6. PROGRESSIONS

1. The $\mathrm{n}^{\text {th }}$ term of G.P is $\mathrm{a}_{\mathrm{n}}=\operatorname{ar}^{\mathrm{n}-1}$ where ' r ' represents \qquad
2. The $\mathrm{n}^{\text {th }}$ term of a G.P is $2(0.5)^{\mathrm{n}-1}$ then r \qquad
3. In the A.P $10,7,4----62$, then $11^{\text {th }}$ term from the last is \qquad
4. ___ term of G.P $1 / 3,1 / 9,1 / 27$---- is $1 / 2187$
5. $\mathrm{n}-1, \mathrm{n}-2, \mathrm{n}-3,---\mathrm{a}_{\mathrm{n}}=$ \qquad
6. In an A.P a $=-7, \mathrm{~d}=5$ then $\mathrm{a}_{18}=$ \qquad
7. $2+3+4+----+100=$ \qquad
8. $-1,1 / 4,3 / 2----\mathrm{S}_{81}=$ \qquad
9. In G.P, $1^{\text {st }}$ term is 2 , common ratio is -3 then $7^{\text {th }}$ term is \qquad
10. $1,-2,4,-8,-----$ is a \qquad Progression.
11. Common difference in $1 / 2,1,3 / 2$----- is \qquad
12. $\sqrt{ } 3,3,3 \sqrt{ } 3$ is a \qquad
13. $a=1 / 3, d=4 / 3$, the $8^{\text {th }}$ term of an A.P is \qquad
14. Arithmetic progression in which the common difference is 3 . If 2 is added to every term of the progression, then the common difference of new A.P. is \qquad
15. In an A.P. first term is 8 , common difference is 2 , then \qquad term becomes zero
16. $4,8,12,16,----$ is \qquad series.
17. Next 3 terms in series $3,1,-1,-3$ are \qquad
18. If $x, x+2 \& x+6$ are the terms of G.P. then x is \qquad
19. In G.P. $a_{p+q}=m, a_{p-q}=n$. Then $a_{p}=$ \qquad
20. In $3+6+12+24----$. Progression, the $\mathrm{n}^{\text {th }}$ term is \qquad
21. $\mathrm{a}_{12}=37, \mathrm{~d}=3$, then $\mathrm{S}_{12}=$ \qquad
22. In the garden, there are 23 roses in the first row, in the 2 nd row there are 19 . At the last row there are 7 trees, \qquad rows of rose trees are there in the garden.
23. From 10 to 250 , \qquad multiples of 4 are there.
24. The taxi takes Rs. 30 for 1 hour. After for each hour Rs. 10, for each hour. how much money can be paid $\&$ how it forms \qquad progression
25. The sum of first 20 odd numbers is \qquad
26. $10,7,4,----a_{30}=$ \qquad
27. $1+2+3+4+----+100=$ \qquad
28. In the G.P $25,-5,1,-1 / 5-----\mathrm{r}=$ \qquad
29. The reciprocals of terms of G.P will form \qquad
30. If $-2 / 7, x,-7 / 2$ are in G.P. Then $x=$ \qquad
31. $1+2+3+----+10=$ \qquad
32. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P, then $\mathrm{b} / \mathrm{a}=$ \qquad
33. $x, 4 x / 3,5 x / 3, . . a_{6}=$. \qquad
34. In a G.P $\mathrm{a}_{4}=$ \qquad
35. $1 / 1000,1 / 100,1 / 10,1$----- are in \qquad
36. The $10^{\text {th }}$ term from the end of the A.P;

4, 9, 14 ----- 254 is \qquad
37. In a G.P. $\mathrm{a}_{\mathrm{n}-1}=$
38. In a A.P. $\mathrm{S}_{\mathrm{n}}-\mathrm{S}_{\mathrm{n}-1}=$ \qquad
39. $1.2+2.3+3.4+-----5$ terms $=$ \qquad
40. In a series $\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+3)}{\mathrm{n}+2}, \mathrm{a}_{17}=$ \qquad
41. In $-3,-1 / 2,2-----$. A.P. then $n^{\text {th }}$ term \qquad
42. $a_{3}=5 \& a_{7}=9$, then the A.P. is \qquad
43. The $\mathrm{n}^{\text {th }}$ term of the G.P. $2(0.5)^{\mathrm{n}-1}$, then the common ratio $=$ \qquad
44. In $4,-8,16,-32$ then the common ratio is \qquad
45. The $\mathrm{n}^{\text {th }}$ term $\mathrm{t}_{\mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}+1}$ then $\mathrm{t}_{4}=$ \qquad
46. In an A.P, $l=28, \mathrm{~S}_{\mathrm{n}}=144 \&$ total terms are 9 , then the first term is
\qquad
47. In an A.P $11^{\text {th }}$ term is 38 and $16^{\text {th }}$ term is 73 , then common difference of A.P is \qquad
48. In a garden there are 32 rose flowers in first row and 29 flowers in 2nd row and 26 flowers in 3rd row, then \qquad rose trees are there in the $6^{\text {th }}$ row.
49. In $-5,-1,3,7$------. Progression, then $6^{\text {th }}$ term is \qquad
50. In Arithmetic progression, the sum of nth terms is $4 n-n^{2}$, then first term is \qquad

ANSWERS

1) Common ratio; 2) 0.5 ; 3) -32 ; 4) 7 ;
2) 0 ; 6) 78 ; 7) 5049 ; 8) 3969 ; 9) 1458 ;
3) GP; 11) $1 / 2$; 12) GP; 13) $29 / 3$; 14) 3 ; 15) $5^{\text {th }}$ term;
4) Arithmetic; 17) $-5,-7$, -9 ; 18) 2 ; 19) $\sqrt{\mathrm{mn}}$; 20) $3.2^{\mathrm{n}-1}$; 21) 246 ;
5) 9 ; 23) 60 ; 24) Arithmetic progression; 25) 400; 26) -77 ;
6) 5050 ; 28) $-1 / 5$;
7) Geometric Progression; 30) ± 1;
8) 55 ; 32) c/b ; 33) $8 \mathrm{x} / 3$; 34) ar^{3};
9) G.P.; 36) 209; 37) $\mathrm{ar}^{\mathrm{n}-2}$; 38) a_{n}; 39) 70; 40) $340 / 19$; 41)

1/2(5n-11); 42) 3, 4, 5, 6, 7; 43) 0.5; 44) -2 ; 45) 4/5; 46) 4;
47) 7 ; 48) 17 ; 49) 15 ; 50) 3.

