Chapter 14 - Statistics

1 Marks Questions

1. Write three formulas to find the mean

Sol: Three formulas to find the mean:
i) The Direct Method: $\bar{x}=\frac{\sum f i x i}{\sum f i}$
ii) The assumed mean Method: $\bar{x}=a+\frac{\sum \text { fidi }}{\sum \text { fi }}$
iii) The step deviation Method: $\bar{x}=a+\left[\frac{\sum \text { fiui }}{\sum f i}\right] \times h$
2. Find the mean for first 100 natural numbers.

Sol: First 100 natural numbers $=1,2,3, \ldots \ldots \ldots . .100$
Sum of first n natural numbers $=\frac{n(n+1)}{2}$
Sum of first 100 natural numbers $=\frac{100(100+1)}{2}$

$$
=\frac{100(101)}{2}=50 \times 101
$$

\therefore Mean of first 100 natural numbers

$$
=\frac{\text { sum of abservations }}{\text { No.of observations }}=\frac{50 \times 101}{100}
$$

$$
=50.5
$$

3. Find the mean if $\sum f_{i} x_{i}=1860$ and $\sum f_{i}=30$.

Sol: $\quad \sum f_{i} x_{\mathrm{i}}=1860, \sum f_{i}=30$
Mean $=\frac{\sum \text { fixi }}{\sum f i}=\frac{1860}{30}=62$
4. Find the mode of $\frac{1}{3}, \frac{3}{4}, \frac{5}{6}, \frac{1}{2}, \frac{7}{12}$

Sol: Given observations $=\frac{1}{3}, \frac{3}{4}, \frac{5}{6}, \frac{1}{2}, \frac{7}{12}$
$3 \mid 3,4,6,2,12$
$2 \frac{1,4,2,2,4}{1,2,1,1,2}$
No. of observations $=5$
Sum of observations $=\frac{1}{3}+\frac{3}{4}+\frac{5}{6}+\frac{1}{2}+\frac{7}{12}$

$$
\frac{108}{24}=\frac{9}{2}=4.5
$$

5. Find mode if $\mathrm{a}=47.5, \Sigma f_{\mathrm{i}} d_{\mathrm{i}}=435$ and $\Sigma f_{\mathrm{i}}=30$.

Sol: Given that: $\mathrm{a}=47.5$

$$
\begin{aligned}
& \sum f_{\mathrm{i}} d_{\mathrm{i}}=435 \\
& \sum f_{\mathrm{i}}=30
\end{aligned}
$$

Mode $\bar{x}=a+\frac{\sum f i d i}{\sum f i}$

$$
=47.5+\frac{435}{30}
$$

$$
=47.5+\frac{145}{10}
$$

$$
=47.5+14.5
$$

$$
=62
$$

6. Find the mode of first \mathbf{n} natural numbers

Sol: first n natural numbers $=1,2,3,4, \ldots \ldots \ldots n$.
In this series any number is not repeated so, there is no mode for this numbers (Note: If there is no mode for any problem. We cannot say that the mode is ' 0 ')
7. The wickets taken by a bowler in 10 cricket matches are as follows: $2,6,4,5,0,2,1$, $3,2,3$. Find the mode of the data.

Sol: Let us arrange the observations in order i.e. $0,1,2,2,2,3,4,5,6$.
Clearly 2 is the number of wickets taken by the bowler in the maximum number of matches (i.e., 3 times). So, the mode of this data is 2.
8. Find the mode of given data $5,6,9,10,6,12,3,6,11,10,4,6,7$

Sol: Given data: $5,6,9,10,6,12,3,6,11,10,4,6,7$
\therefore Ascending order: 3, 4, 5, 6, 6, 6, 6, 7, 9, 10, 10, 11, 12
\therefore Mode $=6$
9. Find the mode of given data $2,2,2,3,3,3,4,4,4,5,5,5,6,6,6$

Sol: Given data 2, 2, 2, 3, 3, 3 4, 4, 4, 5, 5, 5, 6, 6, 6
Mode of given data $=2,3,4,5$ and 6.
10. Write the formula to find the median.

