mathrm{C}_{3}$ $=1 \times 1 \times 35=35$

Therefore, the number of selecting the required cricket team

$$
=315+210+35=560 .
$$

15. $\frac{\mathrm{x}^{2}-\mathrm{x}+1}{(\mathrm{x}+1)(\mathrm{x}-1)^{2}}$

Sol. Let $\frac{x^{2}-x+1}{(x+1)(x-1)^{2}}=\frac{A}{x+1}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}$

$$
\text { Multiplying with }(x+1)(x-1)^{2}
$$

$\mathrm{x}^{2}-\mathrm{x}+1=$

$$
\mathrm{A}(\mathrm{x}-1)^{2}+\mathrm{B}(\mathrm{x}+1)(\mathrm{x}-1)+\mathrm{C}(\mathrm{x}+1)
$$

Put $x=-1,1+1+1=\mathrm{A}(4) \Rightarrow \mathrm{A}=\frac{3}{4}$
Put $\mathrm{x}=1,1-1+1=\mathrm{C}(2) \Rightarrow \mathrm{C}=\frac{1}{2}$
Equating the coefficients of x^{2}
$A+B=1 \Rightarrow B=1-A=1-\frac{3}{4}=\frac{1}{4}$
$\therefore \frac{\mathrm{x}^{2}-\mathrm{x}+1}{(\mathrm{x}+1)(\mathrm{x}-1)^{2}}=\frac{3}{4(\mathrm{x}+1)}+\frac{1}{4(\mathrm{x}-1)}+\frac{1}{2(\mathrm{x}-1)^{2}}$
16. Suppose that an unbiased pair of dice is rolled. Let A denote the event that the same number shows on each die. Let B denote the event that the sum is greater than 7. Find (i) $P\left(\frac{A}{B}\right)$, (ii) $P\left(\frac{B}{A}\right)$.
Sol. $n(S)=36$
Let A be the event of getting the same number on two dice.
$\mathrm{n}(\mathrm{A})=$
$\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}=6$
$\mathrm{P}(\mathrm{A})=\frac{6}{36}$
Let B be the event at getting the sum greater than 7 .
$n(B)=\{(2,6),(3,5),(4,4),(5,3),(6,2),(3,6),(4,5),(5,4),(6,3),(4,6),(5$, 5),
$(6,4),(5,6),(6,5),(6,6)\}=15$
$\mathrm{P}(\mathrm{B})=\frac{15}{36}$
$\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\{(4,4),(5,5),(6,6)\}=3$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{3}{36}$
i) $\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}=\frac{\frac{3}{36}}{\frac{15}{36}}=\frac{3}{15}=\frac{1}{5}$
ii) $P\left(\frac{B}{A}\right)=\frac{P(B \cap A)}{P(A)}=\frac{36}{\frac{36}{6}}=\frac{3}{6}=\frac{1}{2}$
17. State and prove Addition Theorem on Probability.

1. If A, B are two events in a sample space S, then $P(A \cup B)=P(A)+P(B)-P(A$ B).

Sol. From the figure (venn diagram) it can be observed that $(B-A) \cup(A \cap B)=$ $\mathrm{B},(\mathrm{B}-\mathrm{A}) \cap(\mathrm{A} \cap \mathrm{B})=\phi$.

$$
\begin{align*}
\therefore \mathrm{P}(\mathrm{~B}) & =\mathrm{P}[(\mathrm{~B}-\mathrm{A}) \cup(\mathrm{A} \cap \mathrm{~B})] \\
& =\mathrm{P}(\mathrm{~B}-\mathrm{A})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
\Rightarrow \mathrm{P}(\mathrm{~B} & -\mathrm{A})=\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \tag{1}
\end{align*}
$$

Again from the figure, it can be observed that $\mathrm{A} \cup(\mathrm{B}-\mathrm{A})=\mathrm{A} \cup \mathrm{B}, \mathrm{A} \cap(\mathrm{B}-\mathrm{A})=\phi$
$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}[\mathrm{A} \cup(\mathrm{B}-\mathrm{A})]$

$$
=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B}-\mathrm{A})
$$

$$
=P(A)+P(B)-P(A \cap B) \text { since from }(1)
$$

$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
18. Solve the following equations
(i) $x^{4}-10 x^{3}+26 x^{2}-10 x+1=0$

