03. కాంతి వరావర్తనం

ప్రశ్నలు - నమాధానములు

1. కాంతి పరావర్తన నియమాలను తెల్పండి.

A. కాంతి పరావర్తన నియమాలు:

(i) పతన కోణం, పరావర్తన కోణం సమానంగా ఉంటాయి.
(ii) పతన కిరణం, పతన బందువు వద్ద తలానికి గీచిన లంబం మరియు పరావర్తన కిరణం అన్నీ ఒకే తలంలో ఉంటాయి.
2. పుటాకార దర్పణం యొక్క నాభ్యాంతరాన్ని ఎలా కనుగొంటాం?
A. సూర్యుని కాంతి పడే విధంగా ఒక పుటాకార దర్పణాన్ని పట్టుకోవాలి. ఒక చిన్న కాగితం ముక్కను తీసికోవాలి. దర్పణం ముందు కాగితాన్ని ఉంచి, నెమ్మదిగా వెనుకకు జరుపుతూ సూర్యుని అతి చిన్నదైన, ప్రకాశవంతమైన ప్రతిబింబం ఏర్పడే స్థానాన్ని గుర్తించాలి. (సూర్యుని నుండి వచ్చే పతన కాంతి కిరణాలకు అడ్డురాకుండా ఉ்ండేట్లు చిన్న కాగితం తీసకోవాలి.)

సూర్యుని నుండి దర్పణ ప్రధానాక్షానికి సమాంతరంగా వచ్చే పతన కిరణాలు పరావర్తనం చెంది ఒక ఒందువు వద్ద కేంద్రీకరిం పబడతాయి. ఆ ఒందువును నాభి (F) అంటారు. దర్పణ ధృవం నుండి నాభికి గల దూరాన్ని కొలవాలి. ఈ దూరాన్ని నాభ్యాంతరం (f) అంటారు. దర్పణ వక్రతా వ్యాసార్థం, నాభ్యాంతరానికి రెట్టింపు ఉ்ంటుంది. (R=2f)

3. పుటాకార దర్పణం యొక్క ష్రధానాక్షం పై నాభి, వక్రతా కేంద్రం మధ్య ఒక వస్తువును ఉంచితే ప్రతిబింబం ఎక్కడ ఏర్పడుతుంది?
A. పుటాకార దర్పణం యొక్క ప్రధానాక్షం పై నాభ, వక్రతా కేంద్రం మధ్య ఒక వస్తువును ఉంంచితే, ప్రతిబింబం వక్రతా కేంద్రానికి ఆవల ఏర్పడుతుంది. మరియు తలక్రిందులుగా ఉંండే, పెద్దదైన, నిజ ప్రతిబంబం ఏర్పడుతుంది.
4. 8 సెం.మీ. వక్రతా వ్యాసార్థం గల పుటాకార దర్పణం యొక్క ప్రధానాక్షంపై దర్పణం నుండి 10 సెం.మీ. దూరం లో ఒక వన్తువును ఉంచితే ప్రతిబింబం ఎంత దూరంలో ఏర్పడుతుంది?
A. వస్తువు దూరం $(u)=10 \mathrm{~cm}$

వక్రతా వ్యాసార్థం $(\mathrm{R})=8 \mathrm{~cm}$

$$
\text { నాభ్యాంతరం }(\mathrm{f})=\frac{R}{2}=\frac{8}{2}=4 \mathrm{~cm}
$$

ప్రతిబింబ దూరం (v) = ?

$$
\text { సూత్రము : } \frac{1}{u}+\frac{1}{v}=\frac{1}{f}
$$

$$
\frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{4}-\frac{1}{10}=\frac{10-4}{40}=\frac{6}{40}=\frac{3}{20}
$$

$$
v=\frac{20}{3}=6.6 \mathrm{~cm} \text { (వస్తువు ఉన్న వైపు) }
$$

5. పుటాకార, కుంభాకార దర్పణాల మధ్య భేదాలను తెల్పండి.
A.

	కుంభాకార దర్పణం		పుటాకార దం,ణం
1	పరావర్తన తలం బయటి వైపుకు ఉన్న గోళాకార దర్పణాన్ని కుంభాకార దర్పణం అంటారు.	1	పరావర్తన తలం లోపలి వైపుకు ఉన్న గోళాకార దర్పణాన్ని కుంభాకార దర్పణం అంటారు.
2	దీని నాభి దర్పణము వెనుక ఉ்ంటుంది.	2	దీని నాభి దర్పణము ముందు ఉ்ంటుంది.
3	దీనిని వికేంద్రీకరణ దర్పణం అంటారు.	3	దీనిని కేంద్రీకరణ దర్పణం అంటారు.