Sol: $\operatorname{Median}(\mathbf{M})=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$
11. Find the median if, $I=60, c f=22, f=7, \boldsymbol{h}=10$, and $\frac{n}{2}=26.5$

Sol: Give that
$l=60$
$c f=22$
$f=7$
$h=10$
$\frac{n}{2}=26.5$
$\operatorname{Median}(\mathrm{M})=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$

$$
\begin{aligned}
& =60+\left[\frac{26.5-22}{7}\right] \times 10 \\
& =60+\left[\frac{4.5}{7}\right] \times 10 \\
& =60+\frac{45}{70} \times 10 \\
& =60+\frac{45}{7} \\
& =60+6.4 \\
& =66.4
\end{aligned}
$$

12. What are ogive curves?

Sol: cumulative frequency curve or an ogive:
First we prepare the cumulative frequency table, and then the cumulative frequencies are plotted against the upper or lower limits of the corresponding class intervals. By joining the points the curve so obtained is called a cumulative frequency or ogive.

2 Mark Questions

1. The marks obtained in mathematics by 30 students of class \mathbf{X} of a certain school are given in table below. Find the mean of the marks obtained by the students.

Marks obtained $\left(x_{i}\right)$	10	20	36	40	50	56	60	70	72	80	88	92	95
No.of student $\left(f_{i}\right)$	1	1	3	4	3	2	4	4	1	1	2	3	1

Sol: let us re-organize this data and find the sum of all observations

Marks obtained $\left(x_{i}\right)$	Number of students $\left(f_{i}\right)$	$f_{i} x_{i}$
10	1	10
20	1	20
36	3	108
40	4	160
50	2	150
56	4	112
60	4	240
70	1	280
72	1	72
80	2	80
88	3	176
92	1	276
95	$\sum f_{i}=30$	$\sum f_{i} x_{i}=1779$
Total		95

So, $\bar{x}=\frac{\sum f i x i}{\sum f i}=\frac{1779}{30}=59.3$
\therefore The mean marks are 59.3.
2. Write mean formula in deviation method? Explain letters in it.

Sol: mean $\bar{x}=a+\frac{\sum f i u i}{\sum f i} \times h$
' a ' is class mark of mean class
' $f i$ ' is the highest frequency
$\mu i=\frac{x i-a}{h}$, Here $x_{i}=$ mid value of classes
$a=$ assumed mid value
$h=$ class size
$\sum f_{i} x_{i}=$ sum of total frequency.
3. A survey was conducted by a group of students as a part of their environment awareness progamme, in which they collected the following data regarding the number of plants in $\mathbf{2 0}$ houses in a locality. Find the mean number of plants per house.

Number of plants	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$
Number of house	1	2	1	5	6	2	3

No. of plants	No. of houses f_{i}	Class marks x_{i}	$f_{i} x_{i}$
$0-2$	1	1	1
$2-4$	2	3	6
$4-6$	1	5	5
$6-8$	5	7	35
$8-10$	6	9	54

$10-12$	2
11	22
$12-14$	3
13	39
Total	$\sum f_{i}=20$
Mean	$=\frac{\sum f i x i}{\sum f i}$
	$=\frac{162}{20}$
	$=8.1$

$\therefore 8$ plants are planted at each house.
4. The table below shows the daily expenditure on food of 25 households in locality.

Daily expenditure (Rs)	$100-150$	$150-200$	$200-250$	$250-300$	$300-350$
No. of house holds	4	5	12	2	2

Find the mean daily expenditure on food by a suitable method

Daily expenditure (in Rupees)	No. of households $\left(f_{i}\right)$	Class Marlks $\left(x_{i}\right)$	$f_{i} x_{i}$
$\mathbf{1 0 0 - 1 5 0}$	4	125	500
$\mathbf{1 5 0 - 2 0 0}$	5	175	875
$\mathbf{2 0 0 - 2 5 0}$	12	225	2700
$\mathbf{2 5 0 - 3 0 0}$	2	275	550
$\mathbf{3 0 0 - 3 5 0}$	2	325	$f_{i} x_{i}=5275$

Mean $=\frac{\sum f i x i}{\sum f i}=\frac{5275}{25}=211$
The mean daily expenditure on food of a house hold is Rs. 211.
5. Write the formula of mode in a grouped data and explain the letters in it.

