
Import Statement

After  learning  the  concept  of  package,  the  next  part  is
import statement to the program and run in the command
prompt.  We  can  import  the  statement  at  some  logical
statements only. 

For  example  if  we  are  executing  a  program  on  circle.
According to the mathematical statement we know c=2piR.
Here pi=3.1415

Let’s execute a program using the statement in java

The java.lang.Math class defines the PI constant and many static methods,
including  methods  for  calculating  sines,  cosines,  tangents,  square  roots,
maxima, minima, exponents, and many more. 

Example statement using PI value

public static final double PI = 3.141592653589793;

public static double cos(double a)

{

    */////////////////////////

/////////////////////////*

}

If we observe the statement particularly, it imported the PI value into java.
But the PI value is taken as double in the program which is the statement
written by Sun Micro Systems and it  is  imported as “Final”.   Many import
statements are taken as Static where the value should not be changed and
made it is a public. So we can say that, to import a statement on PI we need
statement: 

Public static final double PI=3.141592653589793;

These  statements  will  be  under  package  of  java.lang.math.  All  the
arithmetic operations are imported from this package. The package can be
described as briefly in this way:The operating view of the package is taken as
java and is the package folder where lang is the sub-folder. Here we have one
more package called as math, which is called as “Sub-sub package”. In this
package we have import statement. 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



We  can  do  sines,  cosines,  tangents,  square  roots,  maxima,  minima,
exponents which is under the method. By importing this statement a direct call
to this method can be made in the program and execution process is very
easy.

Example statement in the java.lang.math:

For importing BigInteger:

package java.math;

import java.util.Random;

import java.io.*;

public class BigInteger extends Number implements Comparable<BigInteger>

{

    *///////////////

/////////////*

}

We have imported the statement under the package of java.math,  which
is fully classifield package name and the imported two statements for program
it  is  java.util.Random  and  java.io.*.  For  execution  we  need  to  have  the
Random and io.* statements mainly. 

For importing Integer:

package java.lang;

import java.util.Properties

public  final  class  Integer  extends  Number  implements
Comparable<Integer> 

{

*////////////////////////////////

/////////////////////////////////*

}

The  above  example  is  bit  different  from the  previous  example,  where  we
imported only statement of util.Properties. If we observe clearly we had made
this imported and class as PUBLIC.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Diagram view of package:

Import Statements

Syntax for import statements:

There are two types of import statements for a package. There are listed as
below:

Import pack1.[pack2[....................[packn]]].*;

This syntax makes us to understand how to refer all classes/ interfaces of
separate  package  in  current  java  program.  This  approach  is  not
recommended to use in industry even if  we are using two classes of  one
package,  because  uninterested  classes  and  interfaces  are  also  loaded  in
main memory and becomes waste of memory use.

If use statement 1 in our current java program then we can refer all the
classes and interfaces of p1 package, but we can’t refer all the classes and
interfaces of p2 package.

If  we  use  statement  2  in  our  java  program  then  we  can  refer  all
theclasses /interfaces of package p2 but we can’t refer classes/interfaces of
its upper package and its lower package.

Here, we have 

P1, p2, p3 are packages

C1, c2, c3 are classes

I1, i2, i3 are interfaces

Syntax 2:

Import pack1[.pack2.......[packn]]].class/interface name;

This  syntax  makes us understand a  specific  class/interface pf  a  particular
package in our current java program.

Example: 

Import p1,c1;

Import p1.p2.c2;

Import p1.p2.p3.c3;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



If  we  observe  the  above  statements  in  our  java  program  we  can  refer
statement 1 for only class c1 of package p1 but we can’t refer other classes
and  interfaces  of  same  package  p1.  This  type  of  syntax  2  is  highly
recommended in industry for  real-time experience.  Because a programmer
can refer only interested class/interfaces by eliminating to import uninterested
class and interface. 

Static import statement:

Static  import  statement  is  new  feature  in  JDK  1.5  version  onwards.  The
purpose of  the new facility available is to eliminate rented referring of class
name or interface name before the static data members and class names
before the static methods. This jdk 1.5 is also called as “tiger” software. In
other  words static  imports make us to refer  static  features directly without
referring their class name and interface names. 

Syntax 3:

Import  static  pack[.pack2[.................[packn]]].class/interface
name.

This  method  of  writing  the  import  statement  refers  the  “static  data
member level”.

Syntax 4:

Import static pack1[.pack2[...................[packn]]]. Classname.methodname;

This method of writing syntax in import statements refers to “Static method
name”.

