
UNIT V: Component Object Model

By
C Narendra

Component Object Model (COM) 

COM is a Microsoft platform for software component introduced by Microsoft in 1993.

The Component Object Model (COM) is a software architecture that allows applications
to be built from binary software components. 

COM is the underlying architecture that forms the foundation for higher-level software
services, like those provided by OLE.

OLE services span various aspects of commonly needed system functionality, including
compound documents,  custom controls,  inter  application  scripting,  data transfer,  and
other software interactions. 

Fig: OLE technologies build on one another, with COM as the foundation. 

Casting  between  different  interfaces  of  an  object  is  achieved  through  the  Query
Interface() function. The preferred method of inheritance within COM is the creation of
sub-objects (called aggregation) to which method calls are delegated.

Although it  has been implemented on several  platforms,  COM is  primarily  used with
Microsoft  Windows.  COM is expected to be replaced to at  least some extent  by the
Microsoft  .NET  framework,  and  support  for  Web  Services  through  the  Windows
Communication Foundation (WCF).

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

http://en.wikipedia.org/wiki/Microsoft


Networked DCOM uses binary proprietary formats, while WCF uses XML-based
SOAP messaging. COM also competes with CORBA and Java Beans as component
software systems.COM Fundamentals

The Component Object Model defines several fundamental concepts that provide the
model's structural underpinnings. These include: 

 A binary standard for function calling between components. 

 A provision for strongly-typed groupings of functions into interfaces. 

 A base interface providing: 

 A way for  components  to  dynamically  discover  the  interfaces implemented by
other components. 

 Reference counting to allow components to track their own lifetime and delete
themselves when appropriate. 

 A mechanism to identify components and their interfaces uniquely, worldwide. 
 A "component loader" to set up component interactions and, additionally (in the

cross-process and cross-network cases), to help manage component interactions.

Advantages of COM 

1. COM promotes component-based software development.
2. COM promotes code reusability.
3. COM promotes Object-oriented programming (OOP).
4. COM  comprises  the  necessary  mechanisms  for  COM  components  to

communicate with each other.
5. COM helps  to  access components  loaded in  different  machines on the

network.

1. COM promotes component-based software development :

Before component-based development came, software programs have been coded using
procedural programming paradigm, which supports linear form of program execution. 

But component-based program development comes with a number of advantages, such
as the ability to use pre-packaged components and tools from third party vendors into an
application and support for code reusability in other parts of the same application. 

2. COM promotes code reusability:

Standard classes are normally reused in the same application but not to be used easily
in other applications. But COM components are designed to separate themselves from
single  applications  and  hence  can  be  accessed  and  used  by  several  different
applications without any hassle. 

3. COM promotes Object-oriented programming (OOP) :

Encapsulation which allows the implementation details of an object to be hidden.
Encapsulation helps to hide how an object has implemented a method internally. This is
most important characteristic.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



 Polymorphism, which is the ability to exhibit multiple behaviors.

Inheritance, which allows for the reuse of existing classes in order to design new and
more specialized classes.

This  ultimately  helps  to  incorporate  more  vigorously  implemented  or  advanced
implementation into an object at later time without affecting the client which uses it. 

4. COM  comprises  the  necessary  mechanisms  for  COM  components  to
communicate with each other

In the normal case, two components coded using two different programming languages
can  not  communicate  with  each  other.  But  COM can  make  it  possible  for  different
language components,  which  adhere to  the COM specification,  to  interact  with  each
other and hence COM is language-independent. 

5.  COM helps to access components loaded in different machines on the network
COM  abstracts  away  the  nitty-gritty  of  clients  to  locate  COM  components

anywhere  in  the  network.  Thus  COM  provides  location  transparency  and  COM
components are location independent. 

COM Interfaces 

An interface defines  a  set  of  methods  that  an  object  can  support,  without  dictating
anything about the implementation. The interface marks a clear boundary between code
that  calls  a  method and the code that  implements the method.  In  computer  science
terms, the caller is decoupled from the implementation. 

COM uses the word interface in a sense different from that typically used in Visual C++
programming. A C++ interface refers to all of the functions that a class supports and that
clients of an object can call to interact with it.

 A COM interface refers to a predefined group of related functions that a COM class
implements, but a specific interface does not necessarily represent all the functions that
the class supports.

Components, especially server-side ones, are bound to have their own interfaces. 

An interface is simply a list of methods a COM component implements and makes them
available to consumers. COM interface are immutable. That is, once a COM component
has been released with an interface, this interface must never be manipulated. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



COM interfaces  are  the  mechanisms  by  which  a  client  contacts,  connects  and  use
components. If the client component is using a different language from the one a server
component is coded, there will be language problem for interactions. 