Sol: Mode $=l+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h$
Where, $l=$ lower boundary of the modal class
$h=$ size of the modal class interval
$f_{1}=$ frequency of the modal class
$f_{0}=$ frequency of the class preceding the modal class
$f_{2}=$ frequency of the class succeeding the modal class
6. Write the formula of median in a grouped data and explain the letters in it.

Sol: Median for a grouped data:

Median $=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$
Where, $\mathrm{l}=$ lower boundary of median class
$n=$ number of observations
$c f=$ cumulative frequency of class preceding the median class
$f=$ frequency of median class
$h=$ size of the median class
7. The mean of the following distribution is 53 . Find the missing frequency p ?

Classes	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	12	15	32	P	13

Sol:

Class	Class mark	f_{i}	$f_{i} x_{i}$
$0-20$	10	12	120
$20-40$	30	15	450
$40-60$	50	32	1600

$60-80$	70	P	70 p
$80-100$	90	13	1170
		$\sum f_{i}=72+\mathrm{p}$	$\sum f_{i} x_{i}=3340+70 \mathrm{p}$

$$
\begin{aligned}
& \text { mean } \bar{x}=\frac{\sum f i x i}{\sum f i} \Rightarrow \frac{53}{1}=\frac{3340+70 p}{72+p} \\
& 3340+70 \mathrm{p}=53(72+\mathrm{p}) \\
& 3340+70 \mathrm{p}=3816+53 \mathrm{p} \\
& 70 \mathrm{p}-53 \mathrm{p}=3816-3340 \\
& 17 \mathrm{p}=476 \\
& p=\frac{476}{17} \\
& \mathrm{P}=28
\end{aligned}
$$

8. Find the unknown entries a, b, c, d in the following distribution of heights of students in a class.

Height (in cm)	Frequency	Cumulative frequency
$150-155$	12	12
$155-160$	a	25
$160-165$	10	b
$165-170$	c	43
$170-175$	5	48
$175-180$	2	d

$\mathrm{a}=25-12=13$
$b=25+10=35$
c $=43-35=8$
$\mathrm{d}=48+2=50$
9. Prepare less than cumulative frequency distribution and greater than cumulative frequency distribution for the following data.

Daily income (in rupees)	$250-300$	$300-350$	$350-400$	$400-450$	$450-500$
No. of workers	12	14	8	6	10

Sol: Less than cumulative frequency

Daily income (in Rs)	No. of workers	Upper limits	Less than cumulative frequency
$250-300$	12	300	12
$300-350$	14	350	$12+14=26$
$350-400$	8	400	$12+14+8=34$
$400-450$	6	450	$12+14+8+6=40$
$450-500$	10	500	$12+14+8+6+10=$ 50

Greater than cumulative frequency

Daily income (in Rs)	No. of workers	lower limits	Greater than cumulative frequency
$250-300$	12	250	$12+14+8+6+$ $10=50$
$380-350$	14	300	$14+8+6+10=40$
$350-400$	8	350	$8+6+10$
$400-450$	6	400	$6+10=16$
$450-500$	10	450	$10=10$

10. Median of a data, arranged in ascending order $7,10,15, x, y, 27,30$ is 17 and when one more observation 50 is added to the data, the median has become 18 find x and y.

Sol: Given data:
$7,10,15, x, y, 27,30$
\therefore Median $=\mathrm{x}$.
$\therefore \mathrm{x}=17(\because$ median $=17)$
One more observation 50 is added then data is $7,10,15, \mathrm{x}, \mathrm{y}, 27,30,50$.
\therefore Median $=\frac{x+y}{2}$
$18=\frac{x+y}{2} \quad[\because$ median is 18$]$
$x+y=36$
$17+y=36=>y=36-17=19$
$\therefore \mathrm{x}=17, \mathrm{y}=19$.
11. Prepare class interval frequency follow table.