Example program;

class Languages 

{

public static void main(String[] args)

{

display();

  }

   static void display() 

{

System.out.println("Hello welcome to my article");

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



 }

}

Excetuion:

Hello welcome to my article 

Synatx 5:

Import static pack1[.pack2[...............[packn]]].class name/interface name.*;

Example 

class Util 

{

  public static void method()

{

     //  write your method

  }

}

This method of writing syntax refers to the “static features level”

Importing a Package Member

Import a package member of Rhombus which is user-defined package

We can import the package not only for arithmetic operations in the program;
the import statement is used for graphical representation also. In the same
way we can create a user-defined package by following the rules. To import a
specific member into the current file, put an import statement at the beginning
of the file before any type definitions but after the package statement, if there
is one. Here's how you would import the Rectangle class from the graphics
package. Here is one of the created package for Rhombus.

Example 

import graphics.Rhombus;

{

Rhombus my Rhombus = new Rhombus ();

*/////////////////////////////

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



///////////////////////////////*

}

Above is the dynamic creation.

Import a package member of Square which is user-defined package:

We can import the package with square, which is already present in the user
defined one. As we know from the mathematical order, insert the statement
for finding the perimeter and area of the given square. 

Where,

Perimeter of the square=4*square

Area of the Square=S^2

Example 

import graphics.Square;

{

Sqaure mySquare = new Square ();

*///////////////////////////////

////////////////////////////////*

}

Importing an Entire Package

To  import  a  package  is  different  from  import  a  package  member.  In
importing package we import  fully classified name. To import  all  the types
contained in a particular package, use the import statement with the asterisk
(*) wildcard character.

import graphics.*;

Now you can refer to any class or interface in the graphics package by its
simple name.

{

Circle myCircle = new Circle();

Rhombus myRhombus = new Rhombus();

}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



The  asterisk  in  the  import  statement  can  be  used  only  to  specify  all  the
classes within a package, as shown here. It cannot be used to match a subset
of the classes in a package. For example, the following does not match all the
classes in the graphics package that begin with A.

// does not work

import graphics.A*;

Instead,  it  generates  a  compiler  error.  With  the  import  statement,  you
generally import only a single package member or an entire package.

Importing user defined package:

As  we  discussed  earlier  we  can  create  and  define  user  packages  in  the
program.  These  packages  are  made  public  to  a  limited  and  used  in
companys.

Import.java.io.*;

Import.java.io.DataInputStream;

Here in this package we have both the implicit  import of the package and
explicit import of the package.

Example for creating a demo package;

Create a new package demo_pack by creating a new directory by the name
demo_pack. Assume we are in G:drive. Now move the directory demo_pack
and create a new file in it by the name demo2.java as

G:\demo_paack> edit demo2.java

Example program for creating a demo package:

Package demo_pack;

Public class demo2

{

Public void show()

{

System.Out.Println(“Welcome to this package”)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



}

Public int mul(int x , int y)

{

Return x*y;

}

}

 As if you observe there are two pubic functions is show and mul.

Import demo_pack.demo2;

Class main

{
public static void main(string[]args)

{

demo2 d=new demo2();

d.show();

int m=d.mul(40,50);

system.out.println(“mul”*m);

}

}

Before compiling the program, set the classpath, if not set earlier 

Set=classpath=.;G;\;

It is a dynamic selection of setting class path. 

Execution:

Compile and run the program you will have the output as 

Welcome to my package

Mul=2000

 

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Q)  Write  a  java  program which  list  of  all  static  import  for  referring  static
features:

//program

/*Import static java.lang.math.Sqrt;

  Import static java.lang.math.Pow.*;

(OR)

Import static java.lang.math.*;

Import static java.lang.system.out;

Class arithmeticdemo2

{

Public static void main (String [] args)

{

System.out.println(“val of pi=”+pi);

System.out.println(“val of ri=”+E);

System.out.println(“Sqrt of 64”=+Sqrt(64));

System.out.println(“Sqrt of 121=”+Sqrt(121));

System.out.println(“8 to the power of 2=”+pow(8,2));

}

}

Understanding CLASSPATH:

In java, setting path is the most important concept. To run or execute the
program setting class path should be understand. There are few rules and few
concept oriented process to set the class path in java environment. There are
two ways of setting class path in java programming language. One approach
can  be  done  directly  (permanent)  and  another  approach  by  directory
path(temporary).

For example write a program in java.

package com.Tommorow;

public class Test1

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



{

public static void main(String[] args)

  {

  System.out.println ("Run Test1.main()");

  }

}

package com.Tomorrow;

public class Test2

{

public static void main(String[] args)

  {

  System.out.println ("Run Test2.main()");

  CPTest1 cpt1 = new Test1();

  }

}//program end

Execution of Program:

Rather than specifying class search path on the javac command line, we
can make use of a `system' class path. This is the class path that will be used
by both the Java compiler and the JVM in the absence of specific instructions
to the contrary. In both Unix and Windows systems, this is done by setting an
environment variable. For example, in Linux with the bash shell:

and in Windows:

set CLASSPATH=c:\folder\subfolder

Setting permanent class path:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



For setting class path in windows environment variables follow the steps:

You can run Java applications just fine without setting the PATH environment
variable. Or, you can optionally set it as a convenience.

