14. STATISTICS

1. The ' h ' indicates in mode

$$
\text { Mode }=l+\left[\frac{f-f_{0}}{2 f_{1}-f_{0}-f_{1}}\right] \times h \text { is }
$$

\qquad
2. Mid values are used in calculating \qquad
3. Mean of $23,24,24,22$ and 20 is \qquad
4. $\quad \sum f_{i} x_{i}=1390, \sum f_{i}=35$ then mean \bar{x} \qquad
5. \qquad is based on all observations?
6. If the mode of the following data is 7 , then the value of ' k ' in $6,3,5$, $6,7,5,8,7,6,2 \mathrm{k}+1,9,7,13$ is \qquad
7. The data arranged in descending order has 25 observations. \qquad observation represents the median.
8. A. M. of $6,-4, \frac{2}{3}, 1 \frac{1}{4}, \frac{-7}{6}$ is \qquad
9. Median of $17,31,12,27,15,19$ and 23 is \qquad
10. A. M. of $1,2,3, \ldots \ldots ., 10$ is \qquad
11. Range of $1,2,3,4, \ldots \ldots ., n$ is \qquad
12. For the given data with 50 observations 'the less than ogive' and 'the more than 'ogive' intersect at $(15.5,20)$. The Median of the data is
13. The Mean of first ' n ' odd natural numbers is $\frac{n^{2}}{81}$. then $\mathrm{n}=$ \qquad
14. A. M of $1,2,3, \ldots \ldots . ., \mathrm{n}$ is \qquad
15. If the mean of $6,7, x, 8, y, 14$ is 9 , then $x=$ \qquad
16. The A.M. of 30 students is 42 . Among them, two students got zero marks. Then A.M. of the remaining students is \qquad
17.

Marks	10	20	30
Number of students 5	9	3	

From the above data the value of median is \qquad
18. Data having one Mode is called \qquad
19. A.M. of $1,2,3, \ldots, n$ is \qquad
20. Sum of all deviations taken from A.M. is \qquad
21. Mode of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \ldots, \mathrm{Z}$ is \qquad
22. Mean of first 5 Prime numbers is \qquad
23. The observation of an ungrouped data in their ascending order are $12,15, \mathrm{x}, 19,25$. If the Median of the data is 18 , then $\mathrm{x}=$ \qquad
24. A.M. of $\mathrm{a}-2, \mathrm{a}, \mathrm{a}+2$ is \qquad
25. Median of $1,2,4,5$ is \qquad
26. Class mark of the class ' $x-y$ ' is \qquad
27. L. C. F curve is drawn by using \qquad and the corresponding cumulative frequency.
28. The modal class for the following distribution is \qquad

x	f
below 10	3
below 20	12
below 30	27
below 40	57
below 50	75
below 60	80

29. If the A . M of $\mathrm{x}, \mathrm{x}+3, \mathrm{x}+6, \mathrm{x}+9$ and $\mathrm{x}+12$ is 10 , then $\mathrm{x}=$ \qquad
30. If 35 is removed from the data $30,34,35,36,37,38,39,40$. then the Median increases by \qquad
31. Range of first 10 Whole numbers is \qquad
32. Construction of Cumulative frequency table is useful in determining the \qquad
33. Exactly middle value of data is called
34. In the formula of Mode
$=l+\left[\frac{f_{1}-f_{0}}{2 f-f_{0}-f_{2}}\right] \times h, f_{0} \quad$ represents \qquad
35. Median $\quad M=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times n$; 'l' represents \qquad
36. The term "ogive" is derived from \qquad
37. Range of the data $15,26,39,41,11,18,7,9$ is \qquad
38. The Mean of first ' n ' natural number is \qquad
39. Median of first ' n ' natural number is \qquad

ANSWERS

1) Length of the Class Interval;
2) Arithmetic Mean; 3) 22.6; 4) 39.71 ;
3) Mean; 6) 3 ; 7) 13th; 8) 0.55 ; 9) 19 ;
4) 5.5 ; 11) $\mathrm{n}-1$; 12) 15.5 ; 13) 81 ;
5) $\left.\frac{n+1}{2} 15\right) \mathrm{x}+\mathrm{y}=19$;16) 45 ; 17) 9 ;
6) unimodal data; 19) $\frac{n+1}{2}$; 20) 0 ;
7) no mode; 22) 5.6 ; 23) 18; 24) a;
8) 3 ; 26) $\frac{x+y}{2}$; 27) upper boundary; 28) $30-40$; 29) 4 ; 30) 0.5 ;
9) 9 ;
10) Median; 33) Median; 34) frequency of preceding modal class;
11) lower limit of Median class; 36) ogee; 37) 34;

$$
\text { 38) } \frac{n+1}{2} \text {; 39) } \frac{n+1}{2} \text {. }
$$