Sol: This is standard reciprocal equation
Dividing with x^{2}

$$
x^{2}-10 x+26-\frac{10}{x}+\frac{1}{x^{2}}=0
$$

$\left(x^{2}+\frac{1}{x^{2}}\right)-10\left(x+\frac{1}{x}\right)+26=0 \ldots \ldots .1$
Put $a=x+\frac{1}{x}$

$$
x^{2}+\frac{1}{x^{2}}=\left(x+\frac{1}{x}\right)^{2}-2=a^{2}-2
$$

Substituting in (1)

$$
\begin{aligned}
& a^{2}-2-10 a+26=0 \\
& \Rightarrow a^{2}=10 a+24=0 \\
& \Rightarrow a-4 \quad a-6=0 \\
& a=4 \text { or } 6
\end{aligned}
$$

Case (i) a $=4$

$$
\begin{aligned}
& x+\frac{1}{x}=4 \\
& \Rightarrow x^{2}+1=4 x \\
& \Rightarrow x^{2}-4 x+1=0 \\
& \Rightarrow x=\frac{4 \pm \sqrt{16-4}}{2}=\frac{4 \pm 2 \sqrt{3}}{2} \\
& =2 \pm \sqrt{3}
\end{aligned}
$$

Case (ii) $a=6$

$$
x+\frac{1}{x}=6
$$

$$
x^{2}+1=6 x
$$

$$
x^{2}-6 x+1=0
$$

$$
x=\frac{6 \pm \sqrt{36-4}}{2}=\frac{6 \pm \sqrt{2}}{2}
$$

$$
x=\frac{23 \pm 2 \sqrt{2}}{2}=3 \pm 2 \sqrt{2}
$$

\therefore The roots are $3 \pm 2 \sqrt{2}, 2 \pm \sqrt{3}$
19. If $\cos \square+\cos \square+\cos \square=0=\sin \square+\sin \square+\sin \square$ prove that ${ }^{2} \cos +\cos ^{2} \square+$ $\cos ^{2} \square=\frac{3}{2}=\sin ^{2} \square+\sin ^{2} \square+\sin ^{2} \square$.
Sol. $\quad(\cos \alpha+i \sin \alpha)+(\cos \beta+i \sin \beta)+$

$$
\begin{gather*}
=(\cos \alpha+\cos \beta+\cos \gamma)+ \\
i(\sin \alpha+\sin \beta+\sin \gamma)=0+i \sin \gamma) \\
(\cos \alpha+\mathrm{i} \sin \alpha)+(\cos \beta+\mathrm{i} \sin \beta)+ \\
(\cos \gamma+\mathrm{i} \sin \gamma)=0
\end{gather*}
$$

Let $\mathrm{x}=\operatorname{cis} \alpha, \mathrm{y}=\operatorname{cis} \beta, \mathrm{z}=\operatorname{cis} \gamma$ then
$x+y+z=0$ by (1), then
$x^{2}+y^{2}+z^{2}=-2(x y+y z+z x)$

$$
\begin{aligned}
& \quad=-2 \mathrm{xyz}\left(\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}\right) \\
& =-2 \mathrm{xyz}[\cos \alpha-\mathrm{i} \sin \alpha+\cos \beta-\mathrm{i} \sin \beta+\cos \gamma-\mathrm{i} \sin \gamma] \\
& =-2 \mathrm{xyz}[(\cos \alpha+\cos \beta+\cos \gamma)-\mathrm{i}(\sin \alpha+\sin \beta+\sin \gamma)] \\
& =-2 \mathrm{xyz}(0-\mathrm{i} 0)=0 \\
& \therefore \mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=0 \\
& \Rightarrow(\cos \alpha+\mathrm{i} \sin \alpha)^{2}+(\cos \beta+\mathrm{i} \sin \beta)^{2}+(\cos \gamma+\mathrm{i} \sin \gamma)^{2}=0 \\
& \Rightarrow \cos 2 \alpha+\mathrm{i} \sin 2 \alpha+\cos 2 \beta+\mathrm{i} \sin 2 \beta+\cos 2 \gamma+\mathrm{i} \sin 2 \gamma=0 \\
& \Rightarrow(\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma)+\mathrm{i}(\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma)=0 \\
& \therefore \cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=0 \\
& 2 \cos ^{2} \alpha-1+2 \cos ^{2} \beta-1+2 \cos ^{2} \gamma-1=0 \\
& 2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)=3 \\
& \therefore \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=\frac{3}{2} \\
& 1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \gamma=\frac{3}{2} \\
& \therefore \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=\frac{3}{2} .
\end{aligned}
$$