Marks obtained	Less than 10	Less than 20	Less than 30	Less than 40	Less than 25
No. of students	5	8	12	18	25

Sol:

Marks obtained	No. of students	Class in marks	Frequency
Less than 10	5	$0-10$	5
Less than 20	8	$10-20$	$8-5=3$
Less than 30	12	$20-30$	$12-8=4$
Less than 40	18	$30-40$	$18-12=6$
Less than 50	25	$40-50$	$25-18=7$

12. In the calculation of mean problem, $\bar{x}=62, \Sigma f_{i} d_{i}=435, a=47.5$ then what is the value of $\sum f_{i}$.
Sol: We know that, $\bar{x}=a+\frac{\sum \text { fidi }}{\sum f i}$ given, $\bar{x}=62, \sum f_{i} d_{i}=435, \mathrm{a}=47.5, \sum f_{i}=$?

$$
\begin{aligned}
& 62=47.5+\frac{435}{\sum f i} \\
& 62-47.5=\frac{435}{\sum f i} \\
& 14.5=\frac{435}{\sum f i} \\
& \sum f i=\frac{435}{145} \\
& =\frac{4350}{145} \\
& f_{i}=30 .
\end{aligned}
$$

4 Mark Questions

1. The following distribution gives the daily income of 50 workers of a factory.

Sol:

Daily income	$250-300$	$300-350$	$350-400$	$400-450$	$450-500$
No.of workers	12	14	8	6	10

Convert the distribution above to a less than type cumulative frequency distribution and draw it's ogive.

Class interval	f	cf	Points
Less than 300	12	12	$(300,12)$
Less than 350	14	26	$(350,26)$
Less than 400	8	34	$(400,34)$
Less than 450	6	40	$(450,40)$
Less than 500	10	50	$(500,50)$

2. The following distribution shows the daily packet allowance of children of a locality. The mean pocket allowance is Rs.98. Find the missing frequency f.

Daily pocket allowance (in Rs)	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$
No.of children	7	6	9	13	f	5	4

Sol:

www.sakshieducation.com

Daily pocket allowance	No. of children $\left(f_{i}\right)$	Mid value of classes	$u i=\frac{x i-a}{n}$	$f_{i} u_{i}$
$11-13$	7	12	-3	-21
$13-15$	6	14	-2	-12
$15-17$	9	16	-1	-9
$17-19$	13	$18(\mathrm{a})$	0	0
$19-21$	5	20	1	f
$21-23$	4	24	2	10
$23-25$	$\sum f_{i}=f+44$		3	12

Mean $\bar{x}=a+\frac{\sum f i u i}{\sum f i} \times h$
Given mean $\bar{x}=18, \sum$ fiui $=-20+\mathrm{f}=\mathrm{f}+44, \mathrm{a}=18, \mathrm{~h}=2$.

$$
\begin{aligned}
& 18=18+\frac{-20+f}{f+22} \times 2 \\
& \Rightarrow 18=18+\frac{(-20+f)}{f+22} \times 2 \Rightarrow 0=\frac{(-20+f) \times 2}{f+44} \\
& \Rightarrow \frac{0}{2}=-20+f \\
& \Rightarrow 0=-20+\mathrm{f}
\end{aligned}
$$

$\therefore \mathrm{f}=20$.
3. Thirty women were examined in a hospital by a doctor and their of heart beat per minute were recorded and summarised as shown. Find the mean of heart beat per minute for these women, choosing a suitable method.

