Chapter - 10

Mensuration

Cuboid:

l: length, b :breadth ,h:height
Lateral Surface Area(LSA) or Curved Surface Area (CSA)

$$
=2 h(l+b)
$$

Total Surface Area $(T S A)=2(\mathrm{lb}+\mathrm{bh}+\mathrm{hl})$

Volume=lbh

Cube:
a: Side of the cube

Lateral surface $\operatorname{Area}($ LSA $)=\mathbf{4} \mathbf{a}^{\mathbf{2}}$

Total surface $\operatorname{Area}(T S A)=\mathbf{6} \mathbf{a}^{\mathbf{2}}$
Volume $=\mathbf{a}^{\mathbf{3}}$

Right Prism:

$\mathbf{L S A}=$ perimeter of base \times height
$\mathrm{TSA}=\mathrm{LSA}+2$ (area of the end surface)
Volume $=$ Area of base \times height

Regular Circular Cylinder

r : radius of the base

h : height

$\mathbf{L S R}=\mathbf{2} \boldsymbol{\pi r h}$
$\mathrm{TSA}=\mathbf{2} \boldsymbol{\pi} \mathrm{r}(\mathrm{h}+\mathrm{r})$
Volume $=\pi r^{2} h$
Right Pyramid
$\mathbf{L S A}=\frac{1}{2}($ Perimeter of base $) \times$ slant height
$\mathrm{TSA}=\mathrm{LSA}+$ area of the end surface

Volume $=\frac{1}{3}$ Area of base \times height.

Right circular cone:

r : radius of the base, $h:$ height ; l: slant height
$\mathrm{LSA}=\pi \mathrm{rl}$
$\mathrm{TSA}=\pi \mathrm{r}(1+\mathrm{r})$
Volume $\frac{1}{3} \pi r^{2} h$
Slant height $l=\sqrt{h^{2}+r^{2}}$

Sphere:

r : radius
$\mathrm{LSA}=4 \pi \mathrm{r}^{2}$
$\mathrm{TSA}=4 \pi \mathrm{r}^{2}$
Volume $\frac{4}{3} \pi r^{3}$

Hemisphere:

r : radius
$\mathrm{LSA}=2 \pi \mathrm{r}^{2}$
$\mathrm{TSA}=3 \pi \mathrm{r}^{2}$
Volume $=\frac{2}{3} \pi r^{3}$

- If A sphere, a cylinder and a cone are of the same radius and same height them the ratio of their curved surface areas are $4: 4: \sqrt{ } 5$
- If A cylinder and cone have bases of equal radii and are of equal heights, then their volumes are in the ratio of $3: 1$
- If A sphere is inscribed in a cylinder then the surface of the sphere equal to the curved surface of the cylinder

1 Mark Problems

1. Write the formula to find the volume of cylinder.
A. $\pi r^{2} h$

Where r : radius of the base
h : height.
2. Find the ratio between lateral surface area and total surface area of cube?
A. lateral surface area of cube $=4 \mathrm{a}^{2}$

Total surface area of cube $=6 a^{2}$

$$
\begin{aligned}
& 4 a^{2}: 6 a^{2} \\
& 4: 6 \\
& 2: 3
\end{aligned}
$$

3. The diagonal of a cube is $6 \sqrt{3} \mathrm{~cm}$ then find its lateral surface area?
A. The diagonal of a cube is $=\sqrt{ } 3 \mathrm{a}$

$$
\begin{aligned}
& 6 \sqrt{ } 3=\sqrt{ } 3 a \\
& 6=a
\end{aligned}
$$

Lateral surface area of cube $=4 \mathrm{a}^{2}$

$$
\begin{aligned}
& =4 \times 6^{2} \\
& =4 \times 6 \times 6 \\
& =4 \times 36 \\
& =144 \mathrm{sq} . \mathrm{cm} .
\end{aligned}
$$

4. What is the largest chord of the circle?
A. The 'Diameter' is the largest chord of the circle.
5. Find the volume of a sphere of radius 2.1 cm .
A. Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{22}{7} \times(2.1)^{3} \\
& =\frac{4}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 2.1 \\
& =38.808 \mathrm{~cm}^{3}
\end{aligned}
$$

