Chapter-4

Pair of Linear Equations in Two Variables

Key Points:

- An equation of the form $a x+b y+c=0$, where a, b, c are real numbers $(a \neq 0, b \neq 0)$ is called a linear equation in two variables x and y.

Ex: (i) $4 x-5 y+2=0$
(ii) $3 x-2 y=4$
-The general form for a pair of linear equations in two variables x and y is

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

Where $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$ are all Real Numbers and $a_{1} \neq 0, b_{1} \neq 0, a_{2} \neq 0, b_{2} \neq 0$.

Examples

-Graphical representation of a Pair of Linear Equations in two variables:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

(i) Will represent intersecting lines if
i.e. unique solution. And this type of equations are called consistent pair of linear equations.

Ex: $5 x-2 y=0$

$$
3 x+9 y-20=0
$$

(ii) Will represent overlapping or coincident lines if
i.e. Infinitely many solutions, consistent or dependent pair of linear equations

Ex: $\quad 2 x+3 y-9=0$,

$$
4 x+6 y-20=0
$$

(iii) Will represent parallel lines if
i.e. no solution and called inconsistent pair of linear equations

Ex: $x+2 y-4=0$

$$
2 x+4 y-12=0
$$

(iv) Algebraic methods of solving a pair of linear equations:
(i) Substitution method
(ii) Elimination Method
(iii) Cross multiplication method

System	No of solutions	Nature of lines
Consistent	Unique solution	Intersecting lines
Consistent	Infinite solutions	Coincident lines
Inconsistent		Parallel lines

Short Type Questions

1.The ratio of incomes of two persons is $9: 7$ and the ratio of their expenditures is $4: 3$. If each of them manages to save Rs 2000 per month, find their monthly income?

Sol: Let the monthly income be Rs x

Monthly Expenditure be Rs y

Ratio of incomes of two persons $=9: 7$

Income of first person $=$ Rs 9 x

Income of second person $=$ Rs. 7 x
Expenditure of first person $=$ Rs $4 y$
Expenditure of second person $=$ Rs $3 y$
Each one savings per month $=$ Rs 2000

As per problem
$9 x-4 y=2000 \rightarrow(1)$
$7 x-3 y=2000 \rightarrow(2)$
(1) $\times 3 \Rightarrow 27 x-12 y=6000$
$(2) \times 4 \Rightarrow 28 x-12 y=8000$

$$
\mathrm{x} \quad=+2000
$$

Income of first person $=9 \times 2000=$ Rs. 18000
Income of second person $=7 \times 2000=$ Rs. 14000 .
2.The sum of a two digit number and the number obtained by reversing the digits is $\mathbf{6 6}$. If the digits of the number differ by 2 , find the number how many such numbers are there?

Sol: Let the number in the units place $=\mathrm{x}$

$$
\text { Ten's place }=y
$$

\therefore The number $=10 \mathrm{y}+\mathrm{x}$
On reversing the digits $=10 \mathrm{x}+\mathrm{y}$
According to the problem

$$
\begin{gathered}
(10 y+x)+(10 x+y)=66 \\
x+y=6 \rightarrow(1)
\end{gathered}
$$

Difference of the digits $=2$

$$
\begin{aligned}
& x-y=2 \rightarrow(2) \\
& x+y=6 \\
& x-y=2 \\
& \hline 2 x=8 \\
& x=4
\end{aligned}
$$

Substitute the value of x in eq (1) or (2)

$$
\begin{aligned}
& x-y=2 \\
& 4-y=2 \Rightarrow y=2
\end{aligned}
$$

\therefore The number $=10 \times 4+2=42$
There are only numbers possible ie 42 and 24 .
3.The larger of two complementary angles exceeds the smaller by 18°. Find the angles

Sol: Let the larger complementary angle be x°
The smaller complementary angle be y°
As per problem
$x=y+18$
$x-y=18 \rightarrow(1)$