No. of heart beat/ minute	$65-68$	$68-71$	$71-74$	$74-77$	$77-80$	$80-83$	$83-86$
No. of women	2	4	3	8	7	4	2

Sol:
Let $\mathrm{a}=75.5$

No. of heart beats/minute	No. of women f_{i}	Class marks $\left(x_{i}\right)$	$d_{\mathrm{i}}=x_{i}-\mathrm{a}$	$f_{i} d_{i}$
$65-68$	2	66.5	-9	-18
$68-71$	4	69.5	-6	-24
$71-74$	3	72.5	-3	-9
$74-77$	8	$75.5=\mathrm{a}$	0	0
$77-80$	7	78.5	3	21
$80-83$	4	81.5	6	24
$83-86$	2	84.5	9	18
	$\sum f_{i}=30$			$\sum f_{i} d_{i}=12$

$$
\bar{x}=a+\frac{\sum \text { fidi }}{\sum f i}=75.5+\frac{12}{30}
$$

$\Rightarrow 75.5+0.4$
$\Rightarrow 75.9$.
4. In a retail market, fruit vendors were selling oranges kept in packing baskets. These baskets contained varying number of oranges. The following was the distribution of oranges.

No. of Oranges	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$
No. of baskets	15	110	135	115	25

Find the mean number of oranges kept in each basket, which method of finding the mean did you choose?

Sol:

No.of oranges (C.I)	Number of baskets (f_{i})	x_{i}	$u i=\frac{x i-a}{h}$ $h=5 x$	$f_{i} u_{i}$
$10-14$	15	12	-2	-30
$15-19$	110	17	-1	-110
$20-24$	135	$22=\mathrm{a}$	0	0
$25-29$	115	27	1	115
$30-34$	25	32	2	50
	$\sum f_{i}=400$			$\sum f_{i} u_{i}=25$

Here we use step deviation method where $\mathrm{a}=22, \mathrm{~h}=5$,

$$
\begin{aligned}
& \bar{x}=a+\left[\frac{\sum f i u i}{\sum f i}\right] \times h \\
& =22+\frac{25}{400} \times 5 \\
& =22+0.31 \\
& =22.31 .
\end{aligned}
$$

5. The following table gives the literacy rate (in\%) of 35 cities. Find the mean literacy rate.

Literacy rate in \%	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$
No.of cities	3	10	11	8	3

Sol:

Literacy rate	Number of cities $\left(f_{i}\right)$	Class marks $\left(x_{i}\right)$	$u i=\frac{x i-a}{h}$	$f_{i} u_{i}$
$45-55$	3	50	-2	-6
$55-65$	10	60	-1	-10
$65-75$	11	70 a	0	0
$75-85$	8	80	1	8
$85-95$	3	90	2	6
$\mathrm{a}=70$,	$\mathrm{h}=10$			
$\therefore \bar{x}=a+\frac{\sum \text { fiui }}{\sum f_{i}} \times h$				
	$\Rightarrow \bar{x}=70-\frac{2}{35} \times 10$			
	$\Rightarrow 70-\frac{2}{35}$			
$\Rightarrow 70-0.57142$				
$\Rightarrow 69.4285 \cong 69.43 \%$.				

6. The following data gives the information on the observed life times (in hours) of 225 electrical components.

Life time (in)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	10	35	52	61	33	29

Determine the modal life times of the components.

Class interval	Frequency
$0-20$	10
$20-40$	35
$40-60$	52
$60-80$	61
$80-100$	38
$100-120$	29

\therefore The maximum frequency 61 is in the class $60-80$ is the required modal class.
Modal class frequency $=f_{1}=61$.
Frequency of the class preceeding the modal class $f_{0}=52$
Frequency of the class succeeding the modal class $f_{2}=38$.
Lower boundary of the model class $l=60$
Height of the class $h=20$
Mode (z) $=l+\frac{\left(f_{1}-f_{0}\right)}{2 f_{1}-\left(f_{0}+f_{2}\right)} \times h$

$$
\begin{aligned}
& =60+\left[\frac{61-52}{2 \times 61-(52+38)}\right] \times 20 \\
& \Rightarrow 60+\left[\frac{9}{122-90}\right] \times 20
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow 60+\frac{9}{32} \times 20 \\
& =60+5.625 \\
& =65.625 \text { hour. }
\end{aligned}
$$

7. The given distribution shows the number of runs scored by some top batsmen of the world in one day international cricket matches

Runs	$3000-$ 4000	$4000-$ 5000	$5000-$ 6000	$6000-$ 7000	$7000-$ 8000	$8000-$ 9000	$9000-$ 10,000	10,000 -
No.of batsmen	4	18	9	7	6	3	1	1

Sol: Find the mode of the data.

