3. POLYNOMIALS

1. The graph of the polynomial $f(x)=3 x-7$ is a straight line which intersects the x - axis at exactly one point namely \qquad
2. In the given figure, the number of zeros of the polynomial $f(x)$ are

3. The number of zeros lying between -2 and 2 of the polynomial $f(x)$ whose graph in given figure is \qquad

4. The degree of the constant polynomial is \qquad
5. The zero of $p(x)=a x-b$ is \qquad
6. If α and β are the zeroes of the polynomial $3 x^{2}+5 x+2$, then the value of $\alpha+\beta+\alpha \beta$ is \qquad
7. If the sum of the zeroes of the polynomial $p(x)=\left(k^{2}-14\right) x^{2}-2 x-12$ is 1 , then k takes the value (s) \qquad
8. If α and β are zeroes of $p(x)=x^{2}-5 x+k$ and $\alpha-\beta=1$ then the value of k is \qquad
9. If α, β, γ are the zeros of the polynomial $a x^{3}+b x^{2}+c x+d$, then the value of $1 / \alpha+1 / \beta+1 / \gamma$ is \qquad
10. If the product of the two zeros of the polynomial $x^{3}-6 x^{2}+11 x-6$ is 2 then the third zero is \qquad
11. The zeros of the polynomial of $x^{3}-x^{2}$ are \qquad
12. If the zeroes of the polynomial $x^{3}-3 x^{2}+x+1$ are $a / r, a$ and ar then the value of a is \qquad
13. If α and β are the zeroes of the quadratic polynomial $9 x^{2}-1$, the value of $\alpha^{2}+\beta^{2}$ is \qquad
14. If α, β, γ are the zeroes of the polynomial $x^{3}+\mathrm{px}^{2}+\mathrm{qx}+\mathrm{r}$ then $1 / \alpha \beta+1 / \beta \gamma+1 / \alpha \gamma$ is \qquad
15. The number to be added to the polynomial $x^{2}-5 x+4$, so that 3 is the zero of the polynomial is \qquad
16. If α, β are zeroes of $p(x)=2 x^{2}-x-6$ then the value of $\alpha^{-1}+\beta^{-1}$ is
17. \qquad is the coefficient of the first term of the quotient when $3 x^{3}+x^{2}+2 x+5$ is divided by $1+2 x+x^{2}$.
18. If the divisor is x^{2} and quotient is x while the remainder is 1 , then the dividend is \qquad
19. The maximum number of zeroes that a polynomial of degree 3 can have is \qquad
20. The number of zeroes that the polynomial $f(x)=(x-2)^{2}+4$ can have is \qquad
21. The graph of the equation $y=a x^{2}+b x+c$ is an upward parabola, if
22. If the graph of a polynomial does not intersect the x - axis, then the number of zeroes of the polynomial is \qquad
23. The degree of a biquadratic polynomial is \qquad
24. The degree of the polynomial
$7 u^{6}-\frac{3}{2} u^{4}+4 u^{2}+u-8$ is \qquad
25. The value of $p(x)=x^{3}-3 x-4$ at $x=-1$ is \qquad
26. The polynomial whose zeroes are -5 and 4 is \qquad
27. If -1 is a zero of the polynomial $f(x)=x^{2}-7 x-8$ then other zero is
\qquad
28. If the product of the zeroes of the polynomial ax $x^{3}-6 x^{2}+11 x-6$ is 6 , then the value of a is \qquad
29. A cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes are $2,-7$ and -14 respectively, is \qquad
30. For the polynomial $2 x^{3}-5 x^{2}-14 x+8$, the sum of the products of
zeroes, taken two at a time is \qquad
31. If the zeroes of the quadratic polynomial $a x^{2}+b x+c$ are reciprocal to each other, then the value of c is \qquad
32. \qquad can be the degree of the remainder at most when a biquadrate polynominal is divided by a quadratic polynomial.

ANSWERS

1) $(7 / 3,0)$; 2) 3 ; 3) 2 ; 4) 0 ; 5) b/a; 6) -1 ; 7) ± 4; 8) 6 ; 9) $-\mathrm{c} / \mathrm{d}$; 10) 3 ; 11) $0,0,1$;
2) -1 ; 13) $2 / 9$; 14) p / r; 15) 2 ; 16) $-1 / 6$; 17) 3 ; 18) $\mathrm{x}^{3}+1$; 19) 3 ;
3) 2 ; 21) $\mathrm{a}>0$;
4) 0 ; 23) 4 ; 24) 6 ; 25) -2 ; 26) $\mathrm{x}^{2}+\mathrm{x}-20$; 27) 8 ; 28) 1 ;
5) $\mathrm{x}^{3}-2 \mathrm{x}^{2}-7 \mathrm{x}+14$; 30) -7 ; 31) a ; 32) 1 .
