7. మానవుని కన్ను - రంగుల ప్రపంచం

1. హ్రస్వదృష్టి లోపాన్ని మీరెలా సవరిస్తారు? (AS1)

జ: హ్య్వదృష్టి:

1. కొందరు దగ్గరగా ఉన్న వస్తువులను చూడగలరు కాని దూరంలో ఉన్న వస్తువులను స్పష్టంగా చూడలేరు.
2. ఇటువంటి ద్ృష్టిదోషాన్ని హ్రస్వదృష్టి అంటారు.

హ్రస్వదృషిని సరిచేయుట:

1. హ్రస్వద్యషిని నివారించడానికి ద్విపుటాకార కటకాన్ని ఉపయోగించాలి.
2. ఈ కటకం ఏర్పరిచే ప్రతిబింబం కంటి కటకానికి వస్తువులా పనిచేసి చివరగా ప్రతిబింబం రెటినాపై పడేలా చేస్తుంది.
3. ద్ఘీర్రదృష్టి లోపాన్ని మీరెలా సవరిస్తారో వివరించండి. (AS1)

జ: దీర్ఘద్ృషి:

1. కొందరు దూరంగా ఉన్న వస్తువులను చూడగలరు కాని దగ్గరలో ఉన్న వస్తువులను సృష్టంగా చూడలేరు.
2. ఇటువంటి ద్ృష్టిదోషాన్ని దీర్ఘద్య)ష్టి అంటారు.

ద్ఘ్ఘద్ృషిని సరిచేయుట:

1. దీర్ఘద్ృషిని నివారించడానికి ద్వికుంభాకార కటకాన్ని ఉపయోగించాలి.
2. ఈ కటకం ఏర్పరిచే ప్రతిబింబం కంటి కటకానికి వస్తువులా పనిచేసి చివరగా ప్రతిబింబం రెటినాపై పడేలా చేస్తుంది.
3. పట్టక పదార్థ వక్రీభవన గుణకాన్ని మీరెలా ప్రయోగపూర్వకంగా కనుక్కొంటారో వివరించండి? (AS1)
జ: ఉద్దేశం : పట్టకము యొక్క వక్రీభవన గుణకమును ప్రయోగ పూర్వకముగా కనుగొనుట. కావలసిన పరికరాలు: పట్టకము, కోణమాలిని, స్కేలు, గుండు పిన్నులు, డ్రాయింగ్ చార్ట్.

- గుండుసూది

నిర్వహణ పద్ధతి :

1. పట్టకమును డ్రాయింగ్ చార్ట్ పై ఉంచి, పెన్సిల్ సహాయంతో దాని చుట్టూ గీయండి.
2. పట్టకమును తొలగించి, దాని శీర్షాలకు P,Q,R అని పేర్లు పెట్టండి.
3. పట్టకము కోణమును $\left(\mathrm{A}=60^{\circ}\right)$ కొలిచి దానిని నోట్ చేయాలి.
4. పటములో చూపిన విధముగా పట్టకముపై ఒక లంభరేఖ గీసి, దానికి కొంత పతన కోణమును గుర్తించి ఆ రేఖపై రెండు గుండు పిన్నులు (A, B) గుచ్చాలి.
5. పట్టకము రెండవ వైపు నుంచి చూస్తూ దగ్గర ఉన్న గుండు పిన్నుటు ఒకే రేఖపై ఉండేటట్లు మరో రెండు పిన్నులు (C,D)గుచ్చాలి. దీనిని బహిర్గత కిరణం అంటారు.
6. పతన, బహిర్గత కిరణాల మధ్య కోణమును కనుగొనాలి. దీనిని పట్టకము యొక్క కనిష్ట విచలన కోణము (D) అంటారు.
7. క్రింది సూత్రమును ఉపయోగించి పట్టకము యొక్క వక్రీభవన గుణకమును కనుగొనవచ్చు.

$$
n=\frac{\sin \left(\frac{A+D}{2}\right)}{\sin \left(\frac{A}{2}\right)}
$$

4. ఇంద్రధనస్సు రూపొందే విధానాన్ని వివరించండి. (AS1)

జ:

ఇంద్రధనస్సు రూపొందే విధానము :