Class interval	Frequency
$3000-4000$	4
$4000-5000$	18
$5000-6000$	9
$6000-7000$	7
$7000-8000$	6
$8000-9000$	3
$9000-10,000$	1
$10,000-11,000$	1

Maximum number of batsmen is in the class $4000-5000$.
\therefore Modal class is $4000-5000$
Frequency of the modal class $=f_{1}=18$
Lower boundary of the modal class $l=4000$
Frequency of the model class, preceding $f_{0}=4$

Frequency of the class succeeding the modal class $f_{2}=9$
Height of the class, $\mathrm{h}=1000$.
$\operatorname{Mode}(\mathrm{z})=l+\left[\frac{f_{1}-f_{0}}{\left(f_{1}-f_{0}\right)+\left(f_{1}-f_{2}\right)}\right] \times h$
Mode (z) $=4000+\frac{18-4}{(18-4)+(18-9)} \times 1000$
$\Rightarrow 4000+\frac{14}{14+9} \times 1000$
$\Rightarrow 4000+\frac{14000}{23}=4000+608.695$
$=4608.69=4608.7$ runs.
8. The median of 60 observations, given below is 28.5 . Find the values $o f x$ and y.

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	5	x	20	15	y	5

Sol:

Class interval	Frequency	c.f
$0-10$	5	5
$10-20$	x	$5+\mathrm{x}$
$20-30$	20	$25+\mathrm{x}$
$30-40$	15	$40+\mathrm{x}$
$40-50$	y	$40+\mathrm{x}+\mathrm{y}$
$50-60$	5	$45+\mathrm{x}+\mathrm{y}$

Median $=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$
It is given that $\sum \mathrm{f}=\mathrm{n}=60$

$$
\begin{aligned}
& \text { So, } 45+x+y=60 \\
& x+y=60-45=15 \\
& \therefore x+y=15 \rightarrow(1)
\end{aligned}
$$

The median is 28.5 which lies between $20 \& 30$

$$
\therefore \text { Median class }=20-30
$$

Lower boundary of the median class ' 1 ' = 20.

$$
\frac{N}{2}=\frac{60}{2}=30
$$

Cf. cumulative frequency $=5+x, h=10$
Median $=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$

$$
\Rightarrow 28.5=20+\frac{30-5-x}{20} \times 10
$$

$$
\Rightarrow 28.5=20+\frac{25-x}{2}
$$

$$
\frac{25-x}{2}=28.5-20=8.5
$$

$$
25-x=2 \times 8.5
$$

$$
x=23-17=8
$$

Also from (1) $x+y=15$

$$
\begin{gathered}
8+y=15 \\
y=7 \\
\therefore x=8, y=7
\end{gathered}
$$

9. The following data the information on the observed life times (in hours) of $\mathbf{4 0 0}$ electrical components.

Life time	$1500-$ 2000	$2000-$ 2500	$2500-$ 3000	$3000-$ 3500	$3500-$ 4000	$4000-$ 4500	$4500-$ 5000
Frequency	14	56	60	86	74	62	48

Class internal	Frequency
$1500-2000$	14
$2000-2500$	70
$2500-3000$	130
$3000-3500$	261
$3500-4000$	290
$4000-4500$	352
$4500-5000$	400

$n=400$
$\mathrm{l}=3000$

$$
\frac{n}{2}=\frac{400}{2}=200
$$

$c f=130$
$f=86$
$h=500$
Median $=l+\left[\frac{\frac{n}{2}-c f}{f}\right] \times h$

$$
\begin{aligned}
& =3000+\frac{(200-130)}{86} \times 500 \\
& =3000+\frac{70 \times 500}{86} \\
& =3000+\frac{35000}{86} \\
& =3000+406.97 \\
& =3406.98
\end{aligned}
$$

Life time median of the bulb $=3406.98 \mathrm{hr}$.
10. Draw "OGIVE CURVE" of the following frequency distribution table.