6. Find the total surface area of a hemisphere of diameter 7 cm .
A. $r=\frac{7}{2} c m$

$$
\begin{aligned}
\text { T.S.A } & =3 \pi \mathrm{r}^{2} \\
& =3 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \\
& =\frac{231}{2} \\
& =115.5 \mathrm{~cm}^{2} .
\end{aligned}
$$

7. What is the lateral surface area of cube.
A. $4 \mathrm{a}^{2}$, where a : side of the cube.
8. Find the total surface area of regular circular cylinder.
A. $2 \pi r(r+h)$

Where, r : radius of the base
h : height.
9. Find the circumference of a circle of radius 8.4 cm
A. $\mathrm{r}=8.4 \mathrm{~cm}$

Circumference, $\mathrm{c}=2 \pi \mathrm{r}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 8.4 \mathrm{~cm} \\
& =52.8 \mathrm{~cm}
\end{aligned}
$$

10. In a cuboid $l=5 \mathrm{~cm}, \mathrm{~b}=3 \mathrm{~cm}, \mathrm{~h}=2 \mathrm{~cm}$. Find its volume?
A. volume $\mathrm{v}=\mathrm{lbh}$

$$
\begin{aligned}
& =5 \times 3 \times 2 \\
& =15 \times 2 \\
& =30 \mathrm{~cm}^{3}
\end{aligned}
$$

11. Find the surface area of sphere of radius 2.1 cm .
A. Radius of sphere $(\mathrm{r})=2.1 \mathrm{~cm}$

Surface area of sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& =4 \times \frac{22}{7} \times(2.1)^{2} \\
& =4 \times \frac{22}{7} \times \frac{21}{10} \times \frac{21}{10} \\
& =\frac{1386}{25} \\
& =55.44 \mathrm{~cm}^{2}
\end{aligned}
$$

12. In the figure find r.

A. $\begin{aligned} & 10^{2}=8^{2}+r^{2} \\ & 100=64+r^{2} \\ & r^{2}=100-64\end{aligned}$

$$
\begin{aligned}
& r^{2}=36 \\
& r=\sqrt{ } 36 \\
& r=6 \\
& \therefore r=6 \mathrm{~cm}
\end{aligned}
$$

13. In a hemisphere $r=8 \mathrm{~cm}$, find CSA.
A. $\mathrm{r}=8 \mathrm{~cm}$

$$
\begin{aligned}
\mathrm{CSA}= & 2 \pi \mathrm{r}^{2} \\
& =2 \times \frac{22}{7} \times 8 \times 8 \mathrm{~cm}^{2} \\
& =\frac{2816}{7} \mathrm{~cm}^{2}
\end{aligned}
$$

14. The area of the base of a cylinder is $\mathbf{6 1 6} \mathbf{~ s q . c m}$. Then find its radius
A. The area of the base of a cylinder $=616$

We know that area base cylinder $=\pi r^{2}$.

$$
\begin{aligned}
& \therefore \pi r^{2}=616 \\
& \frac{22}{7} \times r^{2}=616 \\
& r^{2}=616 \times \frac{7}{22} \\
& r^{2}=196 \\
& r=\sqrt{196} \\
& r=14 \mathrm{~cm}
\end{aligned}
$$

15. Find T.S.A of a solid hemisphere whose radius is 7 cm .
A. Total surface area of hemisphere $=3 \pi r^{2}$

$$
\begin{aligned}
& =3 \times \frac{22}{7} \times 7 \times 7 \\
& =21 \times 22
\end{aligned}
$$

$$
=462 \mathrm{sqcm} .
$$

16. The diagonal of square is $7 \sqrt{2} \mathrm{~cm}$. Then find its area.
A. \quad The diagonal of a square $=\sqrt{ } 2 . a, a$ is the side of a square

$$
\begin{aligned}
& \sqrt{ } 2 . \mathrm{a}=7 \sqrt{ } 2 \\
& a=\frac{7 \sqrt{2}}{\sqrt{2}} \\
& \mathrm{~A}=7
\end{aligned}
$$