6. నిజ వ్రతిబింబం, మిథ్యా వ్రతిబింబం మధ్య భేదాలను తెల్పండి.
A.

	నిజ వ్రతిబింబం		Wిథ్యా వ్రతిబింబం
1	నిజ ప్రతిబింబం ఎల్లపుడూ దర్పణానికి ముందు వైపు ఏర్పడుతుంది.	1	మిథ్యా ప్రతిబింబం ఎల్లపుడూ దర్పణానికి వెనుక వైపు ఏర్పడుతుంది.
2	నిజ ప్రతిబంబాన్ని తెరపై పట్టవచ్చును.	2	మిథ్యా ప్రతిబింబాన్ని తెరపై పట్టలేము.
3	పరావర్తనం లేదా వక్రీభవనం చెందిన తర్వాత కాం తి కిరణాలు ఒక బిందువు వద్ద కేంద్రీకృతం కావడం వల్ల నిజ ప్రతిబంబం ఏర్పడుతుంది.	3	పరావర్తనం లేదా వక్రీభవనం చెందిన తర్వాత కాంతి కిరణాలు ఒక బిందువు నుండి వికేంద్రీకృతం అయినట్లు ఉండటెం వల్ల మిథ్యా ప్రతిబంబం ఏర్పడును.
4	తలక్రిందులుగా ఏర్పడుతుంది.	4	నిటారుగా ఏర్పడుతుంది.

7. వుటాకార దర్పణంతో మిథ్యా వ్రతిబింబాన్ని ఎలా ఏర్పరుస్తారు?
A. పుటాకార దర్పణం యొక్క ప్రధానాక్షం పై నాభ, దర్పణ కేంద్రం మధ్య ఒక వస్తువును ఉ்ంచితే, మిథ్యా ప్రతిబంబం దర్పణము వెనుక భాగంలో ఏర్పడుతుంది. మరియు నిటారుగా ఉ்ండే, పెద్దదైన, మిథ్యా ప్రతిబింబం ఏర్పడుతుంది.
8. గోళాకార దర్పణాలకు నంబంధించిన, క్రింద ఇవ్వబడిన పదాలను వివరించండి.
a) దర్పణ ధృవం
b) వక్రతా కేంగ్రం
c) నాభุ
d) వక్రతా వ్యాసార్థం
e) నాభ్యాంతరం
f) వ్రధానాక్షం
g) వన్తు దూరం
h) వ్రతిజింబ దూంం
i) ఆవర్థనం
A. a) దర్పణ ధృవం: గోళాకార దర్పణం యొక్క మధ్య ఇందువు లేదా జ్యామితీయ కేంద్రాన్ని దర్పణ ధృవం అంటారు. దీనిని 'p' తో సూచిస్తారు.
b)వక్రతా కేంద్రం: గోళాకార దర్పణం యొక్క పరావర్తన తలం ఏ గోళానికి చెందినదో, ఆ గోళ కేంద్రాన్ని వక్రతా కేంద్రం అంటారు. దీనిన 'c' తో సూచిస్తారు.
c) నాభ్: దర్పణంపై పతనం చెందే సమాంతర కిరణాలు పరావర్తనం చెందిన తర్వాత ప్రధానాక్షంపై ఏ బందువు వద్ద కేంద్రీ కరింప బడతాయో, ఆ అందువును నాఖ అంటారు. దీనిన ' F 'తో సూచిస్తారు.
d) క్రతా వ్యాసార్థం: గోళాకార దర్పణం యొక్క పరావర్తన తలం ఏ గోళానికి చెందినదో, ఆ గోళము యొక్క వ్యాసార్థాన్ని వక్రతా వ్యాసార్థం అంటారు. దీనిన 'R' తో సూచిస్తారు.
e) నాభ్యాంతరం: గోళాకార దర్పణ కేంద్రానికి, ప్రధాన నాభకి మధ్య గల దూరాన్ని నాభ్యాంతరం అంటారు. దీనిని 'f'తో సూచిస్తారు.
f) వ్రధానాక్షం: గోళాకార దర్పణము యుక్క దర్పణ కేంద్రము మరియు వక్రతా కేంద్రముల ద్వారా పోయే రేఖను ప్రధానాక్షం అంటారు.
g) వస్తు దూరం : గోళాకార దర్పణ కేంద్రము నుండి వస్తువు వరకు గల దూరాన్ని వస్తు దూరం అంటారు. దీనిని 'u' తో సూచిస్తారర.
h) ప్రతిజంబ దూరం: గోళాకార దర్పణ కేంద్రము నుండి ప్రతిబంబం వరకు గల దూరాన్ని ప్రతిబంబ దూరం అంటారు. దీనిని ' v ' తో సూచిస్తారు.
i) ఆవర్థనం: గోళాకార దర్పణం వల్ల ఏర్పడిన ప్రతిబంబ పరిమాణం మరియు వస్తువు పరిమాణం లకు గల నిష్పత్తిని ఆవర్థనం అంటారు. దీనిని 'm'తో సూచిస్తారు.

