8. SIMILAR TRIANGLES

1. The ratio of the corresponding sides of the two similar triangles is $1: 3$, then the ratio of their areas is \qquad
2. $\triangle \mathrm{PQR}$ is formed by joining the mid points of the sides of $\triangle \mathrm{ABC}$, then the ratio of the areas of the $\triangle P Q R$ and $\triangle A B C$ is \qquad
3. D, E are the mid-points of the sides $A B$ and $A C$ of the $\triangle A B C$. If $D E$ measures 4 cm , then the side BC measures \qquad
4. If the side of an equilateral triangle is 8 cm , then its area is \qquad
5. In the given figure $\mathrm{DE} / / \mathrm{BC}, \mathrm{AD}=6 \mathrm{~cm}, \mathrm{DB}=8 \mathrm{~cm}$ and $\mathrm{AE}=9 \mathrm{~cm}$, then $\mathrm{EC}=$ \qquad

6. In $\triangle \mathrm{ABC} \angle \mathrm{B}=90^{0}$ then $\mathrm{b}^{2}=$ \qquad

7. Two congruent polygons are \qquad
8. In the given figure $\mathrm{AD} \perp \mathrm{BC}$, then $\mathrm{AB}^{2}+\mathrm{CD}^{2}=$ \qquad

9.The length of the diagonal of the square is $5 \sqrt{ } 2 \mathrm{~cm}$, then the area of the square in cm^{2} is \qquad
9. The symbol for 'is similar to' is
10. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, if $\mathrm{AB}=3.6, \mathrm{PQ}=2.4$ and $\mathrm{PR}=5.4$, then $\mathrm{AC}=$ \qquad
11. In the given figure, $\angle \mathrm{Q}=90^{\circ}$ and $\angle \mathrm{S}=90^{\circ}$; $\mathrm{QS}=\mathrm{t}, \mathrm{PQ}=\mathrm{r} \mathrm{QR}=\mathrm{P}$ and $\mathrm{PR}=\mathrm{q}$ then $1 / \mathrm{t}^{2}=$ \qquad

12. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, if $\mathrm{AB}=6, \mathrm{BC}=4, \mathrm{AC}=8$ and $\mathrm{PR}=6$ then $\mathrm{PQ}+\mathrm{QR}$ = \qquad
13. A man goes 7 metres due east and then 24 metres due north, then his distance from starting point is \qquad
14. If $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}, \angle \mathrm{A}=50^{\circ}$ then $\angle \mathrm{E}+\angle \mathrm{F}=$ \qquad
15. The side of a rhombus with diagonals $16 \mathrm{~cm} \& 30 \mathrm{~cm}$ is \qquad
16. Basic Proportionality Theorem is also known as \qquad .
17. A ladder is placed in such a way that its foot is at a distance of 15 metres from the wall and its top reaches a window 8 m above the ground. Then the length of the ladder is \qquad
18. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, if $\mathrm{m} \angle \mathrm{A}=50^{\circ}$ and $\mathrm{m} \angle \mathrm{B}=60^{\circ}$ then $\mathrm{m} \angle \mathrm{R}=$ \qquad
19. In the given figure, $\mathrm{AC}=13 \mathrm{~cm}$, then the length of the Median $\mathrm{BD}=$
\qquad

20. The areas of two similar triangles are $16 \mathrm{~cm}^{2}$ and $25 \mathrm{~cm}^{2}$ respectively. Then the ratio of their corresponding sides is \qquad
21. In $\triangle \mathrm{ABC}, \mathrm{DE} / / \mathrm{BC}$ and $\mathrm{DE}=1 / 2 \mathrm{BC}$, then $\mathrm{AD}: \mathrm{DB}=$ \qquad
22. In the given figure $\triangle A C B \sim \Delta A P Q$. If $A B=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $P Q=4 \mathrm{~cm}$, then $A Q=$ \qquad

23. The relation between a diagonal of a Square and its side is \qquad
24. In $\triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$ and $\overline{\mathrm{BM}}$ is an altitude. then $\triangle \mathrm{AMB}$ is similar to
\qquad
25. In the rhombus $\mathrm{ABCD}, \mathrm{AB}=6 \mathrm{~cm}$, then $\mathrm{AC}^{2}+\mathrm{BD}^{2}=$ \qquad
26. The area of an equilateral triangle whose height ' h ' is \qquad
27. If the ratio of the medians of two similar triangles is $1: 2$, then the ratio of their areas is \qquad
28. In an equilateral triangle ABC , if $\mathrm{AD} \perp \mathrm{BC}$ then, $3 \mathrm{AB}^{2}=$ \qquad
29. The length of the diagonal of a Square is $5 \sqrt{ } 2 \mathrm{~cm}$, then the area of the square is \qquad

ANSWERS

1) $1: 9$; 2) $1: 4$; 3) 8 cm ; 4) $16 \sqrt{ } 3 \mathrm{~cm}^{2}$; 5) 12 cm ; 6) $\mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}$; 7) similar;
2) $\mathrm{BD}^{2}+\mathrm{AC}^{2}$; 9) 25 ; 10) \sim; 11) 1.8 ;
3) $\frac{1}{p^{2}}+\frac{1}{r^{2}}$; 13) 10 ; 14) 25 m ; 15) 130^{0};
4) 17 cm ; 17) Thales

Theorem; 18) 17 m ; 19) 70^{0}; 20) 6.5 cm ; 21) 4:5; 22) $1: 1$; 23) 3 $\mathrm{cm} ; 24$) diagonal $=\sqrt{ } 2$. Side; 25) $\Delta A B C$; 26) 144 ; 27) $h^{2} / \sqrt{ } 3$; 28) $1: 4$; 29) 4AD ${ }^{2}$; 30) $25 \mathrm{~cm}^{2}$