In  order  to  remove  this  barrier,  COM  interfaces  provide  an  universal  way  so  that
components coded in different languages can communicate with each other. Thus every
interface constitutes a binding contract between a COM object (no interface is attached
with this) and a COM component with an interface. 

COM specification makes life easier by allowing a component to publish more than one
interface at a time. New interfaces can be incorporated to support new features of the
components while keeping the original interface intact. 

We have to increment a version number for the new interface. A class module then
would need to be implemented for both old and new interfaces in order to support both
old clients that rely on the old interface and new clients that can take advantage of the
new interface. Thus the immutability factor of COM interfaces can be overcome. 

The steps in creating a COM interface are as follows:

 Decide how you want to provide marshaling support for your interface; either with
type-library “driven marshaling or with a proxy/stub DLL. 

 Even  in-process  interfaces  must  be  marshaled  if  they  are  to  be  used  across
apartment boundaries. It  is a good idea to build marshaling support into every
COM interface.

 Describe the interface or interfaces in an interface definition (IDL) file. In addition,
you  can  specify  certain  local  aspects  of  your  interface  in  an  application
configuration file (ACF). 

 If  you  are  using  type-library“driven  marshaling,  add  a library statement  that
references the interfaces for which you want to generate type information.

 Use the  MIDL compiler  to  generate  a  type  library  file  and  header  file,  or  C-
language proxy/stub files, interface identifier file, DLL data file and header file.
See MIDL Compilation for more information.

 Depending on the marshaling method you chose, write a module definition (DEF)
file, compile and link all  the MIDL-generated files into a single proxy DLL, and
register  the  interface  in  the  system  registry,  or  register  the  type  library.  See
Loading  and  Registering  a  Type  Library and Building  and  Registering  a  Proxy
DLL for more information.

Interface Definition Language (IDL) 

IDL is just a declaration language, not a programming language.

The syntax for IDL is almost similar to C++ language. But IDL goes beyond what
C++ can offer by being able to define functions that extend process boundaries.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

https://msdn.microsoft.com/en-us/library/windows/desktop/ms688707(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms688707(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms691470(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680078(v=vs.85).aspx


 IDL provides many vital extensions that allow attributes such as type libraries, co-
classes, interfaces, and method parameters to be specified quite elegantly. But if there is
no language problem, it is not mandatory to use IDL for defining COM interfaces. 

The interface definition begins with an object attribute. The object attribute is used
to identify a COM interface. Then a UUID (universally unique identifier), which provides
an unique identifying number ( a string of hexadecimal digits ) for each interface and this
number is being generated by an algorithm, which takes into account the unique value
from the network card on the programmer's PC and the current system date and time,
follows that.

The  letter  'I' in  the  interface  name  helps  to  identify  that  this  is  an  interface.
Following IFindSum is a colon and then the interface name IUnknown, the base interface
and every COM object has to have this interface. IUnknown has three methods that a
client can invoke: QueryInterface, AddRef, & Release. 

The QueryInterface method is the mechanism, that a client uses to discover and
navigate the interfaces of a component dynamically. It is the most significant method of
all COM interfaces available for a component since this method allows run-time checking
of all of these interfaces.

When the QueryInterface method provides an interface pointer to a client,  the
QueryInterface  calls  the  method  AddRef.  The  only  way  to  access  a  COM object  is
through a pointer to an interface. 

An interface pointer  is  actually  a  pointer  to  a  pointer  in  a  virtual  table  that  is
implemented in memory. That is, for every class that contains public methods, a virtual
table will be created and placed in memory at run time. 

Virtual tables are generated for each class and not for objects of that class. Each
virtual table contains an array of function pointers whose elements contain the address of
each specific function that an object can implement. 

At the top of every virtual table array will be three fundamental methods that make
up this IUnknown interface. 

The methods AddRef and Release manage reference counting. This reference
count is an internal count of the number of clients using a particular COM object . 

I t is possible for several clients to invoke the services available with a COM object
at the same time. When a client begins a session with an object, it calls the AddRef
method, which increments one to the existing count.

 Once the session is  over,  the corresponding Release method gets invoked to
decrement one from the existing count. 

The next line down is used to locate the definition for the base interface IUnknown
The next line identifies the interface method "SumofNumbers". This interface method is
designed to return an HRESULT value. 

An HRESULT is used with COM to indicate whether a method call is successfully
accomplished or not. Almost all COM interfaces return a special 32-bit code, called as

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



HRESULT, from their methods to return status information. It is actually the method COM
utilizes to return errors to the caller of the method. 

The reason for this mechanism is due to the inability of COM to transmit error
messages back to the client if there is anything wrong on the server side or on the way to
the server. As components are being written using different programming languages and
each language follows its own exception mechanisms, COM can not correctly pass on
the error messages and hence HRESULT. 

Following the HRESULT are three parameters for the interface method SumOfNumbers.

