166 TS

B

Total No. of Questions: 24 Total No. of Printed Pages: 4

Dand I		_				200	
Regd.	A 400	B.TE			3	30	
No.						350	100

Part-III

MATHEMATICS, Paper - I (A)

(English version)

Time: 3 Hours]

[Max. Marks: 75

Note: This question paper consists of three sections A, B and C.

SECTION - A

 $10 \times 2 = 20$

- Very short answer type questions.
 - (i) Answer all the questions.
 - (ii) Each question carries TWO marks.
 - 1. $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \frac{2x+1}{3}$, then this function is injection or not?

 Justify.
 - 2. Find the range of the real valued function $f(x) = \sqrt{9-x^2}$.
 - **3.** Construct a 3×2 matrix, whose elements are defined by $a_{ij} = \frac{1}{2}|i-3j|$.
 - 4. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$

- 5. a = 2i + 5j + k and b = 4i + mj + nk are collinear vectors, then find m and n.
- **6.** OABC is a parallelogram. If OA = a and OC = c, find the vector equation of the side BC.
- 7. Find the angle between the planes $r \cdot (2i j + 2k) = 3$ and $r \cdot (3i + 6j + k) = 4$.
- 8. Find the period of $tan(x + 4x + 9x + \dots + n^2x)$, where n is any positive integer.
- 9. If $\sin \alpha = \frac{3}{5}$, where $\frac{\pi}{2} < \alpha < \pi$, evaluate $\cos 3\alpha$.
- 10. Prove that $(\cosh x \sinh x)^n = \cosh (nx) \sinh (nx)$, for any $n \in \mathbb{R}$.

SECTION - B

 $5 \times 4 = 20$

- II. Short answer type questions.
 - (i) Answer ANY FIVE questions.
 - (ii) Each question carries FOUR marks.
 - 11. Examine whether the following system of equations are consistent or inconsistent and if consistent, find the complete solution.

$$x + y + z = 1$$
, $2x + y + z = 2$, $x + 2y + 2z = 1$.

12. a, b, c are non-coplanar vectors. Prove that the following four points are coplanar.

$$6a + 2b - c$$
, $2a - b + 3c$, $-a + 2b - 4c$, $-12a - b - 3c$

13. Find the volume of the tetrahedron,

whose vertices are
$$(1, 2, 1)$$
, $(3, 2, 5)$, $(2, -1, 0)$ and $(-1, 0, 1)$.

- 14. If $0 < A < B < \frac{\pi}{4}$ and $\sin(A+B) = \frac{24}{25}$ and $\cos(A-B) = \frac{4}{5}$, then find the value of $\tan 2A$.
- 15. If θ_1 , θ_2 are solutions of the equation $a\cos 2\theta + b\sin 2\theta = c$, $\tan \theta_1 \neq \tan \theta_2$ and $a + c \neq 0$, then find the values of (i) $\tan \theta_1 + \tan \theta_2$ (ii) $\tan \theta_1 \cdot \tan \theta_2$
- 16. Prove that $\sin^{-1}\left(\frac{4}{5}\right) + 2\tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{2}$.
- 17. Prove that $\cot A + \cot B + \cot C = \frac{a^2 + b^2 + c^2}{4\Delta}$

SECTION - C

 $5 \times 7 = 35$

- III. Long answer type questions.
 - (i) Answer ANY FIVE questions.
 - (ii) Each question carries SEVEN marks.
 - **18.** Let $f = \{(1, a), (2, c), (4, d), (3, b)\}$ and $g^{-1} = \{(2, a), (4, b), (1, c), (3, d)\}$, then show that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
 - 19. Using Mathematical Induction, prove the statement for all $n \in \mathbb{N}$,

$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + (\text{upto } n \text{ terms}) = \frac{n(n+1)(n+2)(n+3)}{4}.$$

1182

20. Find the value of x, if

$$\begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-4 & 2x-9 & 3x-16 \\ x-8 & 2x-27 & 3x-64 \end{vmatrix} = 0.$$

21. Solve the following system of equations by using Cramer's rule.

$$x-y+3z=5$$
, $4x+2y-z=0$, $-x+3y+z=5$.

22. If $\overline{a} = 2\overline{i} + \overline{j} - 3\overline{k}$, $\overline{b} = \overline{i} - 2\overline{j} + \overline{k}$, $\overline{c} = -\overline{i} + \overline{j} - 4\overline{k}$, and $\overline{d} = \overline{i} + \overline{j} + \overline{k}$, then compute $\left| (\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) \right|$.

23. If $A + B + C = \pi$, then prove that

$$\cos^2\frac{A}{2} + \cos^2\frac{B}{2} + \cos^2\frac{C}{2} = 2\left(1 + \sin\frac{A}{2} \cdot \sin\frac{B}{2} \cdot \sin\frac{C}{2}\right).$$

24. If $r_1 = 2$, $r_2 = 3$, $r_3 = 6$ and r = 1, prove that a = 3, b = 4 and c = 5.