Area of square $=\mathrm{a} \times \mathrm{a}$

$$
\begin{aligned}
& =7 \times 7 \\
& =49 \mathrm{~cm}^{2} .
\end{aligned}
$$

17.If the ratio of radii of two spheres is $2: 3$. Then find the ratio of their surface areas.
A. Lateral surface area of sphere $=4 \pi r^{2}$

$$
\text { Ratio of radii of two spheres }=2: 3 \Rightarrow 2 x: 3 x
$$

$$
\begin{aligned}
& 4 \pi(2 x)^{2}: 4 \pi(3 x)^{2} \\
& 4 \pi 4 x^{2}: 4 \pi 9 x^{2} \\
& 4: 9
\end{aligned}
$$

The ratio of surface areas are $4: 9$.
18. Find the surface area of hemispherical bowl whose radius is 21 cm .
A. surface area of Hemisphere $=2 \pi r^{2}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 21 \times 21 \\
& =44 \times 63 \\
& =2772 \mathrm{~cm}^{2} .
\end{aligned}
$$

19. Find the T.S.A. of cube whose edge is 1 cm .
A. T.S.A of cube $=6 a^{2}=6(1)^{2}$

$$
=6 \mathrm{~cm}^{3} .
$$

2 Marks Problems

1.The radius of a conical tent is $\mathbf{7}$ meters and its height is $\mathbf{1 0}$ meters. Calculate the length of canvas used in making the tent if width of canvas is $\mathbf{2 m}$.
A. If the the radius of conical tent is given $(r)=7$ metes

$$
\text { Height }(h)=10 \mathrm{~m}
$$

\therefore So, the slant height of the cone $\mathrm{l}^{2}=\mathrm{r}^{2}+\mathrm{h}^{2} \Rightarrow \mathrm{l}=$

$$
\begin{aligned}
& =\sqrt{r^{2}+h^{2}} \\
& =\sqrt{49+100} \\
& =\sqrt{149}=12.2 \mathrm{~m}
\end{aligned}
$$

Now, surface area of the tent $=\pi \mathrm{rl}$

$$
\begin{aligned}
& =\frac{22}{7} \times 7 \times 12.2 \mathrm{~m}^{2} \\
& =268.4 \mathrm{~m}^{2} .
\end{aligned}
$$

Area of canvas used $=268.4 \mathrm{~m}^{2}$
It is given the width of the canvas $=2 \mathrm{~m}$.
Length of canvas used $=\frac{\text { Area }}{\text { width }}=\frac{268.4}{2}=134.2 \mathrm{~cm}$.
2.An oil drum is in the shape of a cylinder having the following dimensions: diameter is 2 m and height is 7 meters. The painter charges Rs. 3 per \mathbf{m}^{2} to paint the drum. Find the total charges to be paid to the printer for 10 drums?
A. It is given that diameter of the (oil drum) cylinder $=2 \mathrm{~m}$

Radius of cylinder $=\frac{d}{2}=\frac{2}{2}=1 \mathrm{~m}$.
Total surface area of a cylindrical drum $=2 \times \pi r(r+h)$

$$
=2 \times \frac{22}{7} \times 1(1+7)
$$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 8 \\
& \frac{352}{7} m^{2} \\
& =50.28 \mathrm{~m}^{2}
\end{aligned}
$$

So, the total surface area of a drum $=50.28 \mathrm{~m}^{2}$
Painting charge per $1 \mathrm{~m}^{2}=$ Rs. 3
Cost of painting of 10 drums $=50.28 \times 3 \times 10$

$$
\text { = Rs. } 1508.40
$$

3.A company wanted to manufacture 1000 hemispherical basins from a thin steel sheet. If the radius of hemispherical basin is 21 cm , find the required area of steel sheet to manufacture the above hemispherical basins?
A. Radius of the hemispherical basin $(\mathrm{r})=21 \mathrm{~cm}$