The  [in]  in  the  first  two  parameters  specifies  that  these parameters  are  input
values to be passed to the interface method and the [out, retval] in the last parameter
indicates that this parameter returns a value that will be ultimately passed to back to the
client. 

Windows Registry and Components Environment 

COM  components  may  be  loaded  in  different  address  spaces  in  the  same
machine or machine connected with the network. Before an object can be created, the
COM runtime must first locate the COM components. The COM runtime is able to locate
COM components through the use of Windows registry. 

COM  components  may  be  out-of-process  or  in-process.  An  out-of-process
component can effectively be a separate program containing objects. This type runs in its
own process space and will thus be largely independent from any client programs. 

These components are often large applications themselves, and provide access to
their objects to make it easy for other programs to create macros or otherwise make use
of existing functionality. This can be very beneficial, because the component developer
can choose his own threading models. The drawback here is that the developer has to
write the code for threading. This work can be handled by automatically COM+, the latest
one from the COM family. 

There  is  also  a  performance  issue.  Because  the  client  application  is
communicating with objects which are in an entirely different process there is quite a bit
of overhead.

 COM steps in between the client and the server and handles all  the communication
between them. Mainly out-of-process components are useful if we are trying to make use
of the objects in a pre-existing application. 

An in-process component is one where the objects run inside the client's process.
Each client gets its own private copy of the component and hence a copy of all  the
objects  in  that  component.  An  in-process  component  is  often  called  COM  DLLs  or
ActiveX DLLs. 

In-process component  does not  have a process of its own and it  always  runs
within the context of another process. Often this other process is the client application
itself but may be run within the context of a different process entirely.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



In this case, we can get performance boost as the component is loaded in the
client application itself. There is almost no overhead when client interacts with an object
that  is  running  in  the  same  process.  The  major  advantages  of  having  in-process
components are stability and increased manageability.

Creating a COM object 

A  client  looking  for  an  object  has  to  make  a  call  to  an  API  function  called
CoCreateInstance with the CLSID for the class, which comprises the particular object. 

The  prefix  Co  in  this  function  is  a  typical  naming  convention  for  COM runtime API
functions. CoCreateInstance in turn as a second step calls another API function called
CoGetClassObject. Basically the function CoCreateInstance asks the SCM to search the
Windows registry location, which is HKEY_CLASSES_ROOT\CLSID. 

The  function  of  SCM is  to  locate  the  requested class  object  by  using  the  specified
CLSID.

 The  first  place  the  SCM looks  to  locate  the  class  object  is  within  its  own  internal
database. If the class is not located inside its database, the SCM turns to the system
registry as a third step. As soon as the class object  is found,  the SCM immediately
returns to COM an interface pointer referred to as IClassFactory. 

Every COM class must have a factory object associated with it. The main purpose of
these class objects is to implement the IClassFactory interface. 

Once the client gets the IClassFactory pointer, two things happen. One, by obtaining a
pointer to the IClassFactory, CoCreateInstance can call IClassFactory::Create Instance
in order to create the requested COM object. Once the object is created, a second step
occurs: the interface pointer to the IClassFactory gets released. 

The interface called IClassFactory's  job  is  to  talk  to  other  class objects.
Further, CoGetClassObject is a COM class object whose sole purpose is to create a new
instance  of  a  different  class.  Because  this  COM  class  creates  class  objects  by
implementing the IClassFactory interface, CoGetClassObject is referred to as a class
factory. 

 The following rules apply to all interfaces implemented on a COM object:

 They must have a unique interface identifier (IID).

 They must be immutable. Once they are created and published, no part of their

definition may change.

 All interface methods must return an HRESULT value so that the portions of the

system that handle remote processing can report RPC errors.

 All string parameters in interface methods must be Unicode.

 Your  data  types  must  be  remotable.  If  you  cannot  convert  a  data  type  to  a

remotable type, you will have to create your own marshaling and unmarshaling

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



routines. Also, LPVOID, or void *, has no meaning on a remote computer. Use a

pointer to IUnknown, if necessary.

LockServer 

When an object is created it resides in memory. It is the client's job to notify the object
when it is no longer needed. 

The Release method told above can decrement the reference count for the interface. If
there  are  several  interfaces for  an  object,  it  is  possible  that  the  object  is  still  being
accessed somewhere else. The idea is that the reference count has to reach zero before
the object is to be released from the memory. 

Releasing  objects  from memory  usually  improves  performance.  Some special  clients
constantly  create  and  destroy  objects,  which  normally  affects  the  application's
performance. 

The LockServer method allows components to remain in memory by incrementing the
reference count by one. Because LockServer  keeps a count  of  one in the reference
counter, the object will stay in memory even if it is not being accessed currently. 

Having the component reside in memory has the advantage of allowing the object to be
called without having to go through the process of recreating it. But on the other hand, if
objects are not destroyed when they are not in use, there will be reduction of system
memory resources. 