Sum of the supplementary angles is 90°

$$
\begin{gathered}
x+y=90^{\circ} \rightarrow(2) \\
x-y=18 \\
x+y=90 \\
\hline 2 x=108 \\
x=54
\end{gathered}
$$

Substitute the value of x in (1) or (2)

$$
\begin{aligned}
& x-y=18 \\
& 54-y=18 \Rightarrow y=36^{\circ} .
\end{aligned}
$$

4.Two angles are supplementary The larger angle is 3° less than twice the measure of the smaller angle. Find the measure of each angle.
Sol: Let the larger supplementary angle be x°
Smaller supplementary angle be y°
As per problem

$$
x=2 y-3 \rightarrow(1)
$$

Sum of the supplementary angles is 180°

$$
\begin{aligned}
& x+y=180 \rightarrow(2) \\
& x+y=180 \\
& x-2 y=-3 \\
& +++
\end{aligned}
$$

$$
3 y=183 \Rightarrow y=61
$$

Substitute the value of y in (1) or (2)

$$
\begin{aligned}
& x+y=180 \\
& x+61=180 \Rightarrow x=119^{\circ}
\end{aligned}
$$

\therefore Two angles are $119^{\circ}, 61^{\circ}$.
5.Mary told her daughter seven years ago, I was seven Times as old as you were then also three years from now, I shall be three times as old as you will be find the present age of Mary and her daughter.
Sol: Let Mary's present age be x years and her daughter's age be y years.
Then, seven years ago Mary's age was $x-7$ and
Daughter's age was $y-7$
As per problem

$$
\begin{aligned}
& x-7=7(y-7) \\
& x-7 y+42=0 \rightarrow(1)
\end{aligned}
$$

Three years hence, Mary's age will be $x+3$ and
Daughter's age will be $\mathrm{y}+3$

$$
\begin{aligned}
& x+3=3(y+3) \\
& x-3 y-6=0 \rightarrow(2) \\
& x-7 y=-42 \\
& x-3 y=6 \\
& -+- \\
& \hline-4 y=-48 \Rightarrow y=12
\end{aligned}
$$

Substitute the value of y in (1) or (2)

$$
\begin{aligned}
& x-3 y=6 \\
& x-36=6 \Rightarrow x=42
\end{aligned}
$$

\therefore Mary's present age is 42 years and her daughter's age is 12 years.
6.An Algebra text book has a total of $\mathbf{1 3 8 2}$ pages. It is broken up into two parts the second part of the book has 64 pages more than the first part. How many pages are in each part of the book?
Sol: Let the first part be x pages
The second part be y pages
Total number of pages $=1382 \Rightarrow \mathrm{x}+\mathrm{y}=1382 \rightarrow(1)$
According problem

$$
y=x+64
$$

$$
x-y=-64 \rightarrow(2)
$$

$$
\begin{aligned}
& x+y=1382 \\
& x-y=-64 \\
& \hline 2 x \quad=1318 \\
& x=\frac{1318}{2}=659
\end{aligned}
$$

Substitute the value of x in (1) or (2)

$$
\begin{aligned}
& x-y=-64 \\
& 659-y=-64 \\
& 723=y
\end{aligned}
$$

\therefore Number of pages in each part 659 and 723
7.A chemical has two solutions of hydrochloric acid in stock one is 50% solution and the other is $\mathbf{8 0 \%}$ solution. How much of each should be used to obtain 100 ml of a $\mathbf{6 8 \%}$ solution.