$$
\begin{aligned}
\mathrm{m}= & \text { ప్రతిబంబం ఎత్తు / వస్తువు ఎత్తు } \\
& =\text { ప్రతిబింబం పరిమాణం / వస్తువు పరిమాణం }
\end{aligned}
$$

9. నంజా సాంప్రదాయంలోని నియమాలను తెల్పండి.
A. దర్పణ నూత్రము లోని వవిధ అంశాలకు పాటించవలసిన నంజా సాంత్రదాయము:
(i) అన్ని దూరాలను దర్పణ ధృవం (p) నుండే కొలవాలి.
(ii) పతన కాంతి ప్రయాణించిన దిశలో కొలిచిన దూరాలను ధనాత్మకంగాను, కాంతి ప్రయాణ దిశకు వ్యతిరేక దిశలో కొలిచిన దూరాలను ఋణాత్మకంగాను పరిగణించాలి.
(iii) వస్తువు యొక్క ఎత్తు $\left(\mathrm{H}_{\mathrm{o}}\right)$, ప్రతిఱంబం ఎత్తు $\left(\mathrm{H}_{\mathrm{i}}\right)$ లను ప్రధానాక్షానికి పైవైపు ఉన్నపుడు ధనాత్మకంగాను, ప్రధానాక్నానికి క్రింది వైపు ఉన్నపుడు బణాత్మకంగాను పరిగణించాలి.
10. నమతల దర్పణం 1 ఆవర్థనం అని ఇవ్వబడినది. దీనిని బట్టి మీరు ఏమి గ్రహించారు?
A. $\mathrm{m}=$ ప్రతిఱంబం ఎత్తు / వస్తువు ఎత్తు
$=$ ప్రతిబంబం పరిమాణం / వస్తువు పరిమాణం
సమతల దర్పణం యొక్క ఆవర్థనం +1 అనగా, ప్రతిఇంబం పరిమాణం వస్తువు పరిమాణంతో సమానంగా ఉంటుందని అర్థం . ధన గుర్తు ప్రతిఱంబం నిటారుగా ఉండడాన్ని తెలియజేస్తుంది.
11. గోళాకార దర్పణాలు లేకపోతే దైనందిన జీవితం ఎలా ఉంటుందో ఊహించండి.

A. గోళాకార దర్పణాలు లేకపోతే దైనందిన జీవితంలో

(i) అనేకమైన దృశ్యా పరికరాలను కనుగొనే అవకాశం ఉండేది కాదు.
(ii) తలక్రిందులైన ప్రతిబంబాలు ఎందుకు ఏర్పడతాయనే సమస్య అసలు పరిష్కారం అయ్యేది కాదు.
(iii) వాహనాల హెడ్ లైట్స్లో పరావర్తకాలుగా, రియర్ వ్యూ మిర్రర్స్ గా గోళాకార దర్పణాలను ఉపయోగించకుండా ఉండేవాళ్ళము.
(iv) గోళాకార దర్పణాలు లేకుండా దంత వైద్యులు సులభంగా దంతములను పరిశీలించడానికి వీలుండదు
(V) సోలార్ కుక్క్ర వంటి పరికరాలు అసలుండేవి కావు.
12. ఇంటిలో ఉన్న స్ట్లు పాత్రలు, వాటిలోని ప్రతిబింబాలు చూసిన తర్వాత 3 వ తరగతి విద్యార్థి నూర్య తన అక్క శ్రీవిద్యను కొన్ని వ్రశ్నలు అడిగాడు. ఆ వ్రశ్నలు ఏమై ఉంటాయో ఊహించండి.