1. అనేక లక్షల నీటి బిందువుల చేత కాంతి ఎక్షేపణం వల్ల అందమైన ఇంద్రధనస్సు ఏర్పడుతుంది.
2. సూర్యుని కాంతి నీటి బిందువుపై పడినప్పుడు, ఈ తెల్లని కాంతి విక్షేపణం చెంది ఎరుపు రంగు తక్కువ విచలనాన్ని, ఊదా రంగు ఎక్కువ విచలనాన్ని పొందుతాయి.
3. నీటి బిందువు రెండో వైపునకు చేరిన వివిధ రంగుల కాంతులు, సంపూర్ణాంతర పరావర్తణం వల్ల నీటి బిందువులోనే వెనుకకు పరావర్తనం చెందుతాయి.
4. నీటి బిందువులోకి ప్రవేశించి, బయటకు వెళ్లే కాంతి కిరణాల మధ్య కోణం 40° నుంచి 42° మధ్య ఉండి ప్రకాశవంతమైన ఇంద్రధనస్సు ఏర్పడుతుంది.
5. ఆకాశం నీలి రంగులో ఉండడానికి గల కారణాన్ని సోదాహరణంగా వివరించండి. (AS1)
6. కాంతి పరిక్షేపణం వల్ల ఆకాశం నీలి రంగులో కనిపిస్తుంది. మన చుట్టూ ఉన్న వాతావరణంలో వివిధ అణువులు, పరమాణువులు ఉంటాయని మనకు తెలుసు.
7. వాతావరణంలో నైట్రోజన్, ఆక్సిజన్ అణువులే ఆకాశం నీలి రంగులో ఉండడానికి కారణం.
8. వాతావరణంలోని ఆక్సెజన్, న్ౖైటోజన్ అణువుల పరిమాణం నీలి రంగు కాంతి తరంగ ధైర్ఘ్యాలతో పోల్చదగిన విధంగా ఉంటాయి.
9. ఈ అణువులు నీలి రంగు కాంతికి పరిక్షేపణ కేంద్రాలుగా పనిచేస్తాయి.
10. అందువల్ల ఆకాశం నీలి రంగులో కనిపిస్తుంది.
11. కృత్రిమ ఇంద్రధనస్సును పొందే విధానాన్ని రెండు కృత్యాల ద్వారా వివరించండి. (AS1) జ: కృత్యం-1
12. గాజు గ్లాసు ఒకటి తీసుకొని దానిని నీటితో నింపండి.
13. కిటికిలో నుంచి పడుతున్న సూర్యకాంతి ఈ గ్లాసు పై పడే విధంగా ఈ గ్లాసును ఒక బల్లపై ఉంచండి.
14. నీటితో నింపిన గ్లాసుకు అవతలి వైపున ఒక తెల్లని కాగితాన్ని ఉంచండి.
15. ఇప్పుడు సూర్య కాంతి నుంచి వచ్చిన కాంతి గ్లాసు గుండా ప్రయాణించి, కాగితము పై ఇంద్రధనస్సును ఏర్పరుస్తుంది.

కృత్యం-2 :

1. ఒక లోహపు పళ్లేన్ని తీసుకొని, దానిని నీటితో నింపండి.
2. నీటి ఉపరితలంతో కొంత కోణం చేసే విధంగా నీటిలో ఒక సమతల దర్పణాన్ని అద్దాన్ని ఉంచండి.
3. పటంలో చూపినట్లు నీటి గుండా అద్దంపై తెల్లని కాంతిని ప్రసరింప చేయండి.
4. ఈ అమరికకు కొంత ఎత్తులో తెల్లటి కార్డ్ బోర్డ్ను ఉంచండి.
5. అద్దం నుంచి పరివర్తనం అయ్యే కాంతి కార్డ్ బోర్డెపై ఇంద్రధనస్సును ఏర్పరుస్తుంది.

6. పట్టక వక్రీభవన గుణకాన్ని ఉత్పాదించండి. (AS1)

www.sakshieducation.com

జ: త్రిభుజాకార పట్టకము యొక్క పటం నుంచి, OMN త్రిభుజములో,

$$
\begin{equation*}
d=\left(i_{1}+i_{2}\right)-\left(r_{1}+r_{2}\right) \tag{1}
\end{equation*}
$$

1. PMN త్రిభుజములో, $A=\left(r_{1}+r_{2}\right)$
2. (1), (2) సమీకరణల నుంచి $A+d=r_{1}+r_{2}+\left(i_{1}+i_{2}\right)-\left(r_{1}+r_{2}\right)$

$$
\begin{align*}
& =r_{1}+r_{2}+i_{1}+i_{2}-r_{1}-r_{2} \\
& A+d=i_{1}+i_{2}-------- \text { (3 } \tag{3}
\end{align*}
$$