Surface area of a hemispherical basin $=2 \pi \mathrm{r}^{2}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 21 \times 21 \\
& =2772 \mathrm{~cm}^{2}
\end{aligned}
$$

So, surface area of a hemispherical basin $=2772 \mathrm{~cm}^{2}$
Hence, the steel sheet required for one basin $=2772 \mathrm{~cm}^{2}$
Total area of steel sheet required for 1000

$$
\begin{aligned}
\text { basins } & =2772 \times 1000 \\
& =2772000 \mathrm{~cm}^{2} \\
& =277.2 \mathrm{~m}^{2} .
\end{aligned}
$$

4. Find the volume and surface area of a sphere of radius 2.1 cm .
A. Radius of sphere $(\mathrm{r})=2.1 \mathrm{~cm}$

Surface area of sphere $=4 \pi r^{2}$

$$
\begin{aligned}
& =4 \times \frac{22}{7} \times(2.1)^{2} \\
& =4 \times \frac{22}{7} \times \frac{21}{10} \times \frac{21}{10} \\
& =\frac{1386}{25} \\
& =55.44 \mathrm{~cm}^{2}
\end{aligned}
$$

Volume of sphere $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{22}{7} \times(2.1)^{3} \\
& =\frac{4}{3} \times \frac{22}{7} \times 2.1 \times 2.1 \times 2.1 \\
& =38.808 \mathrm{~cm}^{3}
\end{aligned}
$$

5. Find the volume and the total surface area of a hemisphere of radius 3.5 cm .
A. Radius of sphere (r) is $3.5 \mathrm{~cm}=\frac{7}{2} \mathrm{~cm}$

Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{2}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2} \\
& =\frac{539}{6} \\
& =89.83 \mathrm{~cm}^{3}
\end{aligned}
$$

Total surface area $=3 \pi r^{2}$

$$
\begin{aligned}
& =3 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \\
& =\frac{231}{2} \\
& =115.5 \mathrm{~cm}^{2}
\end{aligned}
$$

6.The lateral surface area of a cylinder is equal to the curved surface area of a cone. If the radius be the same, find the ratio of the height of the cylinder and slant height of the cone.
A. Given, L.S.A of cylinder = C.S.A of the cone.

The dimensions are:

Cylinder

cone

Radius $=\mathrm{r}$

$$
\text { Radius }=\mathrm{r}
$$

Height $=\mathrm{h}$
slant height $=1$
L.S.A $=2 \pi \mathrm{rh}$
C.S.A $=\pi \mathrm{rl}$

If radius is same,

$$
\begin{aligned}
& 2 \pi \mathrm{rh}=\pi \mathrm{rl} \\
& \Rightarrow \frac{h}{l}=\frac{\pi r}{2 \pi r}=\frac{1}{2} \\
& \Rightarrow \mathrm{~h}: 1=1: 2
\end{aligned}
$$

\therefore The ratio of height of cylinder and height of cone is $1: 2$.
7.A cylinder and cone have bases of equal radii and are of equal height. Show that their volumes are in the ratio of $3: 1$.

A. Given dimensions are:

Cone

Radius $=\mathrm{r}$
Height $=\mathrm{h}$
Volume (v) $=\frac{1}{3} \pi r^{2} h \quad$ Volume (v) $=\pi r^{2} \mathrm{~h}$

$$
\begin{aligned}
\text { Ratio of volumes } & =\pi r^{2} h: \frac{1}{3} \pi r^{2} h \\
& =1: \frac{1}{3} \\
& =3: 1
\end{aligned}
$$

Hence, their volumes are in the ratio $=3: 1$.
8.A solid iron rod has a cylindrical shape, its height is 11 cm . and base diameter is 7 cm . Then find the total volume of $\mathbf{5 0}$ rods.
A.