COM Data Types 

 

The  following  table  shows  data  types  used  in  COM  and  their  corresponding  .NET

Framework built-in value types or classes. Any type not explicitly identified in this table is

converted to an Int32 system type. 

COM value type COM reference type System type 

bool bool * System.Int32
char, small char *, small * System.SByte
short short * System.Int16
long, int long *, int * System.Int32
Hyper hyper * System.Int64
unsigned char, byte unsigned char *, byte * System.Byte
wchar_t, unsigned short wchar_t *, unsigned short * System.UInt16
unsigned  long,unsigned  long  *, unsigned System.UInt32

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



COM value type COM reference type System type 

unsigned int int *
unsigned hyper unsigned hyper * System.UInt64
float float * System.Single
double double * System.Double
VARIANT_BOOL VARIANT_BOOL * System.Boolean
void * void ** System.IntPtr
HRESULT HRESULT * System.Int16 or

System.IntPtr
SCODE SCODE * System.Int32
BSTR BSTR * System.String
LPSTR or  [string,  …]
char *

LPSTR * System.String

LPWSTR or  [string,  …]
wchar_t *

LPWSTR * System.String

VARIANT VARIANT * System.Object
DECIMAL DECIMAL * System.Decimal
DATE DATE * System.DateTime
GUID GUID * System.Guid
CURRENCY CURRENCY * System.Decimal
IUnknown * IUnknown ** System.Object
IDispatch * IDispatch ** System.Object
SAFEARRAY(type) SAFEARRAY(type) * type[]

The following table lists COM value and reference types that convert to corresponding

element types. For example, a COM coclass automatically maps to a managed class

with the same name.

COM value type COM reference type Element type 

Typedef BaseType MyType ByRef BaseType BaseType
MyStruct ByRef VALUETYPE<MyStruct> valuetype<MyStruct>
MyEnum ByRef VALUETYPE<MyEnum> valuetype<MyEnum>
MyInterface * ByRef CLASS <MyInterface> Class <MyInterface>
MyCoClass ByRef CLASS <_Class> Class <_Class>

Proxy  

A  proxy  resides  in  the  address  space  of  the  calling  process  and  acts  as  a

surrogate for the remote object. From the perspective of the calling object, the proxy is

the object. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Typically,  the  proxy's  role  is  to  package  the  interface  parameters  for  calls  to

methods in its object interfaces. The proxy packages the parameters into a message

buffer and passes the buffer  onto the channel,  which handles the transport  between

processes.

 The proxy is implemented as an aggregate, or composite, object. It contains a system-

provided, manager piece called the proxy manager and one or more interface-specific

components called interface proxies. 

The number of interface proxies equals the number of object interfaces that have been

exposed  to  that  particular  client.  To  the  client  complying  with  the  component  object

model, the proxy appears to be the real object.

Each interface proxy is a component object that implements the marshaling code for one

of the object's interfaces. 

The proxy represents the object for which it provides marshaling code. Each proxy also

implements the IRpcProxyBuffer interface.

 Although the object interface represented by the proxy is public, the IRpcProxyBuffer

implementation is private and is used internally within the proxy.

 The proxy manager keeps track of the interface proxies and also contains the public

implementation of the controlling IUnknown interface for the aggregate. 

Each interface proxy can exist in a separate DLL that is loaded when the interface it

supports is materialized to the client.

Structure of the Proxy

Each interface proxy implements IRpcProxyBuffer for internal communication between

the aggregate pieces. 

When the proxy is ready to pass its marshaled parameters across the process boundary,

it  calls  methods  in  the  IRpcChannelBuffer interface,  which  is  implemented  by  the

channel. The channel in turn forwards the call to the RPC run-time library so that it can

reach its destination in the object.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

http://msdn2.microsoft.com/en-gb/library/ms679738.aspx
http://msdn2.microsoft.com/en-gb/library/ms680509.aspx
http://msdn2.microsoft.com/en-gb/library/ms693743.aspx


Stub 

The stub, like the proxy, is made up of one or more interface pieces and a manager.

 Each interface stub provides code to unmarshal the parameters and code that calls one

of the object's supported interfaces. 

Each stub  also  provides an interface for  internal  communication.  The stub  manager

keeps track of the available interface stubs.

There are, however, the following differences between the stub and the proxy: 

 The most important difference is that the stub represents the client in the object's

address space.

 The  stub  is  not  implemented  as  an  aggregate  object  because  there  is  no

requirement that the client be viewed as a single unit; each piece in the stub is a

separate component.

 The interface stubs are private rather than public.

 The interface stubs implement IRpcStubBuffer, not IRpcProxyBuffer.

 Instead of packaging parameters to be marshaled, the stub unpackages them

after they have been marshaled and then packages the reply.