3. స్నేల్స్ నియమము నుంచి, M వద్ద $n_{1}=1, i=i_{1}, n_{2}=n$ మరియు

$$
r=r_{1}-\cdots---->\sin i_{1}=n \sin r_{1}
$$

4. $\mathrm{i}_{1}=\mathrm{i}_{2}$ అయితే, విచలన కోణం (d) కనిష్ట విచలన కోణం (D) అవుతుంది.
5. (3) మూడవ సమీకరణం నుంచి
$A+D=i_{1}+i_{1}=2 i_{1} \rightarrow \rightarrow i_{1}=\frac{(A+D)}{2}$
6. $\mathrm{i}_{1}=\mathrm{i}_{2}$ అయితే $\mathrm{r}_{1}=\mathrm{r}_{2}$ అవుతుంది. (2) నుంచి $2 r_{1}=A$ (or) $r_{1}=\frac{A}{2}$
7. $\mathrm{i}_{1}, \mathrm{r}_{1}$ విలువలను సమీకరణం (4)లో ప్రతిక్షేపించగా $\sin \left(\frac{A+D}{2}\right)=n \cdot \sin \left(\frac{A}{2}\right)$

$$
\therefore n=\frac{\sin \left(\frac{A+D}{2}\right)}{\sin \left(\frac{A}{2}\right)}
$$

8. λ_{1} తరంగ ధ్̣ై్య్యం గల కాంతి \mathbf{n}_{1} వక్రీభవన గుణకం గల యానకం నుంచి $\mathbf{n} \mathbf{2}$ వక్రీభవన గుణకం గల యానకంలోకి ప్రవేశించింది. రెండవ యానకంలో ఆ కాంతి తరంగ ధ్ధై్య్యం ఎంత?
(AS1) (జవాబు : $\lambda_{2}=\frac{n_{1} \lambda_{1}}{n_{2}}$)
జ:
9. మొదటి యానకము యొక్క తరంగధ్̣ెర్య్యం $=\lambda_{1}$
10. మొదటి యానకము యొక్క వక్రీభవన గుణకం $=\mathrm{n}_{1}$
11. మొదటి యానకము యొక్క తరంగధ్ధై్యం $=\lambda_{2}$
12. మొదటి యానకము యొక్క వక్రీభవన గుణకం $=\mathrm{n}_{2}$
13. స్నేల్స్ నియమము నుంచి, $\frac{\lambda_{1}}{n_{2}}=\frac{\lambda_{2}}{n_{1}}-\rightarrow \frac{n_{1}}{n_{2}}=\frac{\lambda_{2}}{\lambda_{1}}-\rightarrow \lambda_{2}=\lambda_{1} \frac{n_{1}}{n_{2}}$

గమనిక: 9, 10 ప్రశ్నల కొరకు కింతి వాక్యాలు ఇవ్వడం జరిగింది. ప్రశ్నలో ఇచ్చిన అంశం, దీనికి సంబంధించిన కారణాన్ని బట్టి కింది వాక్యాలలో ఏది సరియైనదో తెలిపి, వివరించండి.
a. \mathbf{A}, \mathbf{R} రెండూ సరియైనవి. మరియు \mathbf{A} కు \mathbf{R} సరైన వివరణ.
b. \mathbf{A}, \mathbf{R} రెండూ సరియైనవి. కానీ \mathbf{A} కు \mathbf{R} సరైన వివరణ కాదు.
c. \mathbf{A} సరియైనది. కానీ \mathbf{R} సరైనది కాదు.
d. A,R సరియైనవి కావు.
e. \mathbf{A} సరియైనది కాదు కానీ \mathbf{R} సరైనది.
9. అంశం (\mathbf{A}) : పట్టక వక్రీభవన గుణకం, ఆ పట్టక తయారీకి వాడిన గాజురకంపై మరియు కాంతి రంగుపై మాత్రమే ఆధారపడుతుంది.

కారణం (R): పట్టక వక్రీభవన గుణకం, పట్టక వక్రీభవన కోణంపై, కనిష్ట విచలన కోణంపై ఆధారపడుతుంది. (AS2)

జ: A, R రెండూ సరియైనవి. మరియు A కు R సరైన వివరణ.