20. If the $2^{\text {nd }}, 3^{\text {rd }}$ and $4^{\text {th }}$ terms in the expansion of $(\mathrm{a}+\mathrm{x})^{\mathrm{n}}$ are respectively 240 , 720, 1080, find $\mathrm{a}, \mathrm{x}, \mathrm{n}$.
Sol. $\quad T_{2}=240 \Rightarrow{ }^{n} C_{1} a^{n-1} x=240$
$\mathrm{T}_{3}=720 \Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{x}^{2}=720 \ldots$ (2)
$\mathrm{T}_{4}=1080 \Rightarrow{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{a}^{\mathrm{n}-3} \mathrm{X}^{3}=1080$
$\frac{(2)}{(1)} \Rightarrow \frac{{ }^{n} C_{2} a^{n-2} x^{2}}{{ }^{n} C_{1} a^{n-1} x}=\frac{720}{240}$

$$
\begin{equation*}
\Rightarrow \frac{\mathrm{n}-1}{2} \frac{\mathrm{x}}{\mathrm{a}}=3 \Rightarrow(\mathrm{n}-1) \mathrm{x}=6 \mathrm{a} \tag{4}
\end{equation*}
$$

$\frac{(3)}{(2)} \Rightarrow \frac{{ }^{n} C_{3} a^{n-3} x^{3}}{{ }^{n} C_{2} a^{n-2} x^{2}}=\frac{1080}{720} \Rightarrow \frac{n-2}{3} \frac{x}{a}=\frac{3}{2} \Rightarrow 2(n-2) x=9 a \ldots$...(5)
$\frac{(4)}{(5)} \Rightarrow \frac{(\mathrm{n}-1) \mathrm{x}}{2(\mathrm{n}-2) \mathrm{x}}=\frac{6 \mathrm{a}}{9 \mathrm{a}} \Rightarrow \frac{\mathrm{n}-1}{2 \mathrm{n}-4}=\frac{2}{3}$
$\Rightarrow 3 \mathrm{n}-3=4 \mathrm{n}-8 \Rightarrow \mathrm{n}=5$
From (4), $(5-1) x=6 a \Rightarrow 4 x=6 a$
$\Rightarrow \mathrm{x}=\frac{3}{2} \mathrm{a}$

Substitute $x=\frac{3}{2} a, n=5$ in (1)

$$
\begin{aligned}
& { }^{5} \mathrm{C}_{1} \cdot \mathrm{a}^{4} \cdot \frac{3}{2} \mathrm{a}=240 \Rightarrow 5 \times \frac{3}{2} \mathrm{a}^{5}=240 \\
& \mathrm{a}^{5}=\frac{480}{15}=32=2^{5} \\
& \therefore \mathrm{a}=2, \mathrm{x}=\frac{3}{2} \mathrm{a}=\frac{3}{2}(2)=3 \therefore \mathrm{a}=2, \mathrm{x}=3, \mathrm{n}=5
\end{aligned}
$$

21. Prove that

$$
\left({ }^{2 n} \mathrm{C}_{0}\right)^{2}-\left({ }^{2 \mathrm{n}} \mathrm{C}_{1}\right)^{2}+\left({ }^{2 \mathrm{n}} \mathrm{C}_{2}\right)^{2}-\left({ }^{2 \mathrm{n}} \mathrm{C}_{3}\right)^{2}+\ldots+\left({ }^{2 \mathrm{n}} \mathrm{C}_{2 \mathrm{n}}\right)^{2}=(-1)^{\mathrm{n}}{ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}}
$$