Classes	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	9	16	24	15	4	2

Class	Frequency	L.C.F	U.B
$0-20$	9	9	20
$20-40$	16	$9+16=25$	40
$40-60$	24	$25+24=49$	60
$60-80$	15	$49+15=64$	80
$80-100$	4	$64+4=68$	100
$100-120$	2	$68+2=70$	120

Let us draw a graph by considering upper boundary values on $x-$ axis and L.C.F values on y-axis. The points to be located in the graph are
$(20,9),(40,25),(60,49),(80,64),(100,68),(120,70)$.

11. The following distribution gives the daily income of 50 workers of a factory.

Daily income	$250-300$	$300-350$	$350-400$	$400-450$	$450-500$
No. of workers	12	14	8	6	10

Convert the distribution above to a less than type cumulative frequency distribution, draw it's ogive.
www.sakshieducation.com

Class interval	f	c.f	Point
Less than 300	12	12	$(300,12)$
Less than 350	14	26	$(350,26)$
Less than 400	8	34	$(400,34)$
Less than 450	6	40	$(450,40)$
Less than 500	10	50	$(500,50)$

12. During the medical checkup of 35 students of a class, their weight were recorded as fallows?

Weight (in kg)	No. of students
Less than 38	0
Less than 40	3
Less than 42	5
Less than 44	9
Less than 46	14
Less than 48	28
Less than 50	32
Less than 52	35

Draw a less than type ogive for the given data. Hence obtain the median weight from the graph and verify the result by using the formula.

Given: Upper limits of the classes and less than cumulative frequencies. Therefore required points are $(38,0),(40,3),(44,9),(46,14),(48,28),(50,32), \&(52,35)$.

13. The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
No. of farmers	2	8	12	24	38	16

Change the distribution to a more than type distribution \& draw its ogive. The given data is to be more than frequency distribution type.

Sol:

Production yield(Qui /Hec)	More than cf	No. of farmers	Points
More than 50	100	2	$(50,100)$
More than 55	98	8	$(55,98)$
More than 60	90	12	$(60,90)$
More than 65	78	24	$(65,78)$
More than 70	54	38	$(70,54)$
More than 75	16	16	(75)

A graph is plotted by taking the lower limits on the x - axis and respective of y -axis.

Multiple Choice Questions

1. The h indicates in mode $z=l+\left[\frac{f-f_{0}}{2 f-f_{0}-f_{1}}\right] \times h$
A) Frequency
B) length of the CI
C) Lower boundary of mode class
D) mode
2. Mid values are used in calculating \qquad
A) A.M
B) Median
C) Mode
D) None
3. Mean of 23, 24, 24, 22 and 20 is \qquad
A) 22.6
B) 16.2
C) 18.9
D) 20.3
4. $\quad \sum f_{i} x_{i}=1390, \sum f_{i}=35$, then mean $\bar{x}=$
A) 39.71
B) 49.23
C) 81.45
D) None
5. \qquad is based on all observations \qquad
A) Median
B) mean
C) mode
D) None
6. If the mode of the following data is 7 , then the value of k in $6,3,5,6,7,5,8,7,6$, $2 \mathrm{k}+1,9,7,13$ is \qquad
A) 7
B) 8
C) 3
D) None
7. The data arranged in descending order has 25 observations which observation represents the median?
A) 12th
B) 13th
C) 14 th
D) 15th
8. AM of $6,-4, \frac{2}{3}, 1 \frac{1}{4}, \frac{-7}{6}$ is \qquad
A) 8.1
B) 5.3
C) 3.5
D) 0.55
9. Median of $17,31,12,27,15,19$ and 23 is \qquad
A) 16
B) 20
C) 19
D) None
10. A.M of $12,3 \ldots \ldots \ldots . .10$ is \qquad
A) 3.2
B) 6.1
C) 3.5
D) 5.3
11. Range of $1,2,3,4, \ldots \ldots \ldots . n$ is \qquad
A) n
B) $n-1$
C) n^{2}
D) $\frac{n}{2}$
12. For the given data with 50 observations "the less than ogive" and the more than ogive intersect at $(15.5,20)$. The median of the data is \qquad
A) 11.5
B) 14.5
C) 15.5
D) 12
13. The mean of first n odd natural numbers is $\frac{n^{2}}{81}$ then $\mathrm{n}=$ \qquad
A) 81
B) 18
C) 27
D) 54
14. A.M of $1,2,3, \ldots \ldots \ldots . n$ is \qquad
A) $\frac{n}{2}$
B) $\frac{n+1}{2}$
C) $\frac{n-1}{2}$
D) None
15. If the mean of $6,7, x, 8, y, 14$ is 9 , then $x=$ \qquad
A) $x+y=21$
B) $x+y=19$
C) $x-y=19$
D) $x-y=21$

