1. REAL NUMBERS

- 1. The prime factor of $2 \times 7 \times 11 \times 17 \times 23 + 23$ is _____
- 2. A Physical Education Teacher wishes to distribute 60 balls and 135 bats equally among a number of boys. The greatest nu-mber receiving the gift in this way are____
- 3. The Values of X and Y in the given figure are _____

- 4. If the LCM of 12 and 42 is 10m+4, then the value of 'm' is _____
- 5. π is _____
- 6. $\log_{2015} 2015 =$ _____
- 7. The reciprocal of two irrational numbers is _____
- 8. The decimal expansion of 17/18 is _____
- 9. 2.547 is _____
- 10. Decimal expansion of number $\frac{27}{2 \times 5 \times 7}$ has _____
- 11. The decimal expansion of 189/125 will terminate after _____
- 12. If $a = 2^3 \times 3$, $b = 2 \times 3 \times 5$, $c = 3^n \times 5$ and LCM (a, b, c) = $2^3 \times 3^2 \times 5$, then $n = _$ ____
- 13. If n is any natural number, then $6^{n}-5^{n}$ always ends with _____
- 14. If $\log_2 16 = x$ then x =_____
- 15. The standard base of a logarithm is _____
- 16. If $\log_{10} 2=0.3010$, then $\log_{10} 8 =$ _____
- 17. $\log_{10} 0.01 =$ _____
- 18. The exponential form $\log_4 64 = 3$ is _____
- 19. log 15 = ____
- 20. The prime factorization of 216 is _____
- 21. HCF of 4 and 19 is _____
- 22. LCM of 10 and 3 is _____
- 23. If the HCF of two numbers is '1', then the two numbers are called

- 24. If the positive numbers a and b are written as a = x⁵y², b = x³y³ where x and y are prime numbers then the HCF(a, b) = ____; LCM (a,b) = ____;
- 25. The product of two irrational numbers is _____
- 26. 43.1234 is ____ number.
- 27. $\log a^p \cdot b^q =$ _____
- 28. If $5^3 = 125$, then the logarithm form _____
- 29. $\log_{7}343 =$ _____

ANSWERS

- 1) 23; 2) 15; 3) X = 21, Y = 84; 4) 8;
- 5) An irrational number; 6) 1; 7) Always an irrational number;
- 8) 2.125; 9) A rational;

10) non-terminating but repeating; 11) 3 places of decimal; 12) 2; 13) 1; 14) 4; 15) 10; 16) 0.9030; 17) – 2; 18) $4^3 = 64$; 19) log3 + log 5; 20) $2^3 \times 3^3$; 21) 1; 22) 30; 23) Co-Primes; 24) [x^3y^2 ; x^5y^3]; 25) Sometimes rational, Some times irrational; 26) a rational number; 27) plog a+q logb; 28) log₅125 = 3; 29) 3.