A . నూర్య ఈ క్రింది ప్రశ్నలను అడిగి ఉండవచ్చు.
(i) స్టీలు పాత్రలు ప్రతిబంబాలను ఎలా ఏర్పరుస్తాయి?
(ii) ప్లేటు మీద ఏర్పడే ప్రతిబంబం, గిన్నె మీద ఏర్పడే ప్రతిబింబం భిన్నంగా ఉ்ంటాయి. ఎందుకు?
(iii) పాత్ర నుండి దూరంగా లేదా దగరకు జరిగే కొలది ప్రతిబింబం సైజు ఎందుకు మారుతుంది?
(iV) స్టీలు పాత్రలు దర్పణాలా?
13. కాంతి మొదటి వరావర్తన నూత్రాన్ని ప్రయోగ వూర్వకంగా మీరు ఎలా నరిచూస్తారు?
A. కాంతి మొదటి పరావర్తన నూత్రాన్ని నిరూపించుట: ఒక డ్రాయింగ్ బోర్డుపై క్లాంపుల సపోయంతో తెల్ల కాగితాన్ని అ మర్చాలి. కాగితం మధ్యలో AB అనే రేఖాఖండాన్ని గీయాలి. AB పై ఏదేని బందువు ‘O' వద్ద B కి లంబాన్ని
(ON) గీయాలి. ON తో కొంత కోణం ($\hat{l})$ చేసే విధంగా PQ అనే రేఖను గీయాలి. ఈ రేఖపై P, Q అనే బందువుల వద్ద రెండు గుండు సూదులను నిలువుగా గ్రు్ఛాలి. AB వెంబడి నిలువుగా అమర్చిన అద్దంలో P , Q ల వద్ద గ్ర్చ్ఛిన గుండు సూదుల ప్రతిబంబాలు $\mathrm{P}^{1}, \mathrm{Q}^{1}$ లను పరిశీలించాలి. $\mathrm{P}^{1}, \mathrm{Q}^{1} \quad$ లతో ఒకే వరుసలో ఉండే విధంగా దర్పణం ముందు R, S ల వద్ద మరో రెండు గుండు సూదులను గ్రుచ్ఛాలి. R, S మరియు O లను కలపాలి. RS మరియు ON ల మధ్య కోణాన్ని (\hat{l}) కొలవాలి. ఇదే పరావర్తన కోణం.

పతన కోణం, పరావర్తన కోణం విలువలు సమానంగా ఉంటాయి. ఇదే ప్రయోగాన్ని వేర్వేరు పతన కోణాలకు చేయాలి. ప్రతి సందర్భంలోనూ పతన కోణం, పరావర్తన కోణం విలువలు సమానంగా ఉంటాయని బుజువవుతుంది. అనగా కాంతి మొదటి పరావర్తన సూత్రం నిరూపించబడినది.

14. కాంతి రెండవ వరావర్తన నూత్రాన్ని ప్రయోగ వూర్వకంగా మీరు ఎలా నరిచూస్తారు?
A. కాంతి రండవ వరావర్తన నూత్రాన్ని నిరూపించుటా:

ఒక డ్రాయుంగ్ బోర్డుపై క్లాంపుల సహాయంతో తెల్ల కాగితాన్ని అమర్చాలి. కాగితం మధ్యలో AB అనే రేఖాఖండాన్ని గీయాలి.
AB పై ఏదేని బందువ్ర ‘O' వద్ద AB కి లంబాన్ని (ON) గీయాలి. ON తో కొంత కోణం (\hat{l}) చేసే విధంగా

PQ అనే రేఖను గీయాలి. ఈ రేఖపై P, Q అనే బందువుల వద్ద రెండు గుండు సూదులను నిలువుగా గ్రుచ్ఛాలి. AB వెంబడి నిలువుగా అమర్చిన అద్దంలో P, Q ల వద్ద గ్రుచ్ఛిన గుండు సూదుల ప్రతిబంంబాలు $\mathrm{P}^{1}, \mathrm{Q}^{1}$ లను పరిశీలించాలి. $\mathrm{P}^{1}, \mathrm{Q}^{1}$ లతో ఒకే వరుసలో ఉండే విధంగా దర్పణం ముందు R, S ల వద్ద మరో రెడు గుండు సూదులను గ్ర్ర్ఛ్లలి. R, S మరియు O లను కలపాలి.
P, Q ల ద్వారా పోయే రేఖను పతన కిరణం అంటారు. పతన కిరణం కాగితం పైనే ఉంటుంది. అలాగే R, S ల ద్వారా పోయే రేఖను పరావర్తన కిరణం అంటారు. ఇది కూడా కాగితం పైనే ఉఉటుంది. ON అనేది ‘O’వద్ద దర్పణ తలానికి గీచిన లంబం. ఇది కూడా కాగితం పైనే ఉంటుంది.

పతన కిరణం, పరావరన కిరణం మరియు పతన బందువు వద్ద తలానికి గీచిన లంబం అన్నీ కాగితం తలం పైనే ఉన్నాయి. అనగా కాంతి రెండవ పరావర్తన సూత్రం నిరూపించబడినది.

