5. QUADRATIC EQUATIONS

1. The sum of a number and its reciprocal is $50 / 7$, then the number is
\qquad
2. The roots of the equation $3 x^{2}-2 \sqrt{6} x+2=0$ are \qquad
3. If $x^{2}-2 x+1=0$, then $x+1 / x=$ \qquad
4. If 3 is a solution of $3 x^{2}+(k-1) x+9=0$, then $k=$ \qquad
5. The roots of $x^{2}-2 x-\left(r^{2}-1\right)=0$ are \qquad
6. The sum of the roots of the equation $3 x^{2}-7 x+11=0$ is \qquad
7. The roots of the equation $\frac{x^{2}-8}{x^{2}+20}=\frac{1}{2}$ are \qquad
8. The roots of the quadratic equation

$$
\frac{9}{x^{2}-27}=\frac{25}{x^{2}-11} \text { are }
$$

\qquad
9. The roots of the equation $\sqrt{2 \mathrm{x}^{2}+9}=9$ are \qquad
10. The two roots of a quadratic equation are 2 and -1 . The equation is
11. If the sum of a quadratic equation $3 x^{2}+(2 k+1) x-(k+5)=0$, is equal to the product of the roots, then the value of k is \qquad
12. The value of k for which 3 is a root of the equation $k x^{2}-7 x+3=0$ is
13. If the difference of the roots of the quadratic equation $x^{2}-a x+b$ is 1 , then \qquad
14. The quadratic equation whose one root is $2-\sqrt{ } 3$ is \qquad
15. ___ is the condition that one root of the quadratic equation ax^{2} $+b x+c$ is reciprocal of the other.
16. The roots of the quadratic equation $\mathrm{x} / \mathrm{p}=\mathrm{p} / \mathrm{x}$ are \qquad
17. If the roots of the equation $12 x^{2}+m x+5=0$ are real and equal then m is equal to \qquad
18. If the equation $x^{2}-4 x+a$ has no real roots, then \qquad
19. The discrimination of the quadratic equation $7 \sqrt{ } 3 x^{2}+10 x-\sqrt{3}=0$ is
20. The value of $\sqrt{6+\sqrt{6+\sqrt{6+}}}$..... is \qquad
21. Standard form of a quadratic equation is \qquad
22. The sum of a number and its reciprocal is $5 / 2$. This is represented as
\qquad
23. "The sum of the squares of two consecutive natural numbers is 25 ", is represented as \qquad
24. If one root of a quadratic equation is $7-\sqrt{ } 3$ then the other root is
25. The discriminant of $5 x^{2}-3 x-2=0$ is \qquad
26. The roots of the quadratic equation
$x^{2}-5 x+6=0$ are \qquad
27. If $x=1$ is a common root of the equations $a x^{2}+a x+3=0$ and $x^{2}+x+b=0$ then the value of $a b$ is \qquad
28. If the discriminant of the quadratic equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is zero, then the roots of the equation are \qquad
29. The product of the roots of the quadratic equation $\sqrt{ } 2 x^{2}-3 x+5 \sqrt{ } 2=0$ is
\qquad
30. The nature of the roots of a quadratic equation $4 x^{2}-12 x+9=0$ is
31. If the equation $x^{2}-b x+1=0$ does not possess real roots, then \qquad
32. If the sum of the roots of the equation $x^{2}-(k+6) x+2(2 k-1)=0$ is equal to half of their product, then $k=$
33. If one root of the equation $4 x^{2}-2 x+(\lambda-4)=0$ be the reciprocal of the other, then $\lambda=$ \qquad
34. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $a x^{2}+b x+c=0$, then b^{2} = \qquad
35. If the roots of the equation $\left(a^{2}+b^{2}\right) x^{2}-2 b(a+c) x+\left(b^{2}+c^{2}\right)=0$ are equal, then $\mathrm{b}^{2}=$ \qquad
36. The quadratic equation whose roots are $-3,-4$ is \qquad
37. If $b^{2}-4 a c<0$ then the roots of quadratic equation $a x^{2}+b x+c=0$ are

ANSWERS

1) $1 / 7$; 2) $\sqrt{ } 2 / 3, \sqrt{ } 2 / 3$; 3) 2 ; 4) -11 ;
2) $1-\mathrm{r}, \mathrm{r}+1$; 6) $7 / 3$; 7) ± 6; 8) ± 6; 9) $\mathrm{x}= \pm 6$; 10) $\mathrm{x}^{2}-\mathrm{x}-2=0$; 11) 4 ;
3) 2 ;
4) $\mathrm{a}^{2}-4 \mathrm{~b}=1$; 14) $\mathrm{x}^{2}-4 \mathrm{x}+1=0$; 15) $\mathrm{a}=\mathrm{c}$; 16) $\pm \mathrm{p}$; 17) $4 \sqrt{ } 15$;
5) $a>4$; 19) 184 ;
6) 3 ; 21) $\left.\left.a x^{2}+b x+c=0, a \neq 0 ; 22\right)(x+1 / x=5 / 2) ; 23\right) x^{2}+(x-1)^{2}=$ 25 ; 24) $7+\sqrt{ } 3$; 25) 49 ; 26) 2,3 ; 27) 3 ; 28) real and equal; 29) 5 ; 30) real and equal; 31) $\mathrm{b}^{2}-4<0$ (or) $\mathrm{b}^{2}<4$ (or) $-2<\mathrm{b}<2$; 32) 7 ; 33) 8 ;
7) $\left.a^{2}+2 a c ; 35\right)$ ac; 36) $x^{2}+7 x+12=0$;
8) Not real or imaginary.
