
PROGRAMS ON OVERLOADING

Example problem on overloading:

public class Overload2

{

void add(int m, int n)

{

int sum = m + n;

System.out.println("Sum of a+b is "
+sum);

}

void add(int a, int b, int c)

{

int sum = a + b + c;

System.out.println("Sum of a+b+c is " +sum);

}

void add(double a, double b)

{

double sum = a + b;

System.out.println("Sum of a+b is "+sum);

}

void add(String s1, String s2)

{

String s = s1+s2;

System.out.println(s);

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

}

}

class overloadfunc

{

public static void main(String args[])

{

Overload2 obj = new Overload2();

Obj.add(4,19);

obj.add(4,17,11);

obj.add(1.5,21.5);

obj.add("Life at"," the speed of rail ");

}

}

Output will be:

Sum of a+b is 23

Sum of a+b+c is 32

Sum of a+b is 23.0

Q) Program of Method Overloading with Runtime Values

Solution:

import java.util.Scanner;

class cal

{

void add(int a,int b)

{

System.out.print("Addition of First 2No.s is : " +(a+b));

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

}

void add(int a,int b,int c)

{

System.out.print("Addition of Three No.s is : " +(a+b+c));

}

}

class mthdovrng

{

public static void main (String args[])

{

int a,b,c;

Scanner input=new Scanner(System.in);

System.out.print("Enter First No. : ");

a=input.nextInt();

System.out.print("Enter Second No. : ");

b=input.nextInt();

System.out.print("Enter Third No. : ");

c=input.nextInt();

cal ob=new cal();

ob.add(a,b);

ob.add(a,b,c);

}

}

Q) You cannot overload the private method in Test class.

Solution: public class A

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

{

int aa,bb,addd,pp,qq,rr,add2,ss,tt,uu,vv,add3;

void overload(int a,int b)//===========1

{

aa=a;

bb=b;

addd=aa+bb;

System.out.println("Addition is="+addd);

}

private void overload(int p,int q,int r)//============2

{

pp=p;

qq=q;

rr=r;

add2=pp+qq+rr;

System.out.println("Addition is="+add2);

}

protected void overload(int s,int t,int u,int v)//========3

{

ss=s;

tt=t;

uu=u;

vv=v;

add3=ss+tt+uu+vv;

System.out.println("Addition is="+add3);

}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

}

class test

{

public static void main(String a[])

{

A a1=new A();

a1.overload(23,55);

A a2=new A();

a2.overload(20,40,60);

A a3=new A();

a3.overload(20,40,6,100);

}

}

Difference between Classes, Interfaces in Java

Class: A Java class is a virtual construct in Programming world, which can
be instantiated to create Logical object to represent a Physical entity in the
Virtual / Programming environment.

Every Object instantiated from a Class will have a state, and a behavior.
These objects will communicate with other Objects in their virtual world
using this behavior. We will take a deep dive about this communication
between the objects in a short while.

Class Definition & Syntax:

 1: public class Vehicle

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

{ // syntax of class

int steering; // these are the instance variables
int wheels;
Vehicle(int wheelCpunt)

{

//Isaconstructorofthelass
wheels=wheelCount;

}

int getWheels()

{
 return wheels;
}

}

Interface: A Java Interface is also a virtual construct in programming
world, but in contrary to the Java Class, Interface cannot be instantiated or
created as an object. An Interface denotes a group of logical entities. It
can also act as a contract between two sub systems.

Example program/Sample Program:

public interface Vehicle

{

 int steeringCount=2;
 int getWheels();
 }

The above code snippet, defines an interface called Vehicle. An interface
will not have a constructor and cannot be instantiated or an object cannot
be created for this type. The variables in an Interface are called Class
variables / Static variables, since they cannot have instances they should
be able to communicate using the Class Name itself. In addition to being
static variables these are also final by default which makes them not to be
altered by any other objects.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Some of the differences between a class and an Interface

Property Class Interface

Instantiation Can Be
Instantiated

Cannot be instantiated

State Each Object
created will
have its own
state

Each objected created after
implementing will have the
same state

Behavior Every Object
will have the
same behavior
unless
overridden.

Every Object will have to define
its own behavior by
implementing the contract
defined.

Inheritance A Class can
inherit only one
Class and can
implement
many
interfaces

An Interface cannot inherit any
classes while it can extend
many interfaces

Variables All the
variables are
instance by
default unless
otherwise
specified

All the variables are static final
by default, and a value needs to
be assigned at the time of
definition

Methods All the
methods
should be
having a
definition
unless

All the methods are abstract by
default and they will not have a
definition.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

decorated with
an abstract
keyword

**When to use abstract methods in Java?

Why you would want to declare a method as abstract is best
illustrated by an example.

Sample Program

/* the Figure class must be declared as abstract

 because it contains an abstract method */

public abstract class Figure

{

/* because this is an abstract method the body will be blank*/

public abstract float getArea();

}

public class Circle extends Figure

{

private float radius;

public float getArea()

{

return (3.14 * (radius ^ 2));

}

}

public class Rectangle extends Figure

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

{

private float length, width;

public float getArea(Figure other)

{

return length * width;

}

}

Execution:

Both the Circle and Rectangle classes provide definitions for the getArea
method, as you can see in the code above.

**Java interface versus abstract class

An interface differs from an abstract class because an interface is not a
class. An interface is essentially a type that can be satisfied by any class
that implements the interface.

Any class that implements an interface must satisfy 2 conditions:

It must have the phrase "implements Interface_Name" at the beginning of
the class definiton.

It must implement all of the method headings listed in the interface
definition.

This is what an interface called "Dog" would look like:

Sample Example

public interface Dog

{

public boolean Barks();

public boolean isGoldenRetriever();

}

Now, if a class were to implement this interface, this is what it would look
like:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Implementation:

public class SomeClass implements Dog

{

public boolean Barks

{

// method definition here

}

public boolean is GoldenRetriever

{

// method definition here

}

}

Test Your Skill

Q) What is the output of this program?

Input:

 Interface calculate

{

 void cal(int item);

 }

 Class display implements calculate

{

 int x;

 Public void call (int item)

{

 x = item * item;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 }

 }

 Class interfaces

{

 Public static void main (String args[])

{

 display arr = new display;

 arr.x = 0;

 arr.cal(2);

 System.out.print(arr.x);

 }

 }

Output:

Q) What is the output of this program?

Input:

 Interface calculate

{

 void cal(int item);

 }

 Class displayA implements calculate

{

 int x;

 Public void cal(int item)

{

 x = item * item;

 }

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

 }

 Class displayB implements calculate

{

 int x;

 Public void cal(int item)

{

 x = item / item;

 }

 }

 class interfaces

{

 public static void main(String args[])

{

 displayA arr1 = new displayA;

 displayB arr2 = new displayB;

 arr1.x = 0;

 arr2.x = 0;

 arr1.cal(2);

 arr2.cal(2);

 System.out.print(arr1.x + " " + arr2.x);

 }

 }

Output:

Q) What is the output of this program?

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

Input:

Interface calculate

{

 int VAR = 0;

 Void cal (int item);

 }

 Class display implements calculate

{

 int x;

 Public void cal(int item)

{

if (item<2)

 x = VAR;

 else

 x = item * item;

 }

 }

 Class interfaces

{

 Public static void main(String args[])

{

 display [] arr=new display[3];

 for(int i=0;i<3;i++)

 arr[i]=new display();

 arr[0].cal(0);

 arr[1].cal(1);

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

arr[2].cal(2);

System.out.print(arr[0].x+" " + arr[1].x + " " + arr[2].x);

 }

 }

Output:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.
co

m