Structure of the Stub

Each interface stub is connected to an interface on the object. The channel dispatches

incoming messages to the appropriate interface stub. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

http://msdn2.microsoft.com/en-gb/library/ms693743.aspx
http://msdn2.microsoft.com/en-gb/library/ms678504.aspx


All  the components talk to the channel  through  IRpcChannelBuffer,  the interface that

provides access to the RPC run-time library

.

Marshalling

COM handles all of the details described in this section for you. This section is provided

for  those  few programmers  who  need  these  details  and  for  those  interested  in  the

underlying information.

 Marshaling  is  the  process  of  packaging  and  unpackaging  parameters  so  a  remote

procedure call can take place. 

Different parameter types are marshaled in different ways. For example, marshaling an

integer parameter involves simply copying the value into the message buffer. Marshaling

an array, however, is a more complex process. 

Array members are copied in a specific order so that the other side can reconstruct the

array exactly.  When a pointer is marshaled, the data that the pointer is pointing to is

copied following rules and conventions for dealing with nested pointers in structures.

 Unique functions exist to handle the marshaling of each parameter type.

With  standard  marshaling,  the  proxies  and  stubs  are  systemwide  resources  for  the

interface and they interact with the channel through a standard protocol. 

Standard  marshaling  can be used both  by standard  COM-defined interfaces and by

custom interfaces, as follows: 

 In  the  case  of  most  COM interfaces,  the  proxies  and  stubs  for  standard

marshaling  are  in-process  component  objects  which  are  loaded  from  a

systemwide DLL provided by COM in ole32.dll.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

http://msdn2.microsoft.com/en-gb/library/ms679738.aspx


 In  the  case  of  custom  interfaces,  the  proxies  and  stubs  for  standard

marshaling are generated by the interface designer, typically with MIDL. 

These  proxies  and  stubs  are  statically  configured  in  the  registry,  so  any

potential client can use the custom interface across process boundaries.

 These proxies and stubs are loaded from a DLL that is located via the system

registry, using the interface ID (IID) for the custom interface they marshal.

 An  alternative  to  using  MIDL  to  generate  proxies  and  stubs  for  custom

interfaces, a type library can be generated instead and the system provided,

type-library–driven marshaling engine will marshal the interface.

Standard marshaling, an interface (standard or custom) can use custom marshaling.

With custom marshaling, an object dynamically implements the proxies at run time for

each interface that  it  supports.  For  any given interface,  the  object  can select  COM-

provided standard marshaling or custom marshaling. 

Custom marshaling is inherently unique to the object that implements it. It uses

proxies implemented by the object and provided to the system on request at run time.

Objects  that  implement  custom  marshaling  must  implement  the  Imarshal  interface,

whereas objects that support standard marshaling do not. 

If you decide to write a custom interface, you must provide marshaling support for

it. Typically, you will provide a standard marshaling DLL for the interface you design. You

can use the tools contained in the Platform SDK CD to create the proxy/stub code and

the proxy/stub DLL. Alternatively, you can use these tools to create a type library which

COM will use to do data-driven marshaling.

Components of Inter process communications

On the client side of the process boundary, the client's method call goes through the

proxy and then onto the channel, which is part of the COM library. 

The channel sends the buffer containing the marshaled parameters to the RPC run-time

library, which transmits it across the process boundary. 

The  RPC run  time  and  the  COM libraries  exist  on  both  sides  of  the  process.  The

distinction  between  the  channel  and  the  RPC  run  time  is  a  characteristic  of  this

implementation and is not part of the programming model or the conceptual model for

COM client/server objects. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



COM  servers  see  only  the  proxy  or  stub  and,  indirectly,  the  channel.  Future

implementations may use different layers below the channel or no layers.

Interface Pointers

An instance of an interface implementation is actually a pointer to an array of pointers to

methods that is, a function table that refers to an implementation of all of the methods

specified in the interface. 

Objects with multiple interfaces can provide pointers to more than one function table. Any

code that has a pointer through which it can access the array can call the methods in that

interface. 

Each interface the immutable contract of a functional group of methods is referred to at

run time with  a globally unique interface identifier  (IID).  This  IID,  which  is  a  specific

instance of a globally unique identifier (GUID) supported by COM, allows a client to ask

an object precisely whether it supports the semantics of the interface.

To summarize, it is important to understand what a COM interface is, and is not: 

 A COM interface is not the same as a C++ class 

1. If you are a C++ programmer, you can define your implementation of an

interface as a class, but this falls under the heading of implementation

details, which COM does not specify.

2. Different  object  classes may implement  an  interface differently  yet  be

used interchangeably in binary form, as long as the behavior conforms to

the interface definition.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



 A COM interface is not an object

It is simply a related group of functions and is the binary standard through which

clients and objects communicate. As long as it can provide pointers to interface

methods, the object can be implemented in any language with any internal state

representation.