Sol: Let the first solution be x ml
Second solution be y ml
Total solution is 100 ml

$$
\mathrm{x}+\mathrm{y}=100 \mathrm{ml} \rightarrow(1)
$$

According to the problems
50% of solution $+80 \%$ of solution $=68$

$$
\begin{aligned}
& \frac{50}{100} x+\frac{80}{100} y=68 \\
& 5 x+8 y=680 \rightarrow(2) \\
& (1) \times 5 \Rightarrow 5 x+5 y=500 \\
& 5 x+8 y=680 \\
& -\quad-\quad- \\
& \hline+3 y=+180 \\
& y=60
\end{aligned}
$$

substitute the value of y in (1) or (2)

$$
\begin{aligned}
& x+y=100 \\
& x+60=100 \Rightarrow x=40
\end{aligned}
$$

\therefore First and second solutions are 40 ml and 60 ml .

Essay Type Questions

1. A man travels 370 km partly by train and partly by car. If he covers $250 \quad \mathrm{~km} \quad$ by train and the rest by car, It takes him 4 hours. But if he travels $130 \mathbf{~ k m}$ by train and the rest by car, it takes 18 minutes more. Find the speed of the train and that of the car.

Sol: Let the speed of the train be $\mathrm{xkm} / \mathrm{hour}$
Speed of the car be $\mathrm{y} \mathrm{km} / \mathrm{hour}$
We know that time $=\frac{\text { speed }}{\text { distance }}$
Case (1) time spent travelling by train $=\frac{250}{x}$ hours
Time spent travelling by car $=\frac{120}{\mathrm{y}}$ hours
Total time taken $=\frac{250}{\mathrm{x}}+\frac{120}{y}$
But, total time of journey is 4 hours (given)

$$
\begin{aligned}
& \frac{250}{x}+\frac{120}{y}=4 \\
& \frac{125}{x}+\frac{60}{y}=2 \longrightarrow(1)
\end{aligned}
$$

Case(2): Time spent travelling by train $=\frac{130}{x}$ hours
Time spent travelling by car $=\frac{240}{y}$ hours
Total time taken $=\frac{130}{x}+\frac{240}{y}$
Time of journey is 4 hours 18 mts (given)
$=\frac{130}{x}+\frac{240}{y}=4 \frac{18}{60}=4 \frac{3}{10}$ hours
$=\frac{130}{x}+\frac{240}{y}=\frac{43}{10} \longrightarrow(2)$

Let $\frac{1}{x}=a ; \frac{1}{y}=b$
$125 \mathrm{a}+60 \mathrm{~b}=2 \longrightarrow(3)$
$130 \mathrm{a}+240 \mathrm{~b}=\frac{43}{10} \longrightarrow(4)$
(3) $\times 4 \Rightarrow 500 \mathrm{a}+240 \mathrm{~b}=8$

$$
130 a+240 b=\frac{43}{10}
$$

\qquad

$$
370 \mathrm{a} \quad=8-\frac{43}{10}=\frac{37}{10}
$$

$$
a=\frac{37}{10} \times \frac{1}{370}=\frac{1}{100}
$$

Substitute the value of a in (3) or (4)

$$
\begin{aligned}
& 125 \mathrm{a}+60 \mathrm{~b}=2 \\
& 125 \times \frac{1}{100}+60 b=2 \Rightarrow b=\frac{1}{80} \\
& \text { So } a=\frac{1}{100} ; b=\frac{1}{80} \\
& a=\frac{1}{100} \Rightarrow \frac{1}{x}=\frac{1}{100} \Rightarrow x=100 \mathrm{~km} / \mathrm{hour} \\
& b=\frac{1}{80} \Rightarrow \frac{1}{y}=\frac{1}{80} \Rightarrow y=80 \mathrm{~km} / \mathrm{hour}
\end{aligned}
$$

Speed of train was $100 \mathrm{~km} /$ hour and
Speed of car was $80 \mathrm{~km} /$ hour
2. Solve: $\frac{5}{x-1}+\frac{1}{y-2}=2$

$$
\frac{6}{x-1}+\frac{3}{y-2}=1
$$

Sol: $\quad \frac{5}{x-1}+\frac{1}{y-2}=2$

$$
\frac{6}{x-1}+\frac{3}{y-2}=1
$$

Let $\frac{1}{x-1}=a: \frac{1}{y-1}=b$

$$
\begin{aligned}
& 5 a+b=2 \rightarrow(1) \\
& 6 a-3 b=1 \rightarrow(2)
\end{aligned}
$$