గమనిక: కాంతి పరావర్తన సూత్రాలు ఋజువు చేసే ప్రయోగమునకు పై రెండు ప్రశ్నల సమాధానాలను ఫలితంగా వ్రాయాలి.
15. వన్తు దూరం, ప్రతిబింబ దూరం కొలిచినటువంటి పుటాకార దర్పణం వ్రయోగం ద్వారా మీరు ఏమి నిర్థారించారు?
A. (i) వస్తువు పుటాకార దర్పణానికి దగ్గరగా జరిగే కొలది, దాని ప్రతిబంబం దర్పణం నుండి దూరంగా జరుగుతుంది.
(ii) వస్తువు పుటాకార దర్పణానికి దగ్గరగా జరిగే కొలది, దాని ప్రతిబంబం పరిమాణం క్రమంగా పెరుగుతుంది. (వస్తువును దర్పణ కేంద్రం మరియు నాభి మధ్యలో ఉంచిన సందర్భంలో మామూలుగా పెరుగుతుంది)
16. నమతల దర్పణానికి ముందు ఉంచిన రెండు గుండు నూదుల తలలను తాకుతూ పోయి దర్పణం మీద వతనమ య్యే కిరణానికి నంబంధించి వరావర్తన తలాన్ని ష్రయోగవూర్వకంగా కనుక్కోండి.

A. కాంతి మొదటి పరావర్తన నూత్రాన్ని నిరూపించుటే:

ఒక డ్రాయింగ్ బోర్డుపై క్లాంపుల సహాయంతో తెల్ల కాగితాన్ని అమర్చాలి. కాగితం మధ్యలో AB అనే రేఖాఖండాన్ని గీయాలి.
AB పై ఏదేని ఒందువ్ర ' O^{\prime} వద్ద AB కి లంబాన్ని (ాచీ) గీయాలి. ON తో కొంత కోణం (\hat{l}) చేసే విధంగా PQ అనే రేఖను గీయాలి. ఈ రేఖపై P, Q అనే బందువుల వద్ద రెండు గుండు సూదులనునిలువుగా గ్రుచ్ఛాలి. AB వెంబడి నిలువుగా అమర్చిన అద్దంలో P, Q ల వద్ద గ్రుచ్ఛిన గుండు సూదుల ప్రతిబంబాలు $\mathrm{P}^{1}, \mathrm{Q}^{1}$ లను పరిశీలించాలి. $\mathrm{P}^{1}, \mathrm{Q}^{1}$ లతో ఒకే వరుసలో ఉంండే విధంగా దర్పణం ముందు R, S ల వద్ద మరో రెండు గుండు సూదులను గ్రుచ్ఛాలి. R, S మరియు O లను కలపాలి.

డ్రాయింగ్ బోర్డుపై గుండు సూదులు అన్నీ ఒకే ఎత్తులో ఉండేలా సరి చేయాలి. గుండు సూదుల తలలపై ఒక కాగితాన్ని ఉంచాలి. ఈ కాగితం, దర్పణాన్ని తాకే తలమే; సమతల దర్పణానికి ముందు ఉ்ంచిన రెండు గుండు సూదుల తలలను తాకుతూ పోయి దర్పణం మీద పతనమయ్యే కిరణానికి సంబంధించి పరావర్తన తలం అవుతుంది.

20. విన్ హెూల్ కెమెరాలో వ్రతిబింబం ఏర్పడే విధానాన్ని వటం ద్వారా వివరించండి.
A.

ఒక దానిలో మరొకటి దూరే విధంగా రెండు ఖాళీ బ్యారల్స్ లేదా అట్టె పెట్టెలు తీసికోవాలి. పెద్ద బ్యారల్కు ఒక అంచున దళసరి, నల్లటి ఛార్టు వంటి కాగితాన్ని ఉంంచి రబ్బం బ్యాండ్తో కదలకుండా అమర్చాలి. ఈ నల్లఱి కాగితం మధ్యలో గుండు పిన్నుతో చిన్న రంధ్రంచేయాలి. రెండవ చిన్న బ్యారల్కు ఒక అంచులో పల్చటి తెల్ల కాగితాన్ని అమర్చి, రబ్బరు బ్యాండ్ చుట్టాలి. దానిపై రెండు చుక్కలు నూనె వేసి రుద్దితే పాక్షిక పారదర్శకంగా ఉంటుంది. ఇది తెర వలె పనిచేస్తుంది. ఇపుడు పెద్ద బ్యారల్ లోనికి చిన్న బ్యారల్ను దూర్చి, క్రొవ్వొత్తి జ్వాలను పరిశీలించాలి. ఇదే పిన్ హోల్ కెమెరా.

క్రొవ్వొత్తి మంట పై భాగం నుండి వెలువడిన కాంతి ఋజుమార్గంలో ప్రయాణించి, కెమెరాలోని తెర క్రింది భాగాన్ని చేరుతుంది. అదేవిదంగా క్రొవ్వొత్తి మంట యొక్క క్రింది భాగం నుండి వచ్చే కిరణాలు నేరుగా తెర పై భాగాన్ని చేరతాయి. అందు వల్ల తలక్రిందులైన ప్రతిబింబం ఏర్పడుతుంది.

