4. PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

1. The point of intersection of the lines represented by $3 x-2 y=6$, the Y -axis is \qquad
2. If $x=2, y=3$ is a solution of a pair of lines $2 x-3 y+a=0$ and $2 x+3 y-b+2=0$, then the relationship between a and b is \qquad
3. If the units and ten's digit of a two digit number are y and x respectively, then the number will be in the form of \qquad
4. The age of a son is one third the age of his mother. If the present age of mother is x years, then the age of the son after 12 years is \qquad
5. If the line $y=p x-2$ passes through the point $(3,2)$, then the value of p is \qquad
6. The value of $\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}$ when $x=4$ and $y=9$ is \qquad
7. If $a d \neq b c$, then the pair of linear equations $a x+b y=p$ then and $c x+d y$ $=\mathrm{p}$ has \qquad solutions?
8. The pair of linear equations $3 x+5 y=3,6 x+k y=8$ do not have solutions if $\mathrm{k}=$ \qquad
9. The point of the intersection of the lines $x-2=0$ and $y+6=0$ is \qquad
10. ___ is the area of the triangle formed by the coordinate axes and the line $x+y=6$.
11. The sum of the two digits of a two digit number is 12 . The number obtained by interchanging the two digits exceeds the given number by 18 . the number is \qquad
12. The point $(-2,-2)$ lies in the \qquad Quadrant.
13. If the difference between two numbers is 26 . One number is three times the oth-er number, then the two numbers are \qquad
14. If the system of equations $4 x+y=3$ and $8 x+2 y=5 k$ has infinite solutions, then the value of k is \qquad
15. The system of linear equations $x+y=14$ and $x-y=4$ are \qquad
16. If the system of linear equations $(k-3) x+3 y=k, k x+k y=12$ has infinite number of solutions then the value of k is \qquad
17. If the system of linear equations $3 x-4 y+7=0$ and $k x+3 y-5=0$ has no solutions then value of k is \qquad
18. \qquad is the condition if the pair of linear equations, $a_{1} x+b_{1} y+c_{1}=0$,
$a_{2} x+b_{2} y+c_{2}=0$, has a unique solution?
19. The sum of the numerator and the denominator of a fraction is 12 . If the denominator is increased by 3 , the fraction becomes $1 / 2$. then the fraction is \qquad
20. If $\frac{x+y}{x y}=2 \& \frac{x-y}{x y}=6$, then value of y is
21. Two angles are complementary. The larger angle is 3 degrees less than twice the measure of the smaller angle. The measure of each angle is \qquad and \qquad
22. The value of y when $x=-1 / 2$ that satisfies
the equation $\frac{2}{x}+\frac{3}{y}=5$ is
23. The length and breadth of a rectangle are x, y respectively. The area of the rectangle gets reduced by 9 square units, if its length is reduced by 5 units and breadth is incre-ased by 3 units. Then the equation we get is \qquad
24. The larger of two supplementary angles exceeds the smaller by 20 degrees. Then the angles are \qquad and \qquad
25. \qquad is the value of 'a' so that the point $(2, a)$ lies on the line represented by $4 \mathrm{x}-\mathrm{y}=3$?

ANSWERS

1) $(0,-3)$; 2) $3 \mathrm{a}=\mathrm{b}$; 3) $10 \mathrm{x}+\mathrm{y}$; 4) $\frac{x}{3}+12$; 5) $4 / 3$; 6) 2 or -2 ;
2) unique solution;
3) $\mathrm{k}=10$; 9) $(2,-6)$; 10) 18 ; 11) 57 ;
4) $3^{\text {rd }}$ quadrant; 13) 39,13 ; 14) $6 / 5$;
5) consistent; 16) 6 ; 17) $-9 / 4$;
6) ${\frac{a_{1}}{a_{2}+\frac{1}{2}} \frac{1}{b_{2}}}$;19) $5 / 7$;20) $1 / 4$;21) 31 degrees and 59 degrees; 22) $1 / 3$;
7) $(x-5)(y+3)=(x y-9) ; 24) 100$ degrees, 80 degrees; 25) $a=5$.
