2. SETS

- 1. The symbol for a Universal Set is_____
- 2. If $A = \{a, b, c\}$, the number of subsets of A is _____
- 3. The set builder form of $A \cap B$ is _____
- 4. For every set A, $A \cap \phi = \underline{\hspace{1cm}}$
- 5. Two Sets A and B are said to be disjoint if _____
- 6. The Shaded region in the adjacent figure is _____

- 7. $A = \{x: x \text{ is a circle in a give plane} \}$ is _____
- 8. $n(A \cup B) =$ _____
- 9. If A is subset of B, then A-B =
- 10. If $A = \{1, 2, 3, 4, 5\}$ then the cardinal number of A is _____
- 11. $A = \{2, 4, 6, 8, 10\}, B = \{1, 2, 3, 4, 5\}$ then B-A =
- 12. If $A \subset B$ then $A \cap B = \underline{\hspace{1cm}}$
- 13. If $A \subset B$ then $A \cup B = \underline{\hspace{1cm}}$
- 14. The shaded region in the given figure represents _____

- 15. The Symbol for null set is = ____
- 16. Roster form of $\{x: x \in \mathbb{N}, 9 \le x \le 16\}$ is _____
- 17. If $A \subset B$ and $B \subset A$ then ____
- 18. If A⊂B and B⊂C then ____
- 19. $A \cup \phi =$ ____
- 20. The Set theory was developed by _____
- 21. If n(A) = 7, n(B) = 8, $n(A \cap B) = 5$ then $n(A \cup B) = _____$
- 22. A set is a ____ collection of objects.
- 23. Every set is ____ of it self.

www.sakshieducation.com

- 24. The number of elements in a set is called the ____ of the set
- 25. $A = \{ 2, 4, 6, \ldots \}, B = \{1, 3, 5, \ldots \}$ then $n(A \cap B) = \underline{\hspace{1cm}}$
- 26. A and B are disjoint sets then $A-B = \underline{\hspace{1cm}}$
- 27. If $A \cup B = A \cap B$ then = _____
- 28. $A = \{ x: x^2 = 4 \text{ and } 3x = 9 \} \text{ is a } \underline{\hspace{1cm}} \text{ set}$
- 29. $A = \{2, 5, 6, 8\}$ and $B = \{5, 7, 9, 1\}$ then $A \cup B = \underline{\hspace{1cm}}$
- 30. If $A \subset B$, n(A) = 3, n(B) = 5, then $n(A \cap B) =$ ____
- 31. If $A \subset B$, n(A) = 3, n(B) = 5, then $n(A \cup B) =$
- 32. A, B are disjoint sets then $(A-B) \cap (B-A) = \underline{\hspace{1cm}}$
- 33. $A = \{1, 2, 3, 4\}$ and $B = \{2, 4, 6, 8\}$ then B A =
- 34. Set builder form of $A \cup B$ is = ____

ANSWERS

- 1) μ ; 2) 8; 3) {x:x \in A and x \in B}; 4) ϕ ;
- 5) $A \cap B = \emptyset$; 6) $A \cap B$; 7) Infinite Set;
- 8) $n(A)+ n(B)- n(A \cap B)$; 9) ϕ ; 10) 5;
- 11) {1, 3, 5}; 12) A; 13) B; 14) A–B;
- 15) ϕ ; 16) {9, 10, 11, 12, 13, 14, 15, 16}; 17) A = B; 18) $A \subset C$;
- 19) A; 20) George Cantor; 21) 10; 22) Well defined;
- 23) Subset; 24) cardinal number; 25) 0; 26) A; 27) A = B; 28) Null Set;
- 29) {1, 2, 5, 6, 7, 8, 9}; 30) 3; 31) 5;
- 32) ϕ ; 33) $\{6, 8\}$; 34) $\{x: x \in A \text{ or } x \in B\}$