పన్ హెల్ కెమెరాలో రంధ్రం యొక్క సైజును పెంచితే పెద్దదైన, అస్పష్టమైన ప్రతిబంబం కనిపిస్తుంది. రంధ్రం సైజు, క్రొవ్వొత్తి జ్వాల సైజుతో సమానమైతే తెరపై ఏ విధమైన ప్రతిబంబాన్ని చూడలేము.
21. పుటాకార దర్పణం వల్ల ఏర్పడే ప్రతిబింబ స్థానాన్ని గుర్తించడానికి అవనరమయ్యే కాంతి కిరణాలను గీయండి.
A. పుటాకార దర్పణం వల్ల ఏర్పడే వస్తువు యొక్క ప్రతిబంంాన్ని, దాని స్థానాన్ని అంచనా వేయుటకు ఉపయుక్తమయ్యే కిరణాలు కొన్ని ఉ்న్నాయి. అవి:
(i) ప్రధానాక్షానికి సమాంతరంగా పతనం చెందిన కిరణాలు పరావర్తనం చెందిన తర్వాత దర్పణ నాభి గుండా ప్రయాణిస్తాయి.

(ii) దర్పణ నాభి గుండా ప్రయాణిస్తూ పతనం చెందిన కాంతి కిరణాలు పరావర్తనం చెందిన తర్వాత ప్రధానాక్షానికి సమాతరంగా ప్రయాణిస్తాయి.

(iii) వస్తువు యొక్క పైకొన నుండి దర్పణ వక్రతా కేంద్రం ద్వారా ప్రయాణిస్తూ పతనం చెందే కాంతి కిరణం, పరావర్తనం చెందాక తిరిగి అదే మార్గంలో వెనుకకుమరలుతుంది.

(iv) ఈ మూడు కిరణాలతో పాటుగా, వస్తువు నుండి బయలుదేరి దర్పణ ధృవం వద్ద పతనమయ్యే కాంతి కిరణం కూడా కిరణ చిత్రాలు గీయుటకు ఉపయోగపడుతుంది. ఈ కిరణానికి ప్రధానాక్షమే లంబం అవుతుంది.
22. పుట゙కార దర్పణం

उక్రతా కేంద్రానికి ఆవల వన్తువును ఉంచినపుడు ష్రతిబింబం ఏర్పడే విధానాన్ని వివరించే పటెం గీయండి.
A. పుటాకార దర్పణం యొక్క ప్రధానాక్షంపై వక్రతా కేంద్రానికి ఆవల వస్తువును ఉ்ంచినపుడు, ప్రతిబంబం దర్పణ నాభి మరియు వక్రతా కేంద్రముల మధ్య ఏర్పడుతుంది. చిన్న సైజు, తలక్రిందులైన మరియు నిజ ప్రతిబంబం ఏర్పడుతుంది.

23. సోలార్ కుక్కర్ ను తయారు చేయండి. తయారీ విధానాన్ని వివరించండి.
A. కర్ర లేదా ఇనుప బద్దలతో టి.వి. డిష్ ఆకారంలో ఒక ఫ్రేమును తయారు చేయాలి. డిష్ యొక్క వ్యాసార్థానికి సమానమైన ఎత్తు ఉండే విధంగా అక్రిలిక్ అద్దాలను 8 లేదా 12 సమద్విభాహు త్రిభుజాలుగా కత్తిరించాలి. అక్రిలిక్ సమద్విబాహు త్రిభుజాల భూముల మొత్తం పొడవు డిష్ పరిధికి సమానంగా ఉండాలి. త్రిభుజాకార అద్దాలను డిష్ ఫ్రేముపై అంటెంచాలి. సోలార్ కుక్కర్ తయారైనది.

సోలార్ కుక్కర్ యొక్క పుటాకార తలాన్ని సూర్యునికి ఎదురుగా ఉంంాలి. దాని నాభిి కనుగొనాలి. నాభ వద్ద పాత్రను ఉంచితే, అది వేడెక్కుతుంది. ఈ పాత్రలో వంట కూడా చేయవచ్చును.

24. వన్తువు పైనే ప్రతిబింబం ఏర్పడాలంటే వుటాకార దర్పణం ముందు వన్తువును ఎలా ఉంచాలో వటం గీచి వివరించండి.
A. వస్తువు పైనే ప్రతిబింబం ఏర్పడాలంటే పుటాకార దర్పణం యొక్క ప్రధానాక్షంపై, వక్రతా కేంద్రం వద్ద వస్తువును ఉంచాలి.