(1) $\times 3 \Rightarrow 15 \mathrm{a}+3 \mathrm{~b}=6$

$$
\begin{aligned}
& 6 a-3 b=1 \\
& \hline 21 a \quad=7 \\
& a=\frac{1}{3}
\end{aligned}
$$

Substitute the value of a in (1) or (2)

$$
\begin{aligned}
& 5 \mathrm{a}+\mathrm{b}=2 \\
& 5 \cdot \frac{1}{3}+b=2 \Rightarrow b=\frac{1}{3} \\
& a=\frac{1}{3} \Rightarrow \frac{1}{x-1}=\frac{1}{3} \Rightarrow x-1=3 \Rightarrow x=4 \\
& b=\frac{1}{3} \Rightarrow \frac{1}{y-2}=\frac{1}{3} \Rightarrow y-2=3 \Rightarrow y=5
\end{aligned}
$$

3. $\frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}=2}=2 ; \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1$

Sol: $2\left(\frac{1}{\sqrt{x}}\right)+3\left(\frac{1}{\sqrt{y}}\right)=2$

$$
\begin{aligned}
& 4\left(\frac{1}{\sqrt{x}}\right)-9\left(\frac{1}{\sqrt{y}}\right)=-1 \\
& \text { Let } \frac{1}{\sqrt{x}}=a ; \frac{1}{\sqrt{y}}=b \\
& 2 \mathrm{a}+3 \mathrm{~b}=2 \rightarrow(1) \\
& 4 \mathrm{a}-9 \mathrm{~b}=-1 \rightarrow(2)
\end{aligned}
$$

$$
(1) \times 2 \Rightarrow 4 a+6 b=4
$$

$$
\begin{array}{r}
4 a-9 b=-1 \\
-\quad+ \\
15 b=5
\end{array}
$$

$$
b=\frac{5}{15}=\frac{1}{3}
$$

Substitute the value of b in (1)

$$
\begin{aligned}
& 2 a+3 b=2 \\
& 2 a+3 \cdot \frac{1}{3}=2 \\
& 2 a+1=2 \Rightarrow a=\frac{1}{2} \\
& a=\frac{1}{2} \Rightarrow \frac{1}{\sqrt{x}}=\frac{1}{2} \Rightarrow \sqrt{x}=2 \Rightarrow(\sqrt{x})^{2}=2^{2} \Rightarrow x=4 \\
& b=\frac{1}{3} \Rightarrow \frac{1}{\sqrt{y}}=\frac{1}{3} \Rightarrow \sqrt{y}=3 \Rightarrow(\sqrt{y})^{2}=3^{2} \Rightarrow y=9
\end{aligned}
$$

4. $6 x+3 y=6 x y$

$$
2 x+4 y=5 x y
$$

Sol:

$$
\begin{aligned}
& 6 x+3 y=6 x y \\
& 2 x+4 y=5 x y \\
& \frac{6 x+3 y}{x y}=6 \\
& \frac{6}{y}+\frac{3}{x}=6 \longrightarrow(1)
\end{aligned}
$$