 COM interfaces are strongly typed

Every interface has its own interface identifier (a GUID), which eliminates the

possibility of duplication that could occur with any other naming scheme.

 COM interfaces are immutable

You  cannot  define  a  new  version  of  an  old  interface  and  give  it  the  same

identifier.  Adding or removing methods of an interface or changing semantics

creates a new interface, not a new version of an old interface. Therefore, a new

interface cannot conflict with an old interface. 

Object Creation and Destruction

Because exceptions are excluded from the kernel’s restricted form of C++, you

cannot implement “normal” C++ constructors and destructors without jeopardy.

Constructors and destructors are typed to return no value (such as an error code).

Normally, if they encounter a problem, they raise an exception. But because exceptions

aren’t supported in the kernel’s C++ runtime, there is no way for you to know when an

allocation or deallocation error has occurred.

The  macros also  define  the  primary  constructor  and  a  destructor  for  a  class.

These  macro-created  constructors  are  guaranteed  not  to  fail  because  they  do  not

themselves  perform  any  allocations.  Instead,  the  runtime  system  defers  the  actual

allocation of objects until their initialization (usually in the init member function). 

Comparison of COM and CORBA

Three of the most popular distributed object paradigms are Microsoft's 

Distributed Component Object Model (DCOM)

Common Object Request Broker Architecture (CORBA) 

and JavaSoft's  Java/Remote Method Invocation (Java/RMI). 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



CORBA relies on a protocol called the  Internet Inter-ORB Protocol (IIOP) for

remoting objects. Everything in the CORBA architecture depends on an Object Request

Broker (ORB). The ORB acts as a central Object Bus over which each CORBA object

interacts transparently with other CORBA objects located either locally or remotely. 

Each CORBA server object has an interface and exposes a set of methods. To

request a service, a CORBA client acquires an object reference to a CORBA server

object. The client can now make method calls on the object reference as if the CORBA

server object resided in the client's address space. 

The ORB is responsible for finding a CORBA object's implementation, preparing it

to receive requests, communicate requests to it and carry the reply back to the client. 

A  CORBA object  interacts  with  the  ORB either  through  the  ORB interface  or

through  an  Object  Adapter -  either  a  Basic  Object  Adapter  (BOA) or  a  Portable

Object Adapter (POA). 

DCOM which is  often called 'COM on the wire',  supports  remoting objects  by

running on a protocol called the Object Remote Procedure Call (ORPC). This ORPC

layer is built on top of DCE's RPC and interacts with COM's run-time services. A DCOM

server is a body of code that is capable of serving up objects of a particular type at

runtime. 

Java/RMI relies on a protocol called the Java Remote Method Protocol (JRMP).

Java relies heavily on Java Object Serialization, which allows objects to be marshaled (or

transmitted) as a stream. 

Since  Java  Object  Serialization  is  specific  to  Java,  both  the  Java/RMI  server

object and the client object have to be written in Java. Each Java/RMI Server object

defines an interface which can be used to access the server object outside of the current

Java Virtual Machine(JVM) and on another machine's JVM. 

Introduction to .NET

The .NET Framework introduces a completely new model for the programming

and deployment of applications. .NET is Microsoft's vision of "software as a service", a

development environment in which you can build, create, and deploy your applications

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



and the next  generation of components,  the ability  to  use the Web rather  than your

own computer for various services.

Microsoft introduced great technologies like COM, DCOM, COM+ etc. to enable 

reuse of Software. Although these technologies are very powerful to reuse Software, 

they required a huge learning curve. 

The .NET Framework was born:

Microsoft changed all complex tasks with the new .NET Framework. That was a

huge advantage for all developers. Most of the Win32 API was now accessible through a

very simple Object  Model.  Most of  the features and functions of C++ were  added to

Visual Basic. A new Programming Language C# was introduced, which offered flexibility

and productivity. ASP.NET also called ASP+ replaced ASP.

 It  provides  the  easiest  and  most  scalable  way  to  build,  deploy  and  run  web

services.  ASP.NET  server controls  enable  an  HTML-like  style  of  declarative

programming that let you build great pages with far less code than with classic ASP. VB,

C++ and C# Code can be used in other languages.

The .NET Compilation Stages: 

 The Code written in .NET isn't compiled directly to the executable, instead .NET

uses two steps to compile the code. 

 First,  the  code  is  compiled  to  an  Intermediate  Language  called

Microsoft Intermediate Language (MSIL). 

 Second,  the  compiled  code  will  be  recompiled  with  the  Common Language

Runtime ( CLR ), which converts the code to the machine code. 

 The basic Idea of this two stages was to make the code language independence. 