Sol. $\quad(x+1)^{2 n}={ }^{2 n} C_{0} x^{2 n}+{ }^{2 n} C_{1} x^{2 n-1}+$

$$
\begin{array}{r}
{ }^{2 n} C_{2} x^{2 n-2}+\ldots+{ }^{2 n} C_{2 n} \\
(x-1)^{2 n}={ }^{2 n} C_{0}-{ }^{2 n} C_{1} x+{ }^{2 n} C_{2} x^{2}+ \\
\ldots+{ }^{2 n} C_{2 n} x^{2 n} \quad \ldots(2) \tag{2}
\end{array}
$$

Multiplying eq. (1) and (2), we get

$$
\begin{aligned}
& \left({ }^{2 n} C_{0} x^{2 n}+{ }^{2 n} C_{1} x^{2 n-1}+{ }^{2 n} C_{2} x^{2 n-2}+\ldots+{ }^{2 n} C_{2 n}\right)=(x+1)^{2 n}(1-x)^{2 n}=[(1+x)(1-x)]^{2 n} \\
& \left({ }^{2 n} C_{0}-{ }^{2 n} C_{1} x+{ }^{2 n} C_{2} x^{2}+\ldots+{ }^{2 n} C_{2 n} x^{2 n}\right)=\left(1-x^{2}\right)^{2 n}=\sum_{r=0}^{2 n}{ }^{2 n} C_{r}\left(-x^{2}\right)^{r}
\end{aligned}
$$

Equating the coefficients of $\mathrm{x}^{2 \mathrm{n}}$ $\left({ }^{2 n} C_{0}\right)^{2}-\left({ }^{2 n} C_{1}\right)^{2}+\left({ }^{2 n} C_{2}\right)^{2}-\left({ }^{2 n} C_{3}\right)^{2}+\ldots+\left({ }^{2 n} C_{2 n}\right)^{2}=(-1)^{n}{ }^{2 n} C_{n}$
22.The range of a random variable x is $\{0,1,2\}$. Given that $\mathrm{p}(\mathrm{x}=0)=3 \mathrm{c}^{3}, \mathrm{p}(\mathrm{x}=$ 1) $=4 \mathrm{c}-10 \mathrm{c}^{2}, \mathrm{p}(\mathrm{x}=2)=5 \mathrm{c}-1$
i) Find the value of c
ii) $\mathrm{p}(\mathrm{x}<1), \mathrm{p}(1<\mathrm{x} \leq 3)$

Sol. $P(x=0)+p(x=1)+p(x=2)=1$
$3 c^{3}+4 c-10 c^{2}+5 c-1=1$
$3 c^{3}-10 c^{2}+9 c-2=0$
$\mathrm{C}=1$ satisfy this equation
$C=1 \Rightarrow p(x=0)=3$ which is not possible dividing with $c-1$, we get
$3 c^{2}-7 c+2=0 \Rightarrow \quad(c-2)(3 c-1)=0$
$\mathrm{d}=2$ or $\mathrm{c}=1 / 3$
$\mathrm{c}=2 \Rightarrow \mathrm{p}(\mathrm{x}=0)=3.2^{3}=24$ which is not possible
$\therefore c=1 / 3$
i) $\mathrm{p}(\mathrm{x}<1)=\mathrm{p}(\mathrm{x}=0)$

$$
=3 \cdot c^{3}=\left(\frac{1}{3}\right)^{3}=3 \cdot \frac{1}{27}=\frac{1}{9}
$$

ii) $\mathrm{p}(1<\mathrm{x} \leq 2)=\mathrm{p}(\mathrm{x}=2)=5 \mathrm{c}-1$

$$
=\frac{5}{3}-1=\frac{2}{3}
$$

iii)

$$
\mathrm{p}(0<\mathrm{x} \leq 3)=\mathrm{p}(\mathrm{x}=1)+\mathrm{p}(\mathrm{x}=2)
$$

$$
\begin{aligned}
& =4 c-10 c^{2}+5 c-1 \\
& =9 c-10 c^{2}-1=9 \cdot \frac{1}{3}-10 \cdot \frac{1}{9}-1 \\
& =3-\frac{10}{9}-1=2-\frac{10}{9}=\frac{8}{9}
\end{aligned}
$$

23. From the prices of shares X and Y given below, for 10 days of trading, find out which share is more stable?

X	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

Sol. Variance is independent of charge of origin.

