2. SETS

1. The symbol for a Universal Set is \qquad
2. If $A=\{a, b, c\}$, the number of subsets of A is \qquad
3. The set builder form of $A \cap B$ is \qquad
4. For every set $\mathrm{A}, \mathrm{A} \cap \phi=$ \qquad
5. Two Sets A and B are said to be disjoint if \qquad
6. The Shaded region in the adjacent figure is \qquad

7. $\mathrm{A}=\{\mathrm{x}: \mathrm{x}$ is a circle in a give plane $\}$ is \qquad
8. $n(A \cup B)=$ \qquad
9. If A is subset of B , then $\mathrm{A}-\mathrm{B}=$ \qquad
10. If $\mathrm{A}=\{1,2,3,4,5\}$ then the cardinal number of A is \qquad
11. $A=\{2,4,6,8,10\}, B=\{1,2,3,4,5\}$ then
$\mathrm{B}-\mathrm{A}=$ \qquad
12. If $\mathrm{A} \subset \mathrm{B}$ then $\mathrm{A} \cap \mathrm{B}=$ \qquad
13. If $A \subset B$ then $A \cup B=$ \qquad
14. The shaded region in the given figure represents \qquad

15. The Symbol for null set is $=$ \qquad
16. Roster form of $\{x: x \in N, 9 \leq x \leq 16\}$ is \qquad
17. If $A \subset B$ and $B \subset A$ then \qquad
18. If $A \subset B$ and $B \subset C$ then \qquad
19. $\mathrm{A} \cup \varnothing=$ \qquad
20. The Set theory was developed by \qquad
21. If $n(A)=7, n(B)=8, n(A \cap B)=5$ then $n(A \cup B)=$ \qquad
22. A set is a \qquad collection of objects.
23. Every set is \qquad of it self.
24. The number of elements in a set is called the \qquad of the set
25. $A=\{2,4,6, \ldots \ldots\}, B=\{1,3,5, \ldots \ldots .$.$\} then n(A \cap B)=$ \qquad
26. A and B are disjoint sets then $\mathrm{A}-\mathrm{B}=$ \qquad
27. If $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cap \mathrm{B}$ then $=$ \qquad
28. $A=\left\{x: x^{2}=4\right.$ and $\left.3 x=9\right\}$ is a \qquad set
29. $A=\{2,5,6,8\}$ and $B=\{5,7,9,1\}$ then $A \cup B=$ \qquad
30. If $A \subset B, n(A)=3, n(B)=5$, then $n(A \cap B)=$ \qquad
31. If $A \subset B, n(A)=3, n(B)=5$, then $n(A \cup B)=$ \qquad
32. A, B are disjoint sets then $(A-B) \cap(B-A)=$ \qquad
33. $A=\{1,2,3,4\}$ and $B=\{2,4,6,8\}$ then $B-A=$ \qquad
34. Set builder form of $A \cup B$ is $=$ \qquad

ANSWERS

1) μ; 2) 8 ; 3) $\{x: x \in A$ and $x \in B\}$; 4) ϕ;
2) $\mathrm{A} \cap \mathrm{B}=\phi$; 6) $\mathrm{A} \cap \mathrm{B} ; 7$) Infinite Set;
3) $\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$; 9$) \phi$; 10) 5 ;
4) $\{1,3,5\}$; 12) A; 13) B; 14) A-B;
5) ϕ; 16) $\{9,10,11,12,13,14,15,16\}$; 17) $\mathrm{A}=\mathrm{B}$; 18) $\mathrm{A} \subset \mathrm{C}$;
6) A; 20) George Cantor ; 21) 10; 22) Well defined;
7) Subset; 24) cardinal number; 25) 0; 26) A; 27) A = B; 28) Null Set;
8) $\{1,2,5,6,7,8,9\} ; 30) 3$; 31) 5 ;
9) ϕ; 33) $\{6,8\}$;34) $\{x: x \in A$ or $x \in B\}$