The major Components ( Layers ) of the .NET framework:

The  top  layer  includes  user  and  program interfaces.  Windows Forms  are  a  new way
to create  standard  Win32  desktop  applications,  based  on  the  Windows  Foundation  Classes
(WFC) produced for J++.

Web Forms provide a powerful, forms-based UI for the web. Web Services, which are

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



perhaps  the  most  revolutionary,  provide  a  mechanism  for  programs  to  communicate  over
the Internet  using  SOAP.  Web  Services  provide  an  analog  of  COM  and  DCOM  for  object
brokering and  interfacing,  but  based  on  Internet  technologies  so  that  allowance  is  made  for
integration even with non-Microsoft platforms.
 

Web Forms and Web Services, comprise the Internet interface portion of .NET, and are
implemented through a section of the .NET Framework referred to as ASP.NET. The middle layer
includes  the next generation of standard system services such as ADO.NET and XML. These
services are brought under the control of the framework, making them universally available and
standardizing their usage across languages. 

The last layer includes system-level capability that a developer would need.

Overview of .Net Architecture

.NET as a new standard that will allow software to run anywhere, at any time, on any

platform, and on devices large and small.

NET is tiered, modular, and hierarchal. Each tier of the .NET Framework is a layer of

abstraction. .NET languages are the top tier and the most abstracted level. 

The common language runtime is the bottom tier, the least abstracted, and closest to

the native environment. This is important since the common language runtime works

closely with the operating environment to manage .NET applications. 

The  .NET  Framework  is  partitioned  into  modules,  each  with  its  own  distinct

responsibility. Finally, since higher tiers request services only from the lower tiers, .NET

is hierarchal

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



.NET Pros

 It offers multiple language support. 

 It has a rich set of libraries, a la JVM. 

 It's  open-standard  friendly  (e.g.,  HTTP  and  XML)  --  it  may  even  become  a

standard itself. 

 Its  code  is  compiled  natively,  regardless  of  language  or  deployment  (Web or

desktop). 

.NET Cons

 It's yet another platform to consider, which generally means rewriting and learning

new tricks. 

 Microsoft tends to have good ideas, but mediocre implementation. 

 Currently, it's only available on Windows. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



 Microsoft claims C#, IL, and CLR/CLS will be submitted to ECMA, but there's still

no clear view on what will be standardized from the platform. 

.NET Marshalling 

Thus  .NET  runtime  automatically  generates  code  to  translate  calls  between

managed  code  and  unmanaged  code.  While  transferring  calls  between  these  two

codes,  .NET handles  the  data  type  conversion  also.  This  technique of  automatically

binding  with  the  server  data  type  to  the  client  data  type  is  known  as  marshalling.

Marshaling occurs between managed heap and unmanaged heap. 

          

Sample diagram for marshaling

Logically the marshalling can be classified into 2 types. 

1. Interop marshalling 
2. COM marshalling 

If  a  call  occurs  between  managed  code  and  unmanaged  code  with  in  the  same

apartment, Interop marshaller will play the role. It marshals data between managed code

and unmanaged code. 

In some scenarios COM component may be running in different apartment threads. In

those  cases  i.e.,  calling  between  managed  code  and  unmanaged  code  in  different

apartments or process, both Interop marshaler and COM marshaler are involved.

Interop marshaler 

When the server object is created in the same apartment of client, all data marshaling is

handled by Interop marshaling. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Sample diagram for same apartment marshalling

COM marshaler 

COM marshaling involved whenever the calls between managed code and unmanaged

code are in different apartments. 

This  kind  of  different  apartment  communication  will  impact  the  performance.  The

apartment  settings  of  the  managed  client  can  be  changed  by  changing  the

STAThreadAttribute / MTAThreadAttribute /  Thread.ApartmentState property.  Both the

codes can run in a same apartment, by making the managed code’s thread to STA. (If

the COM component is set as MTA, then cross marshaling will occurs.) 

Sample diagram for cross apartment marshalling

In the above scenario, the call with in different apartments will occur by COM marshaling

and the call between managed and unmanaged code will occur by Interop marshaling. 

Remoting in .Net

Introduction:

Distributed  computing  is  an  integral  part  of  almost  every  software  development.

Before  .Net  Remoting,  DCOM was  the  most  used  method  of  developing  distributed

application on Microsoft platform. Because of object oriented architecture, .Net Remoting

replaces DCOM and .Net framework replaces COM.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Benefits of Distributed Application Development:

Fault Tolerance: Fault tolerance means that a system should be resilient when failures

within the system occur.

Scalability:  Scalability is the ability of a system to handle increased load with only an

incremental change in performance.

Administration:  .NET  remoting  is  an  architecture  which  enables  communication

between  different  application  domains  or  processes  using  different  transportation

protocols, serialization formats, object lifetime schemes, and modes of object creation. 