X	Y	$\mathrm{X}_{\mathrm{i}}{ }^{2}$	$\mathrm{Y}_{\mathrm{i}}{ }^{2}$
-15	8	225	64
4	7	16	49
2	5	4	25
3	5	9	25
6	6	36	36
8	7	64	49
2	4	4	16
0	3	0	9
1	4	1	16
-1	1	1	1
$\Sigma \mathrm{X}_{\mathrm{i}}=10$	$\Sigma \mathrm{Y}_{\mathrm{i}}=50$	$\Sigma \mathrm{X}_{\mathrm{i}}{ }^{2}=360$	$\Sigma \mathrm{Y}_{\mathrm{i}}^{2}=290$

$$
\mathrm{V}(\mathrm{X})=\frac{\Sigma \mathrm{X}_{\mathrm{i}}^{2}}{\mathrm{n}}-(\overline{\mathrm{X}})^{2}=\frac{360}{10}-\left(\frac{10}{10}\right)^{2}=36-1=35
$$

$$
\mathrm{V}(\mathrm{Y})=\frac{\Sigma \mathrm{Y}_{\mathrm{i}}^{2}}{\mathrm{n}}-(\overline{\mathrm{Y}})^{2}=\frac{290}{10}-\left(\frac{50}{10}\right)^{2}=29-25=4
$$

Y is stable.
24. Stete and prove Baye's Theorem or Inverse probability Theorem

Statement : If A_{1}, A_{2}, \ldots and A_{n} are ' n ' mutually exclusive and exhaustive events of a random experiment associated with sample space S such that $P\left(A_{i}\right)>0$ and E is any event which takes place in conjuction with any one of A_{i} then
$P\left(A_{k} / E\right)=\frac{P\left(A_{k}\right) P\left(E / A_{k}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(E / A_{i}\right)}$, for any $k=1,2 \ldots . . n ;$
Proof: \quad Since $A_{1}, A_{2}, \ldots, A_{n}$ are mutually exclusive and exhaustive in sample space S, we have $A_{i} \cap A_{j}=$ for $\mathrm{i} \neq \mathrm{j}, 1 \leq i, j \leq n$ and $A_{1} \cup A_{2} \cup \ldots . \cup A_{n}=S$.
Since E is any event which takes place in conjuction with any one of A_{i}, we have
$E=A_{1} \cap E \cup A_{2} \cap E$ \qquad $\cup A_{n} \cap E$.
We know that $A_{1}, A_{2}, \ldots . . A_{n}$ are mutually exclusive, their subsets $A_{1} \cap E$, $A_{2} \cap E, \ldots$ are also mutually exclusive.
Now $P(E)=P\left(E \cap A_{1}\right)+P\left(E \cap A_{2}\right)+\ldots+P\left(E \cap A_{n}\right)$
(by axiom of additivity)

$$
\begin{aligned}
=P\left(A_{1}\right) P\left(E / A_{1}\right)+ & P\left(A_{2}\right) P\left(E / A_{2}\right)+\ldots \\
& +P\left(A_{n}\right) P\left(E / A_{n}\right)
\end{aligned}
$$

(by multiplication theorem of probability)
$=\sum_{i=1}^{n} P\left(A_{i}\right) P\left(E / A_{i}\right)$
By definition of conditional probability,

$$
\begin{aligned}
P\left(A_{k}(E)\right. & =\frac{P\left(A_{k} \cap E\right)}{P(E)} \text { for } \\
& =\frac{P\left(A_{k}\right) P\left(E / A_{k}\right)}{P(E)}
\end{aligned}
$$

(bymultiplication theorem)

$$
=\frac{P\left(A_{k}\right) P\left(E / A_{k}\right)}{\sum_{i=1}^{n} P\left(A_{I}\right) p\left(E / A_{i}\right)} \text { from (1) }
$$

Hence the theorem