$\frac{2 x+4 y}{x y}=5$
$\frac{2}{y}+\frac{4}{x}=5$
Let $\frac{1}{x}=a ; \frac{1}{y}=b$
$3 a+6 b=6 \rightarrow(3)$

$$
4 a+2 b=5 \rightarrow(4)
$$

$$
\begin{aligned}
3 a+6 b & =6 \\
(4) \times 3 \Rightarrow 12 a+6 y & =15
\end{aligned}
$$

$$
-9 a=-9
$$

$$
\mathrm{a}=1
$$

Substitute the value of a in (3) or (4)

$$
\begin{aligned}
& 3 a+6 b=6 \\
& 3 \times 1+6 b=6 \\
& 6 b=3, b=\frac{1}{2}
\end{aligned}
$$

$$
a=1 \Rightarrow \frac{1}{x}=1 \Rightarrow x=1
$$

$$
b=\frac{1}{2} \Rightarrow \frac{1}{y}=\frac{1}{2} \Rightarrow y=2
$$

5. $\frac{10}{x+y}+\frac{2}{x-y}=4$

$$
\frac{15}{x+y}-\frac{5}{x-y}=-2
$$

Sol:

$$
\frac{10}{x+y}+\frac{2}{x-y}=4
$$

$$
\begin{aligned}
& \frac{15}{x+y}-\frac{5}{x-y}=-2 \\
& \text { Let } \frac{1}{x+y}=a ; \frac{1}{x-y}=b \\
& 10 a+2 b=4 \rightarrow(1) \\
& 15 a-5 b=-2 \rightarrow(2)
\end{aligned}
$$

$$
(1) \times 5 \Rightarrow 50 a+10 b=20
$$

$$
\begin{array}{r}
(2) \times 2 \Rightarrow 30 \mathrm{a}-10 \mathrm{~b}=-4 \\
\hline 80 \mathrm{a}=16 \\
a=\frac{16}{80}=\frac{1}{5}
\end{array}
$$

Substitute the value of a in (1) or (2)

$$
15 a-5 b=-2
$$

15. $\frac{1}{5}-5 b=-2$

$$
\begin{gathered}
3-5 \mathrm{~b}=-2 \Rightarrow-5 \mathrm{~b}=-5 \Rightarrow \mathrm{~b}=1 \\
a=\frac{1}{5} \Rightarrow \frac{1}{x+y}=\frac{1}{5} \Rightarrow x+y=5 \\
b=1 \Rightarrow \frac{1}{x-y}=1 \Rightarrow x-y=1 \\
\begin{array}{c}
\mathrm{x}+\mathrm{y}=5 \quad \rightarrow(3) \\
\frac{\mathrm{x}-\mathrm{y}=1}{2 \mathrm{x}=6}
\end{array}
\end{gathered}
$$

$$
x=3
$$

Substitute the value of x in (3) or (4)

$$
\begin{array}{r}
x+y=5 \\
3+y=5 \\
y=2
\end{array}
$$

6. $\frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4}$

$$
\frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=-\frac{1}{8}
$$

Sol: Let $\quad \frac{1}{3 x+y}=a ; \frac{1}{3 x-y}=b$

$$
a+b=\frac{3}{4}
$$

$$
\frac{a}{2}-\frac{b}{2}=-\frac{1}{8} \Rightarrow a-b=-\frac{1}{4}
$$

$$
\begin{aligned}
& a+b=\frac{3}{4} \quad \rightarrow(1) \\
& a-b=-\frac{1}{4} \rightarrow(2) \\
& 2 a \quad=\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Substitute the value of a in (1) or (2)

$$
a+b=\frac{3}{4}
$$

$$
\frac{1}{4}+b=\frac{3}{4}
$$

$$
b=\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}
$$

$$
a=\frac{1}{4} \Rightarrow \frac{1}{3 x+y}=\frac{1}{4} \Rightarrow 3 x+y=4
$$

$$
b=\frac{1}{2} \Rightarrow \frac{1}{3 x-y}=\frac{1}{2} \Rightarrow 3 x-y=2
$$

$$
3 x+y=4 \quad \rightarrow(3)
$$

$$
3 x-y=2 \quad \rightarrow(4)
$$

$$
6 x=6
$$

$$
x=1
$$

Substitute the value of x in (3) or (4)

$$
\begin{array}{r}
3 x+y=4 \\
3.1+y=4 \\
y=1
\end{array}
$$

7.A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours it can go 40 km upstream and 55 km downstream. Determine the speed of the stream and that of the boat in still water?