Set the PATH environment variable if you want to be able to conveniently run
the  executable  (javac.exe, java.exe, javadoc.exe,  and  so  on)  from  any
directory without having to type the full path of the command. If you do not set
the PATH variable, you need to specify the full path to the executable every
time you run it, such as:

C:\Java\jdk1.7.0\bin\javac Hello.java

 

For setting environment variables in windows:

Steps to follow:

1. From the desktop, right click the Computer icon.

2. Choose Properties from the context menu.

3. Click the Advanced system settings link.

4. Click Environment  Variables.  In  the  section System  Variables,  find
the PATH environment  variable  and  select  it.  Click Edit.  If
the PATH environment variable does not exist, click New.

5. In the Edit System Variable (or New System Variable) window, specify
the value of  the PATH environment  variable.  Click OK.  Close all  remaining
windows by clickingOK.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Now type Run from your windows by using win logo+R

 In the RUN Prompt type “cmd”

You should set  the classpath in this cmd command prompt by using the “cd
yourfolder”. Here for example I set my java programming file in 

Step:1C:\Users\USER\cd Documents

Step:2C:\Users\USER\Documents\cd java

Step:3 C:\Users\USER\Documents\java>

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Note:  For checking whether your java programming is running or not, type
java in the open command prompt. You can see that after setting the path file
the term “java” will  show the list of source files which are given by Oracle
(Previously developed by Sun Micro Systems).

Check whether the your java programming was supported for compiler. Type
“javac” which is a java cmd for compiling the program which already set in
environment variables in my computer.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



You  have  set  the  command  prompt  temporarily  to  call  the  compiler  for
execution of program and by using “cd folder name” which is a dynamic entry
in prompt and now execute the program.

Javac Hello.Java

Java Hello

Ans: Hello World!

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Setting permanent CLASSPATH:

To set class path in Windows:

CLASSPATH=c:\myclasses\myclasses.jar

This procedure is fine for short-term changes to the system CLASSPATH, but
if you want these changes to be persistent you will need to arrange this by
yourself as details vary from system to system.

Setting the system CLASSPATH is a useful procedure if you have JAR's full of
classes that you use all the time. For example, if I am developing Enterprise
Java Bean (EJB) applications using Sun's J2EE `Reference Implementation',
all the EJB related classes are in a JAR called `j2ee.jar' that comes with the
distribution. I want this JAR on the class search path all the time. In addition,
most people want to ensure that the current directory is on the search path,
whatever the current directory happens to be.

CLASSPATH=/usr/j2ee/j2ee.jar:.;export CLASSPATH 

Here the “.” indicates current directory'.

Suppose that a program has been enclosed in a Jar file called helloWorld.jar,
put directly in the D:\myprogram directory. We have the following file structure:

D:\myprogram\

      | ---> helloWorld.jar 

      |---> lib\  

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

http://en.wikipedia.org/wiki/JAR_(file_format)


                 |---> supportLib.jar

Here we can see there is a .jar file supported in the lib folder.

Main-Class: org.mypackage.HelloWorld

Class-Path: lib/supportLib.jar

It's  important  that  the manifest  that  the  file ends  with  either  a  new line or
carriage return.

To launch the program, we can use the following command:

java -jar D:\myprogram\helloWorld.jar [app arguments]

This  will  automatically  start  the org.mypackage.HelloWorld specified  in
the Main-Class with the arguments and user cannot replace this class name
usingjava  -jar options.  The Class-Path meantime  describes  the  location  of
the supportLib.jar file  relative  to  the  location  of  the helloWorld.jar.  Neither
absolute file path (which is permitted in -classpath parameter on the command
line) nor jar-internal paths are supported. This particularly means that if main
class  file  is  contained  in  a  jar, org/mypackage/HelloWorld.class must  be  a
valid path on the root within the jar.

Multiple class path entries are separated with spaces:

Class-Path: lib/supportLib.jar lib/supportLib2.jar

Example programs:

Each package name has a corresponding directory name. In the following
examples, the source files are located at /home/ws/src/java/awt/*.java.

Compiling One or More Packages

To compile  a  package,  the source  files  (*.java)  for  that  package must  be
located in a directory having the same name as package. If the package name
is  made  up  of  several  identifiers  (separated  by  dots),  each  identifier
represents a different directory.  Thus, all  java.awt classes must reside in a
directory named java/awt/.

First, change to the parent directory of the top-most package. Then run javac,
supplying one or more package names.

  % cd /home/ws/src/

  % javac java.awt java.awt.event

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m



Compiles the public classes in packages java.awt and java.awt.event.

Compiling One or More Classes

Change to the directory holding the class. Then run javac, supplying one or
more class names.

  % cd /home/ws/src/java/awt/

  % javac Button.java Canvas.java

Compiles the two classes.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m