25. మన దైనందిన జీపతంలా గాళాకార దర్పణాల పాత్రను మీరెలా అభినందిస్తారు?
A. మన నిత్య జీవితంలో గోళాకార దర్పణాలు ప్రషుఖ పాత్రను పోష్స్తున్నాయి.
(i) గోళాకార దర్పణాల వల్ల కావలసిన దూరంలో, కావలసిన పరిమాణంలో ప్రతిబంబాలను పొందవచ్చు.
(ii) కాంతి కిరణాలను ఒక బందువు దగ్గర కేంద్రీకరించగల ప)టాకార దర్పణలలు సోలార్ కుక్కర్ వంటి పరికరాలలో ఉపయోగిస్తున్నారు.
(iii) దంత వైద్యులు, ENT octors, లోపలి భాగాలను స్పష్టంగా చూడడానికి పుటాకార దర్పణాన్ని ఉపయోగిస్తారు. iv) పురాతన కాలంలో సముద్రాలలో వచ్చే శత్రు సైన్యాల ఓడలను తగులబెట్టడానికి గోళాకార దర్పణాలను ఉపయోగించేవారు.
(iv) ఖగోళ వస్తువులను చూడడానికి కూడా పుటాకార దర్పణాలను ఉపయోగించేవారు.
(V) కుంభాకార దర్పణాలను వాహనాలలో డ్రైవర్ ప్రక్కక రియర్ వ్యూ మిర్రర్స్గా ఉపయోగిస్తారు.
(vi) వాహనాలలో హెడ్ లైటలో పరావర్తకాలుగా పుటాకార దర్పణాలను ఉపయోగిస్తారు.
ఇన్ని ప్రయోజనాలున్న గోళాకార దర్పణాల ప్రాముఖ్యతను మనం అందరం గుర్తించి, అభనందించాలి.
26. వుటాకార దర్పణం వల్ల కాంతి వరావర్తనం పొందే విధానాన్ని, టి.వి. యాంటెన్నా డిష్ ల నిర్మాణంలో ఉపయోగించిన తీరును మీరెలా అజినందిస్తారు?
A. డి.వి. యాంటెన్నాల యొక్క పుటాకార భాగంలో, నాభ వద్ద సిగ్నల్ రీసీవింగ్ బాక్స్ ఉంటుంది. ఎంపిక చేయబడ్డ ఛానెల్ యొక్క సంకేతాలు ఉపగ్రహం నుండి (అనంత దూరం) యాంటెన్నా యొక్క పుటాకార తలంపై సమాంతరంగా పతనం చెందుతాయి.

పరావర్తనం చెందిన తరంగాలు నాభి వద్ద కేంద్రీకరింపబడతాయి. అక్కడ ఉన్న సిగ్నల్ రీసీవింగ్ బాక్స్ సంకేతాలను స్వ్కరించి వాటిని ప్రాసెసింగ్ యూనిట్కు పంపుతుంది. ఈ విధంగా టి.వి. డిష్ ల నిర్మాణంలో పుటకార దర్పణ సూత్రాన్ని వినియోగించుకోవడం ఎంతో అభనందనీయము.
27. వర్షం వల్ల ఏర్పడిన నీటి గుంటెలలో ఆకాశవు ష్రతిబింబాన్ని మీరెవ్పుడైనా చూశారా? ఇందులో కాంతి పరావర్తనం ఎలా జరుగుతుందో వివరించండి?
A. వర్షం వల్ల భూమిపై ఏర్పడిన నీటి గుంటృలలో ఆకాశం యొక్క ప్రతిబింబం ఏర్పడ)తుంది. ఆకాశం యొక్క పైస్థానాల నుండి వచ్చే కాంతి కిరణాలు, నీటి గుంటలోని క్రింది స్థానాలను చేరతాయి. ఈ విషయంలో నీరు అద్దం లాగా పనిచేసి ఆకాశం యొక్క ప్రతిబింబం తలక్రిందులుగా కనబడుతుంది. పిన్ హోల్ కెమెరాలో ప్రతిబింబాన్ని పోలి ఉంంటుంది.
28. భవంతులను, డాబాలను అద్దాలతో అలంకరించడం వల్ల కలిగే లాభ నష్టాలను చర్చించండి..
A. అద్దాలను ఉేపయోగించడం వల్ల ప్రయోజనాలు:
(i) దర్పణాలను వివిధ పరిమాణాలలో పొందవచ్చును.
(ii) దర్పణాలు త్రుప్పు పట్టవవు.
(iii) దర్పణాలు నీరు వంటి వారిని లోపలికి రానీయవు మరియు వాటిని సులభంగా శుభ్రం చేసుకోవచ్చును.