కారణం :-

1. వక్రీభవన గుణకం తగ్గినచో, విచలన కోణం కూడా తగ్గుతుంది.
2. అనగా విచలనకోణము పట్టకము వక్రీభవన కోణముపై ఆధారపడుతుంది.
3. అంశం (\mathbf{A}) : కాంతి పరిక్షేపణం వలన ఆకాశం నీలి రంగులో కనబడుతుంది.

కారణం ($\mathbf{R}):$ తెల్లని కాంతిలోని వివిధ కాంతులలో నీలిరంగు కాంతి తరంగధ్ఘర్ఘ్యం తక్కువ. (AS2)

జ: A సరియైనది కాదు కానీ R సరైనది.
కారణం:-

1. కాంతి పరిక్షేపణం వల్ల ఆకాశం నీలి రంగులో కనిపిస్తుంది.
2. తెల్లని కాంతిలో ఊదారంగు తక్కువ తరంగ ధైర్య్యం కలిగి ఉంటుంది.
3. తరగతి గదిలో ఇంద్రధనస్సును ఉత్పత్తి చేసే ప్రయోగాన్ని తెల్పండి. ప్రయోగాన్ని చేయు విధానాన్ని వివరించండి. (AS3)

జ: ఉద్దేశం :- తరగతి గదిలో ఇంద్రధనస్సును ఉత్పత్తి చేయుట
కావలసిన పరికరాలు :- లోహపు పహ్లెం, నీరు, కార్డ్ బోర్డ్, అద్దం

నిర్వహణ పద్ధతి :-

1. ఒక లోహపు పళ్లాన్ని తీసుకుని, దానిని నీటితో నింపండి.
2. నీటి ఉపరితలంతో కొంత కోణం చేసే విధంగా నీటిలో ఒక సమతల దర్పణాన్ని అద్దాన్ని ఉంచండి.
3. పటంలో చూపినట్లు నీటి గుండా అద్దంపై తెల్లని కాంతిని ప్రసరింపచేయండి.
4. ఈ అమరికకు కొంత ఎత్తులో తెల్లటి కార్డ్ బోర్డ్ ను ఉంచండి.
5. అద్దం నుంచి పరవర్తనం అయ్యే కాంతి కార్డ్ బోర్డ్ పై ఇంద్రధనస్సు ఏర్పరుస్తుంది.

6. కొన్ని బైనాక్యులర్లందు పట్టకాలను వినియోగిస్తారు. బైనాక్యులర్లలో పట్టకాలు ఎందుకు వినియోగిస్తారో తెలియజేసే సమాచారాన్ని సేకరించండి. (AS4)

జ:

1. రెండు టెలిస్కోప్లను సమాంతరంగా అమర్చి, వస్తువును రెండు కళ్లతో ఒకే సారి చూసే అమరికను బైనాక్యులర్స్ అని అంటారు.
2. దీనిలో పట్టకాలను ఉపయోగించడం వల్ల దాని పరిమాణం తగ్గించబడింది.
3. బైనాక్యులర్స్ వాడడం ద్వారా ఒకే వస్తువును రెండు ప్రతిబింబాలుగా చూడడం సాధ్యమవుతుంది.
4. చిన్న చిన్న వస్తువులను కూడా దీనిని ఉపయోగించి పెద్దదిగా చూడవచ్చు.
5. కాబట్టి బైనాక్యులర్స్ వాడడం ద్వారా వస్తువు ప్రతిబింబాన్ని త్రిమితీయ పరిమాణంలో పరిశీలించవచ్చును.
6. పటం Q-13 లో పట్టక తలం AB పై పడిన పతన కిరణాన్ని, పట్టక తలం AC నుంచి వచ్చే బహిర్గత కిరణాన్ని చూపడం జరిగింది. పటంలో లోపించిన వాటిని గీయండి. (AS5)

జ:

14. ఆకాశం నీలి రంగులో కనబడడానికి కారణమైన వాతావరణ లోని అణువుల పాత్రను మీరెలా అభినందిస్తారు? (AS6)

జ:

1. కాంతి పరిక్షేపణం వల్ల ఆకాశం నీలి రంగులో కనిపిస్తుంది. మన చుట్టూ ఉన్న వాతావరణం లో వివిధ అణువులు, పరమాణువులు ఉంటాయని మనకు తెలుసు.
2. వాతావరణంలో నైట్రోజన్, ఆక్సిజన్ అణువులే ఆకాశం నీలి రంగులో ఉండడానికి కారణం.
3. వాతావరణంలోని ఆక్సిజన్, నైట్రోజన్ అణువుల పరిమాణం నీలి రంగు కాంతి తరంగ ధైర్ఘ్యాలతో పోల్చదగిన విధంగా ఉంటాయి.
4. ఈ అణువులు నీలి రంగు కాంతికి పరిక్షేపణ కేంద్రాలుగా పనిచేస్తాయు.
5. అందువల్ల ఆకాశం నీలి రంగులో కనిపిస్తుంది.
6. మన చుట్టూ ఉన్న రంగుల ప్రపంచాన్ని మనం చూడడానికి ఉపయోగపడేది కన్ను. కంటి కటకానికి గల లక్షణం వల్ల ఇది సాధ్యమవుతుంది. ఈ విషయం పై మీ స్పందనను తెలియజీసే విధంగా ఆరు వాక్యాల పద్యాన్ని రాయండి. (AS6)

జ: మన చుట్టూ ఉన్న రంగుల ప్రపంచాన్ని మనం చూడడానికి ఉపయోగపడేది కన్ను. కన్ను గురించి కింది పద్యాన్ని వ్రాయవచ్చు.

$$
\begin{gathered}
\text { ఈ లోకాన్ని పరిచయం చేసిందే నువ్వు } \\
\text { నా ఆలోచనలకు రూపం నువ్వు } \\
\text { నా ప్రతీ అడుగుకి కారణం నువ్వు } \\
\text { నా కలలకు భావం నువ్వు } \\
\text { నువ్వ్టంటే ఆనందం నా జీవితం } \\
\text { నీవు లేకుంటే నా జీవితం విషాద గేయం }
\end{gathered}
$$

16.కంటిలోని సిలియరి కండరాల పనితీరును మీరెలా అభినందిస్తారు? (AS6)

జ:

1. కంటిలోని కటకానికి ఆనుకొని ఉన్న సిలియరి కండరాలు కటక వక్రతా వ్యాసార్థాన్ని మార్చడం ద్వారా కటకం తన నాభ్యాంతరాన్ని మార్చుకోవడానికి దోహదపడతాయి.
2. దూరంలో ఉన్న వస్తువును కన్ను చూస్తునప్పుడు, సిలియారి కండరాలు విశ్రాంత స్థితిలో ఉండడం వల కంటి కటక నాభ్యాంతరం గరిష్టమవుతుంది.
3. అందువల్ల కంటి లోకి వచ్చే సమాంతర కిరణాలు రెటినాపై కేంద్రీకరింపబడడం వల్ల వస్తువును మనం చూడగలుగుతాము.
4. దగ్గరగా ఉన్న వస్తువును కన్ను చూస్తునప్పుడు, సిలియారి కండరాలు ఒత్తిడికి గురి కావడం వల్ల కంటి కటక నాభ్యాంతరం తగ్గుతుంది. అందువల్ల వస్తువును మనం చూడగలుతాము.
5. ఇలా కటక నాభ్యాంతరానికి తగిన విధంగా మార్చు చేసుకునే పద్ధతిని సర్దుబాటు (Accommodation) అంటారు.
6. ఈ సర్దుబాటును బట్టి కంటిలోని సిలియారి కండరాల పనితీరును మనం అభినందించవచ్చు.
7. కొన్ని సందర్భాలలో ఆకాశం తెలుపురంగులో కనబడుతుంది, ఎందుకు? (AS7)

జ:

1. మన చుట్టూ ఉన్న వాతావరణం లో వివిధ అణువులు, పరమాణువులు ఉంటాయని మనకు తెలుసు.
2. వేసవి రోజుల్లో ఉష్ణోగ్రత ఎక్కువగా ఉండడం వల్ల వాతావరణంలోకి నీటి ఆవిర చేరుతుంది.
3. ఈ నీటి అణువులు ఇతర పౌనపున్యాలు(నీలి రంగు కానివి)గల కాంతులను పరిక్షేపణ చేస్తాయి.
4. $\mathrm{N}_{2}, \mathrm{O}_{2}$ ల వల్ల వచ్చే ఇతర రంగుల కాంతులు అన్ని కలిసి మన కంటికి చేరినప్పుడు తెలుపు రంగు కాంతి కనబడుతుంది.
5. గాజు పారదర్శక పదార్థం. ఒక తలం గరుకుగా చేయబడిన గాజు పాక్షిక పారదర్శకంగానూ, తెలుపురంగులో కనబడుతుంది. ఎందుకు? (AS7)