Sol: Let the speed of the boat $=x \mathrm{~km} /$ hour
The speed of the stream $=y \mathrm{~km} /$ hour
Relative speed upstream $=(x-y) \mathrm{km} / \mathrm{hour}$
Relative speed downstream $=(x+y) k m /$ hour
Distance travelled to upstream $=30 \mathrm{~km}$
Time taken to up $=\frac{30}{x-y}$ hours
Distance travelled to downstream $=40 \mathrm{~lm}$
Time taken $=\frac{44}{x+y}$ hours
Total time taken $=\frac{30}{x-y}+\frac{44}{x+y}$
Total time taken $=10$ hours (Given)

$$
\frac{30}{x-y}+\frac{44}{x+y}=10 \longrightarrow(1)
$$

Distance travelled to upstream $=40 \mathrm{~km}$
Time taken to up $=\frac{40}{x-y}$ hours

Distance travelled to downstream $=55 \mathrm{~km}$

$$
\text { Time taken }=\frac{55}{x+y} \text { hours }
$$

Total time taken $=13$ hours (Given)

$$
\begin{aligned}
& \frac{40}{x-y}+\frac{55}{x+y}=13 \longrightarrow(2) \\
& \frac{30}{x-y}+\frac{44}{x+y}=10 \\
& \frac{40}{x-y}+\frac{55}{x+y}=13
\end{aligned}
$$

Let $\frac{1}{x-y}=a ; \frac{1}{x+y}=b$
$30 \mathrm{a}+44 \mathrm{~b}=10 \rightarrow(3)$
$40 \mathrm{a}+55 \mathrm{~b}=13 \rightarrow(4)$
$(3) \times 4 \Rightarrow 120 a+176 y=40$
$(4) \times 3 \Rightarrow 120 \mathrm{a}+165 \mathrm{y}=39$

$$
11 \mathrm{~b}=1 \Rightarrow b=\frac{1}{11}
$$

Substitute the value of b in (3) or (4)

$$
\begin{aligned}
& 30 a+44 b=10 \\
& 30 a+44 \cdot \frac{1}{11}=10 \\
& 30 \mathrm{a}=10-4=6 \Rightarrow a=\frac{1}{5} \\
& a=\frac{1}{5} \Rightarrow \frac{1}{x-y}=\frac{1}{5} \Rightarrow x-y=5 \\
& b=\frac{1}{11} \Rightarrow \frac{1}{x+y}=\frac{1}{11} \Rightarrow x+y=11 \\
& x-y=5 \rightarrow(5) \\
& x+y=11 \rightarrow(6) \\
& 2 \mathrm{x}=16 \\
& x=8
\end{aligned}
$$

substitute the value of x in (5) or (6)

$$
\begin{aligned}
& x+y=11 \\
& 8+y=11 \Rightarrow y=3
\end{aligned}
$$

\therefore Speed of the boat $=8 \mathrm{~km} /$ hour
Speed of the stream $=3 \mathrm{~km} /$ hour
8.2 women and 5 men can together finish an embroidery work in 4 days while 3 women and 6 man can finish it in 3 days. Find the time taken by 1 women alone and 1 man alone to finish the work.

Sol: Let the time taken by one women to finish the work $=\mathrm{x}$ days
Work done by one women in one day $=\frac{1}{x}$
Let the time taken by are men to finish the work $=\mathrm{y}$ days
Work done by one man in one day $=\frac{1}{y}$
According to the problem
2 women and 5 men can together finish an embroidery work in 4 days.
Work done by 2 women and 5 man in one day $=\frac{1}{4}$
So work done by 2 women in one day $=2 \times \frac{1}{x}=\frac{2}{x}$
Work done by 5 men in one day $=5 \times \frac{1}{y}=\frac{5}{y}$

$$
\begin{aligned}
& \text { Total work }=\frac{2}{x}+\frac{5}{y} \\
& =\frac{2}{x}+\frac{5}{y}=\frac{1}{4} \longrightarrow(1)
\end{aligned}
$$