KEY

1) B;
2) A;
3) A ;
4) A;
5) B;
6) C;
7) B;
8) D;
9) C ;
10) D;
11) B;
12) C;
13) A;
14) B;
15) B.

Fill in the Blanks

1. The A.M of 30 students is 42 . Among them two get zero marks then A.M of remaining students is \qquad
2.

Marks	10	20	30
No. of students	5	9	3

From the above data the value of median is \qquad
3. Data having one mode is called \qquad
4. A.M of $1,2,3$ \qquad n is \qquad
5. sum of all deviations taken from A.M is \qquad
6. Mode of A, B, C, D,........... Z is \qquad
7. Mean of first 5 prime numbers is \qquad
8. The observation of an ungrouped data in their ascending order are $12,15, x, 19,15$ if the median of the data is 18 then $\mathrm{x}=$ \qquad
9. $A M$ of $a-2, a, a+2$ is \qquad
10. Median of $1,2,4,5$ is \qquad
11. Class mark of the class $x-y$ is \qquad
12. L.C.F curve is drawn by using \qquad and the corresponding cumulative frequency
13. The modal class for the following distribution is \qquad

x	Below 10	Below 20	Below 30	Below 40	Below 50	Below 60
f	-3	12	27	57	75	80

14. If the $\mathrm{A} . \mathrm{M}$ of $\mathrm{x}, \mathrm{x}+3, \mathrm{x}+6, \mathrm{x}+9$ and $\mathrm{x}+12$ is 10 then $\mathrm{x}=$ \qquad
15. If 35 is removed from the data $30,34,35,36,37,38,39,40$ then the median increases by \qquad
16. Range of first 10 whole numbers is \qquad
17. Construction of cumulative frequency table is useful in determining the
\qquad
18. Exactly middle value of data is called \qquad
19. In the formula of mode

Mode $==l+\frac{f_{1}-f_{0}}{2 f-f_{0}-f_{2}} \times h, f_{0}$ represents \qquad
20. Median $=l+\frac{\frac{n}{2}-c f}{f} \times n$; ' l ' represents \qquad
21. The term 'ogive' is derived from
A) ogee
B) ogie
C) Ogeve
D) Ogel
22. Range of the data $15,26,39,41,11,18,7,9$ is \qquad []
A) 41
B) 39
C) 32
D) 34
23. The mean of first ' n ' natural number is \qquad
A) $\frac{2 n+1}{2}$
B) $\frac{2 n-1}{2}$
C) $\frac{n+1}{2}$
D) $\frac{n}{2}$
24. Median of first ' n ' natural number is \qquad
A) n
B) $\frac{n}{2}$
C) $\frac{n}{2}+1$
D) $\frac{n+1}{2}$

Key:

1) 42 ;
2) 9; 3) unimodal data;
3) $\frac{n+1}{2}$;
4) 0 ;
5) no mode; 7) 5.6;
6) 18 ;
7) a; 10) 3 ; 11) $\frac{x+y}{2}$; 12) upper boundary;
8) $30-40$; 14) 4 ; 15) 0.5 ;
9) 9 ;
10) Median; 18) median;
11) lower limit of median;
12) A;
13) frequency of preceding of preceding model class;
22)C;
14) C;
15) D.