Remote means any object which executes outside the application domain. The

two processes can exist on the same computer or on two computers connected by a

LAN or the Internet. This is called marshalling (This is the process of passing parameters

from one context to another.),

 There are two basic ways to marshal an object: 
• Marshal by value: the server creates a copy of the object passes the copy to the client. 

Marshal by reference: the client creates a proxy for the object and then uses the proxy to 
access the object.

Comparison between .NET Remoting and Web services:

For performance comparison between .Net Remoting and ASP.Net Web Services 

Architecture:
Channels are Transport protocols for passing the messages between Remote 

objects. A channel is an object that makes communication between a client and a remote
object, across app domain boundaries. The .NET Framework implements two default 
channel classes, as follows:

 HttpChannel: Implements a channel that uses the HTTP protocol. 
 TcpChannel: Implements a channel that uses the TCP protocol (Transmission Control 

Protocol). 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



 Channel take stream of data and creates package for a transport protocol and sends to other
machine. 

A simple architecture of .NET remoting

Remoting system creates a proxy for the server object and a reference to the 
proxy will be returned to the client. When client calls a method, Remoting system sends 
request thro the channel to the server. Then client receives the response sent by the 
server process thro the proxy.

Example: 

Let us see a simple example which demonstrates .Net Remoting. In This example the 
Remoting object will send us the maximum of the two integer numbers sent. 

Creating Remote Server and the Service classes on Machine 1: 
Please note for Remoting support your service (Remote object) should be derived from 
MarshalByRefObject.

////////////////////////////////////////////////////////////////////////////////////////////////////////////

using System;
using System.Runtime.Remoting.Channels; //To support and handle Channel and 
channel sinks
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http; //For HTTP channel
using System.IO;

namespace ServerApp
{

public class RemotingServer

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



{
public RemotingServer()
{
//
// TODO: Add constructor logic here
//
}
}
//Service class
public class Service: MarshalByRefObject 
{
public void WriteMessage (int num1,int num2) 
{
Console.WriteLine (Math.Max(num1,num2));
}
}
//Server Class
public class Server
{
public static void Main () 
{
HttpChannel channel = new HttpChannel(8001); //Create a new channel
ChannelServices.RegisterChannel (channel); //Register channel
RemotingConfiguration.RegisterWellKnownServiceType(typeof(Service),"Service",WellK
nownObjectMode.Singleton); 
Console.WriteLine ("Server ON at port number:8001");
Console.WriteLine ("Please press enter to stop the server.");
Console.ReadLine ();
}
}

}

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

Save the above file as ServerApp.cs. Create an executable by using Visual Studio.Net 
command prompt by,

csc /r:system.runtime.remoting.dll /r:system.dll ServerApp.cs

A ServerApp.Exe will be generated in the Class folder.

Run the ServerApp.Exe will give below message on the console

Server ON at port number:8001

Please press enter to stop the server.

In order to check whether the HTTP channel is binded to the port, type 
http://localhost:8001/Service?WSDL in the browser.
You should see a XML file describing the Service class.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Please note before running above URL on the browser your server (ServerApp.Exe 
should be running) should be ON.

Creating Proxy and the Client application on Machine 2 

SoapSuds.exe is a utility which can be used for creating a proxy dll.

Type below command on Visual studio.Net command prompt.

soapsuds -url:http://< Machine Name where service is running>:8001/Service?WSDL 
-oa:Server.dll

This will generates a proxy dll by name Server.dll. This will be used to access remote 
object.

Client Code:

//////////////////////////////////////////////////////////////////////////////////////////////////////////////
using System;
using System.Runtime.Remoting.Channels; //To support and handle Channel and 
channel sinks
using System.Runtime.Remoting;
using System.Runtime.Remoting.Channels.Http; //For HTTP channel
using System.IO;
using ServerApp;

namespace RemotingApp
{

public class ClientApp
{
public ClientApp()
{

}

public static void Main (string[] args) 
{
HttpChannel channel = new HttpChannel (8002); //Create a new channel
ChannelServices.RegisterChannel (channel); //Register the channel
//Create Service class object
Service svc = (Service) Activator.GetObject (typeof (Service),"http://<Machine name 
where Service running>:8001/Service"); //Localhost can be replaced by 
//Pass Message
svc.WriteMessage (10,20); 
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////

Save the above file as ClientApp.cs. Create an executable by using Visual Studio.Net 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



command prompt by,
csc /r:system.runtime.remoting.dll /r:system.dll ClientrApp.cs
A ClientApp.Exe will be generated in the Class folder. Run ClientApp.Exe , we can see 
the result on Running ServerApp.EXE command prompt.
In the same way we can implement it for TCP channel also. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m


	Structure of the Proxy
	Structure of the Stub
	Components of Inter process communications
	Object Creation and Destruction
	.NET Marshalling
	Interop marshaler
	COM marshaler
	