జ:

1. గాజు పారదర్శక పదార్థం. ఎందుకంటే దాని గుండా కాంతి సులభంగా ప్రయాణిస్తుంది.
2. ఒక తలం గరుకుగా చేయబడిన గాజు ఉపరితలంపై కాంతి పడినప్పుడు, కాంతి అన్ని దిశలలో పరావర్తనం అవుతుంది.
3. అందువల్ల ఒక తలం గరుకుగా చేయబడిన గాజు పాక్షిక పారదర్శకంగాను, తెల్లగాను కనిపిస్తుంది.
4. తెల్లకాగితానికి నూనె పూస్తే, అది పాక్షిక పారదర్శకంగా పనిచేస్తుంది. ఎందుకు? (AS7) జ:
5. కాగితము ఒక ఘన పదార్థము. అది నీటిని పీల్చుకొని, నీరంత ఆరనంత వరకు ఒక పారదర్శక పదార్థముగా పనిచేస్తుంది.
6. అలాగే కాగితానికి నూనె పూస్తే, కాగితము నీటిని పీల్చుకోవడం వల్ల అది పారదర్శక పదార్థంగా పనిచేస్తుంది.
7. పట్టకం ఒక తలంపై 40^{0} కోణంతో పతనమైన కాంతి కిరణం, $30^{\mathbf{0}}$ కనిష్ట విచలనాన్ని పొందింది. అయిన పట్టక కోణాన్ని, ఇచ్చిన తలం వద్ద వక్రీభవన కోణాన్ని కనుగొనండి.
(AS7) (జవాబు: $50^{\circ}, 25^{\circ}$)
జ: దత్తాంశం: పతన కోణము, $i_{1}=40^{\circ}$

$$
\text { కనిష్ట విచలన కోణము, } D=30^{\circ}
$$

$$
\begin{gathered}
A+D=2 i \\
A=2 i-D=2 \times 40^{\circ}-30^{\circ}=80^{\circ}-30^{\circ}=50^{\circ} \\
\therefore A=50^{\circ} \\
\text { వక్రీభవన కోణము, } r=\frac{A}{2}=\frac{50}{2}=25^{\circ}
\end{gathered}
$$

21. ద్మ్రద్ృష్టి గల వ్యక్తిని 100 సెం.మీ. నాభ్యాంతరం గల కటకాన్ని వాడమని డాక్టర్ సలహ ఇచ్చారు. కనిష్ట దూర బిందువు యొక్క దూరాన్ని, కటక సామర్థ్యాన్ని కనుగొనండి. (AS7)(జవాబు : 33.33 సెం.మీ. 1D)

జ: దత్తాంశం: కటక నాభ్యాంతరం, $f=100 \mathrm{~cm}$

> ప్రతిబింబ దూరం(V)= కనిష్ట దూర బిందువు= $-d$
> వస్తు దూరం, $u=-25 \mathrm{~cm}$
> కటక సూత్రము, $\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$

$$
\frac{1}{100}=\frac{1}{d}-\frac{1}{(-25)}
$$

$$
\begin{gathered}
\frac{1}{d}=\frac{1}{25}-\frac{1}{100}=\frac{4-1}{100}=\frac{3}{100} \\
d=\frac{100}{3}=33.33 \mathrm{~cm}
\end{gathered}
$$

కటక సామర్థ్యం, $p=\frac{100}{f}=\frac{100}{100}=1$ Diopter
22. దూరంగా ఉన్న వస్తువును చూస్తున్నాడు. అతని కంటి ముందు ఒక కేంద్రీకరణ కటకం ఉంచితే అతనికి ఆ వస్తువు పెద్దదిగా కనిపిస్తుందా? కారణం తెలపండి? (AS7)

జ: 1.కేంద్రీకరణ కటకం ఉపయోగించినప్పుడు ఏర్పడే ప్రతిబింబం వస్తువు స్థితిపై ఆధారపడి ఉంటుంది.
2.వ్యక్తి దూరంలో ఉన్న వస్తువును చూస్తున్నాడు కనుక కేంద్రీకరణ కటకం భూతద్దంగా పనిచేస్తుంది.
3.కనుక వస్తువ అతనికి పెద్దదిగా కనిపిస్తుంది.

