Mathematics Model Paper(I-B)
 Intermediate I - Year

Time: 3 HRS
Max. Marks: 75

SECTION - I

I.Very Short Answer Questions. Answer all Questions. Each Question carries Two marks.

$$
10 \times 2=20 M
$$

1. Find the equation of the straight line whose distance from the origin is 4 , if the normal ray from the origin to the straight line makes an angle of 135° with the positive direction of the X -axis.
2. Find the value of k, if the angle between the straight lines $4 x-y+7=0$ and $k x-5 y-9=0$ and is 45°.
3. Find the in centre of the triangle formed by the points $(0,0,0),(3,0,0)$ and $(0,4,0)$.
4. Find the equation to the plane parallel to ZX - plane and passing through $(0,4,4)$.
5. Compute $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$
6. Compute ${ }^{\lim _{x \rightarrow \infty} \frac{11 x^{3}-3 x+4}{13 x^{3}-5 x^{2}-7}}$
7. If $\mathrm{f}(\mathrm{x})=7^{x 3+3 x}(\mathrm{x}>0)$ then find $\mathrm{f}^{\prime}(\mathrm{x})$
8. If $\mathrm{y}=\mathrm{a} \mathrm{e}^{n x}+\mathrm{be}^{-n x}$ then prove that $\mathrm{y}^{\prime \prime}=\mathrm{n}^{2} \mathrm{y}$
9. Find dy and δ y of $\mathrm{y}=f(x)=x^{2}+x$ at $x=10$ when $\delta x=0.1$
10. Verify the Roll's theorem for $\mathrm{f}(x)=x(x+3) \mathrm{e}^{-x / 2}$ in $[-3,0]$

SECTION - II

II.Short Answer Questions. Ans-wer any 'Five' Questions.Each Question carries 'Four'

marks.

$5 \times 4=20 \mathrm{M}$
11. If $A(2,3)$ and $B(-3,4)$ are two points. Find the locus of P so that the area of triangle PAB is 8.5 sq units.
12. When the axis are rotated through an angle $\frac{\pi}{6}$. Find the transformed equation of $x^{2}+2 \sqrt{3} x y-y^{2}=2 a^{2}$
13. Find the orthocenter of the triangle whose vertices are $(-5,-7),(13,2)$ and $(-5,6)$.
14. Find real constants a, b so that the function f given by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{lll}\sin x & \text { if } x \leq 0 \\ x^{2}+\mathrm{a} & \text { if } & 0<x<1 \\ b x+3 & \text { if } & 1 \leq x \leq 3 \\ -3 & \text { if } & x>3\end{array}\right\}$ is continuous on R .
15. Find the derivative of $\sin 2 x$ from the first principle.
16. The volume of a cube is increasing at a rate of 9 cubic centimeters per second. How fast is the surface area increasing when the length of the edge is 10 centimeters?
17. Show that the curves $y^{2}=4(x+1)$ and $y^{2}=36(9-x)$ intersect orthogonally.

SECTION - III

III.Long Answer Questions. Ans-wer any 'Five' Questions. Each Question carries 'Seven'

 marks.18. If $\mathrm{Q}(\mathrm{h}, \mathrm{k})$ is the foot of the perpendicular from $\mathrm{P}\left(x_{1}, y_{l}\right)$ on the straight line $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ then show that $\left(\mathrm{h}-x_{1}\right): \mathrm{a}=\left(\mathrm{k}-y_{1}\right): \mathrm{b}=-\left(\mathrm{a} x_{1}+\mathrm{b} y_{1}+\mathrm{c}\right):\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$
19. Find the lines joining the origin to the points of intersection of the curve $7 x^{2}-4 x y+$ $8 y^{2}+2 x-4 y-8=0$ with the line $3 x-y-2=0$ and also the angle between them.
20. Show that the pair of lines $3 x^{2}+8 x y-3 y^{2}=0$ and $3 x^{2}+8 x y-3 y^{2}+2 x-4 y-1=0$ form a square.
21. Find the angle between the lines whose direction cosines are given by the equations $3 l+m+5 n=0$ and $6 m n-2 n l+5 l m=0$.
22. If $y=\operatorname{Tan}^{-1}\left[\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right]$ for $0<|X|<1$, find $\frac{d y}{d x}$
23. If the tangent at any point on the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ intersects the coordinate axes in A and B, then show that the length $A B$ is a constant.
24. If the curved surface of right circular cylinder inscribed in a sph-ere of radius r in maximum. Show that the height of cylinder is $\sqrt{2} r$.