అద్దాలను ఉపయోగించడం వల్ల ఇబ్బందులు:

(i) దర్పణాలు సులభముగా పగులుతాయి.
(ii) దర్పణాలతో భవంతులు అలంకరించడం అధిక ఖర్చుతో కూడుకున్నది.
29. వాహనాల ‘రియర్ వ్యూ మిర్రర్స్’ గా కుంభాకార దర్పణాలనే ఎందుకు వాడతారు?
A. వస్తువు యొక్క దూరంతో సంబంధం లేకుండా కుంభాకార దర్పణాలు ఎల్లపుడూ నిటారువైన, చిన్నవైన, మిథ్యా ప్రతిబింబాలను ఏర్పరుస్తాయి. వాహనాలలో ప్రయాణించేటపుడు వెనుక ఉండే దృశ్యాన్ని లేదా ట్రాఫిక్ను చిన్నగా చూడడం కొరకు వాహనాలలో డ్రైవర్కు ప్రక్కగా కుంభాకార దర్పణాన్ని రియర్ వ్యూ మిర్రర్గా ఉపయోగిస్తారు.
30. 3మీ. వక్రతా వ్యాసార్థం గల కుంభాకార దర్పణాన్ని ఒక వాహనానికి రియర్ వ్యూ మిర్రర్ గా ఉవయోగించారు. ఈ దర్పణానికి 5మీ. దూరంలో ఒక బస్ ఉంట, అవుడు ఏర్పడే వ్రతిచంబ స్థానాన్ని, వరిమాణాన్ని లెక్కించండి. ఈ ష్రతిజింబం నిటారు ప్రతిజింబమా? లేదా తలక్రిందులు ష్రతిజింబమా? తెల్పండి.
A. (కుంభాకార దర్పణానికి వస్తు దూరం 'u' ఋఋణాత్మకం)
వస్తువు దూరం (u) = -5 cm

$$
\begin{aligned}
& \text { వక్రతా వ్యాసార్థం }(\mathrm{R})=3 \mathrm{~cm} \\
& \text { నాభ్యాంతరం }(\mathrm{f})=\frac{R}{2}=\frac{3}{2}=1.5 \mathrm{~cm} \\
& \text { ప్రతిబంబ దూరం }(\mathrm{v})=? \\
& \text { సూత్రము : } \frac{1}{u}+\frac{1}{v}=\frac{1}{f} \\
& \frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{1.5}-\frac{1}{-5}=\frac{10+3}{15}=\frac{13}{15} \\
& v=\frac{15}{13}=1.15 \mathrm{~cm}
\end{aligned}
$$

ప్రతిబంబం దర్పణం వెనుక వైపు ఏర్పడుతుంది. ప్రతిబింబం నిటారరదైన, చిన్నదైన, మిథ్యా ప్రతిబంబం.
31. 15 సెం.మీ. నాభ్యాంతరం గల కుంభాకార దర్పణం ముందు 10 సెం.మీ. దూరంలో వన్తువును ఉంచాం. ప్రతిజిం స్థానం, ప్రతిజింబ లక్షణాలను తెల్పండి. .
A. (కుంభాకార దర్పణానికి వస్తు దూరం 'u' ఋణాత్మకం)

> వస్తువు దూరం (u) = -10 cm

$$
\text { నాభ్యాంతరం }(\mathrm{f})=15 \mathrm{~cm}
$$

$$
\text { వక్రతా వ్యాసౌర్థం }(\mathrm{R})=2 \mathrm{f}=30 \mathrm{~cm}
$$

ప్రతిబింబ దూరం (V) = ?

$$
\begin{aligned}
& \text { సూత్రము : } \frac{1}{u}+\frac{1}{v}=\frac{1}{f} \\
& \frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{15}-\frac{1}{-10}=\frac{10+15}{150}=\frac{25}{150} \\
& v=\frac{150}{25}=6 \mathrm{~cm}
\end{aligned}
$$

ప్రతిబంబం దర్పణం వెనుక వైపు ఏర్పడుతుంది.
ప్రతిబింబం నిటారుదైన, చిన్నదైన, మిథ్యా ప్రతిబింబం.

> అదనవు వ్రశ్నలు
32. 5 సెం.మీ. ఎత్తు గల ఒక వన్తువును పుటాకార దర్పణము ముందు 20 సెం.మీ. ల దూరంలో ఉంచారు. దర్పణం యొక్క వక్రతా వ్యాసార్ధము 30 సెం.మీ. అయితే ఏర్పడే వ్రతిబింబం యొక్క స్థానమును, న్వభావాన్ని కనుగొనండి. ప్రతిబింబం యొక్క పరిమాణాన్ని కూడా గణించండి.

