1. REAL NUMBERS

1. The prime factor of $2 \times 7 \times 11 \times 17 \times 23+23$ is \qquad -
2. A Physical Education Teacher wishes to distribute 60 balls and 135 bats equally among a number of boys. The greatest nu-mber receiving the gift in this way are \qquad
3. The Values of X and Y in the given figure are \qquad

4. If the $L C M$ of 12 and 42 is $10 \mathrm{~m}+4$, then the value of ' m ' is \qquad
5. π is \qquad
6. $\log _{2015} 2015=$ \qquad
7. The reciprocal of two irrational numbers is \qquad
8. The decimal expansion of $17 / 18$ is \qquad
9. $2.54 \overline{7}$ is \qquad
10. Decimal expansion of number $\frac{27}{2 \times 5 \times 7}$ has \qquad
11. The decimal expansion of $189 / 125$ will terminate after \qquad
12. If $\mathrm{a}=2^{3} \times 3, \mathrm{~b}=2 \times 3 \times 5, \mathrm{c}=3^{\mathrm{n}} \times 5$ and LCM
$(\mathrm{a}, \mathrm{b}, \mathrm{c})=2^{3} \times 3^{2} \times 5$, then $\mathrm{n}=$ \qquad
13. If n is any natural number, then $6^{\mathrm{n}}-5^{\mathrm{n}}$ always ends with \qquad
14. If $\log _{2} 16=x$ then $x=$ \qquad
15. The standard base of a logarithm is \qquad
16. If $\log _{10} 2=0.3010$, then $\log _{10} 8=$ \qquad
17. $\log _{10} 0.01=$ \qquad
18. The exponential form $\log _{4} 64=3$ is \qquad
19. $\log 15=$ \qquad
20. The prime factorization of 216 is \qquad
21. HCF of 4 and 19 is \qquad
22. LCM of 10 and 3 is \qquad
23. If the HCF of two numbers is ' 1 ', then the two numbers are called
24. If the positive numbers a and b are written as $a=x^{5} y^{2}, b=x^{3} y^{3}$ where x and y are prime numbers then the $\operatorname{HCF}(\mathrm{a}, \mathrm{b})=$ \qquad ; LCM $(\mathrm{a}, \mathrm{b})=$ \qquad
25. The product of two irrational numbers is \qquad
26. $43 . \overline{1234}$ is \qquad number.
27. $\log \mathrm{a}^{\mathrm{p}} \cdot \mathrm{b}^{\mathrm{q}}=$ \qquad
28. If $5^{3}=125$, then the logarithm form \qquad
29. $\log _{7} 343=$ \qquad

ANSWERS

1) 23 ; 2) 15 ; 3) $\mathrm{X}=21, \mathrm{Y}=84$; 4) 8 ;
2) An irrational number; 6) 1; 7) Always an irrational number; 8) 2.125 ; 9) A rational;
3) non-terminating but repeating; 11) 3 places of decimal; 12) 2 ;
4) 1 ; 14) 4 ; 15) 10 ; 16) 0.9030 ; 17) -2 ; 18) $4^{3}=64$; 19) $\log 3+$ $\log 5$; 20) $2^{3} \times 3^{3}$; 21) 1 ; 22) 30 ; 23) Co-Primes; 24) $\left[\mathrm{x}^{3} \mathrm{y}^{2} ; \mathrm{x}^{5} \mathrm{y}^{3}\right]$; 25) Sometimes rational, Some times irrational; 26) a rational number; 27) plog a+q logb; 28) $\log _{5} 125=3$;29) 3 .