Also 3 women and 6 men can finish the work in 3 days
Work done by 3 women and 6 men in one day

$$
\begin{aligned}
& =\frac{3}{x}+\frac{6}{y}=\frac{1}{3} \longrightarrow(2) \\
& \frac{1}{x}=a ; \frac{1}{y}=b \\
& 2 a+5 b=\frac{1}{4} \longrightarrow(2) \\
& 3 a+6 b=\frac{1}{3} \longrightarrow(4)
\end{aligned}
$$

(3) $\times 3 \Rightarrow 6 \mathrm{a}+15 \mathrm{~b}=\frac{3}{4}$
(4) $\times 2 \Rightarrow 6 a+12 b=\frac{2}{3}$

$$
\begin{aligned}
& 3 b=\frac{3}{4}-\frac{2}{3}=\frac{9-8}{12}=\frac{1}{12} \\
& b=\frac{1}{36}
\end{aligned}
$$

Substitute 1 value of b in (3) or (4)

$$
\begin{gathered}
2 \mathrm{a}+5 \mathrm{~b}=\frac{1}{4} \\
2 a+5 \cdot \frac{1}{36}=\frac{1}{4} \\
2 a=\frac{1}{4}-\frac{5}{36}=\frac{9-5}{36}=\frac{4}{36} \\
a=\frac{4}{36} \times \frac{1}{2}=\frac{1}{18} \\
a=\frac{1}{18} \Rightarrow \frac{1}{x}=\frac{1}{18} \Rightarrow x=18 \\
b=\frac{1}{36} \Rightarrow \frac{1}{y}=\frac{1}{36} \Rightarrow y=36
\end{gathered}
$$

Time taken by one women to finish the work = 18days Time taken by one men to finish the work $=36$ days.

Graphical method of finding solution of a pair of linear equations

1.10 students of class - \mathbf{X} took part in a maths quiz. If the number of girls is $\mathbf{4}$ more than number of boys then find the number of boys and the number of girls who took part in the quiz.

Sol: Let the number of boys $=\mathrm{x}$
The number of girls $=y$
Total number of students took part in maths quiz $=10$

$$
x+y=10 \rightarrow(1)
$$

if the number of girls is 4 more than no.of boys $y=x+4$

$$
x-y=-4 \rightarrow(1)
$$

$x+y=10$
$y=10-x$

x	$y=10-x$	(x, y)
0	$y=10$	$(0,10)$
2	$y=8$	$(2,8)$
4	$y=6$	$(4,6)$
6	$y=4$	$(6,4)$

$x-y=-4$
$y=x+4$

x	y	(x, y)
0	4	$(0,4)$
2	6	$(2,6)$
4	8	$(4,8)$
6	10	$(6,10)$

\therefore Number of boys $=3$
Number of girls $=7$

2.5 pencils and 7 pens together cost Rs 50 . Where as 7 pencils and 5 pen together cost Rs. 46. Find the cost of one pencils and one pen?

Sol: Cost of one pencil is Rs x
Cost of one pen is Rs y
5 pencils and 7 pens together cost $=$ Rs50
$5 x+7 y=50 \rightarrow(1)$
7 pencils and 5 pens together cost $=$ Rs. 46
$7 \mathrm{x}+5 \mathrm{y}=\operatorname{Rs} 46 \rightarrow(2)$
$5 x+7 y=50$
$y=\frac{50-5 x}{7}$

x	y	(x, y)
0	$\frac{50}{7}=7.1$	$(0,7.1)$
1	$\frac{45}{7}=6.5$	$(1,6.5)$
2	$\frac{40}{7}=5.7$	$(2,5.7)$

$7 x+5 y=46$
$y=\frac{46-7 x}{5}$

x	y	(x, y)
0	9.2	$(0,9.2)$
1	7.8	$(1,7.8)$
2	6.2	$(2,6.2)$

Cost of a pencil $=$ Rs 3.
Cost of a pen $=$ Rs 5.
(2)

3.The perimeter of a rectangular plot is $\mathbf{3 2 m}$. If the length is increased by $\mathbf{2 m}$ and the breadth is decreased by 1 m . The area of the plot remains the same. Find the length and breadth of the plot.

Sol: Let the length and breadth of Rectangular plot is 1 and b m .
Area of rectangle $=\mathrm{lb}$ units
Perimeter $=2(1+b)=32$
When length is increased by 2 m and the breadth is decreased by 1 m . Then

$$
\text { area }=(l+2)(b-1)
$$

Since there is no change in the area
$(l+2)(b-1)=\mathrm{lb}$
$l-2 \mathrm{~b}+2=0 \rightarrow(2)$
$l+\mathrm{b}-16=0$

l	b	(l, b)
6	10	$(6,10)$
8	8	$(8,8)$
10	6	$(10,6)$
12	4	$(12,4)$
14	2	$(14,2)$

$l-2 \mathrm{~b}+2=0$

1	b	$(1, \mathrm{~b})$
6	4	$(6,4)$
8	5	$(8,5)$
10	6	$(10,6)$
12	7	$(12,7)$
14	8	$(14,8)$

www.sakshieducation.com

Fill in the blanks:

1) An equation of the form $a x+b y+c=0$ where a, b, c are real numbers and where atleast one of a or b is not zero is called \qquad equation.
2) The general form of linear equation is \qquad
3) A linear equation in two variables has \qquad solutions.
4) The graph of a linear equation in two variables is a \qquad
5) Two lines are drawn in the same plane, then the lines may intersect at point.
6) The graph of a pair of linear equations in two variables then the lines intersect at a one point gives the \qquad solution of the equations.
7) If the lines coincide then they are \qquad solutions.
8) If the lines are parallel then the pair of equations has solutions.
9) $3 x+2 y=5,2 x-3 y=7$ then the pair of linear equations is \qquad
10) $2 x-3 y=8,4 x-6 y=9$ then the pair of linear equations is \qquad
11) Sum of the complimentary angles is
12) Sum of the supplementary angles is \qquad
13) Time $=$ \qquad
14) The value of x in the equation $2 x-(4-x)=5-x$ is \qquad
15) The equation $x-4 y=5$ has \qquad solutions.
16) The sum of two numbers is 80 and their ratio is $3: 5$ then the first number is
17) The value of x in the equation $5 x-8=2 x-2$ is \qquad
18) For what value of P the following pair of equations has unique solution $2 x+p y=-5,3 x+3 y=-6$ is \qquad
19) A system of two linear equations in two variables is said to be constant if it has at least \qquad solutions.
20) No of solutions for the equation $3(7-3 y)+4 y=16$ is \qquad
21) A system of linear equations in two variables is said to be inconsistent if it has solutions.
22) When two lines in the same plane may intersect is \qquad
23) $3 x+2 y-80=0,4 x+3 y-110=0$ solution for this linear equation is \qquad
24) $X+2 y-30=0,2 x+4 y-66=0$ these lines represent \qquad
25) $4 x+9 y-13=0$ no of unknowns in this linear equation is \qquad
26) In the equation $4 x+3 y-4=0$ then $a=$ \qquad , $\mathrm{c}=$. \qquad
27) Sum of two numbers is 44 then the equation form is \qquad
28) $4 x-2 y=0,2 x-3 y=0$ then $a 1=$ \qquad $\mathrm{c} 1=$ \qquad
29) The difference of two numbers is 48 then the equation is \qquad
30) A \qquad in two variables can be solved using various methods.

ANSWERS