Diameter of the cylinder $(\mathrm{d})=7 \mathrm{~cm}$
Radius of the base (r) $=\frac{7}{2}=3.5 \mathrm{~cm}$

Height of the cylinder $(\mathrm{h})=11 \mathrm{~cm}$
Volume of the cylinder $v=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 3.5 \times 3.5 \times 11 \\
& =423.5 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Total volume of 50 rods

$$
\begin{aligned}
& =50 \times 423.5 \mathrm{~cm} 3 \\
& =21175 \mathrm{~cm}^{3} .
\end{aligned}
$$

9. The curved surface area of a cone is $4070 \mathrm{~cm}^{2}$ and its diameter is 70 cm . What is slant height?
A. The curved surface area of a cone $=4070 \mathrm{~cm}^{2}$

$$
\text { Its diameter }(\mathrm{d})=70 \mathrm{~cm}
$$

$$
\text { Radius (r) }=\frac{d}{2}=\frac{70}{2}
$$

$$
=35 \mathrm{~cm}
$$

Now $\pi \mathrm{rl}=4070 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 35 \times l=4070 \mathrm{~cm}^{2} \\
& l=4070 \times \frac{7}{22} \times \frac{1}{35} \\
& =37 \mathrm{~cm}
\end{aligned}
$$

\therefore The slant height $(1)=37 \mathrm{~cm}$.
10.Two cubes each of volume $64 \mathrm{~cm}^{3}$ are joined end to end together. Find the surface area of the resulting cuboid.
A. volume of cube $(\mathrm{v})=64 \mathrm{~cm}^{3}$

$$
S^{3}=64 \mathrm{~cm}^{3}=(4 \mathrm{~cm})^{3}
$$

$\Rightarrow \mathrm{S}=4 \mathrm{~cm}$
Length of the cuboid $=4 \mathrm{~cm}+4 \mathrm{~cm}$

$$
=8 \mathrm{~cm}
$$

Surface area of the cuboid

$$
\begin{aligned}
& =2(\mathrm{lb}+\mathrm{lh}+\mathrm{bh}) \\
& =2[8 \times 4+8 \times 4+4 \times 4] \mathrm{cm}^{2} \\
& =2[32+32+16] \mathrm{cm}^{2} \\
& =160 \mathrm{~cm}^{2}
\end{aligned}
$$

12.A hemisphere is cut out from one face of a cubical wooden block such that the diameter of the hemisphere is equal to the length of the cube. Determine the surface area of the remaining solid.
A. Let the length of the edge of the cube $=$ a units
T.S.A of the given solid $d=5 \times$ Area of each surface + Area of hemisphere

Square surface:

Side $=$ a units
Area $=a^{2}$ sq units

Hemisphere:

Diameter $=\mathrm{a}$ units

$$
\text { Radius }=\frac{a}{2}
$$

C.S.A $=2 \pi \mathrm{r}^{2}$

$$
\begin{aligned}
& =2 \pi \frac{a^{2}}{4} \\
& =\frac{\pi a^{2}}{2} \text { sq.units }
\end{aligned}
$$

Total surface area $=5 a^{2}+\frac{\pi a^{2}}{2}$

$$
=a^{2}\left[5+\frac{\pi}{2}\right] \text { sq.units. }
$$

13.Find the volume of the largest right circular cone that can be cut out of a cube whose edge is 7 cm .
A.Radius of the cone with the largest volume that can
be cut from a cube of edge $7 \mathrm{~cm}=\frac{7}{2} \mathrm{~cm}$

Height of the cone $=$ edge of the cube $=7 \mathrm{~cm}$
\therefore Volume of the cone $v=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 7$

$$
=89.83 \mathrm{~cm}^{3}
$$

14. A cone of height 24 cm and radius of base 6 cm is made up of modeling child reshapes it in the form of a sphere. Find the radius of the sphere.
A. volume of cone $=\frac{1}{3} \times \pi \times 6 \times 6 \times 24 \mathrm{~cm}^{3}$

If r is the radius of the sphere, then its volume is $\frac{4}{3} \pi r^{3}$
Since the volume of clay is in the form of the same, we have

$$
\begin{aligned}
& \frac{4}{3} \pi r^{3}=\frac{1}{3} \pi \times 6 \times 6 \times 24 \\
& r^{3}=\frac{6 \times 6 \times 24}{4} \\
& r^{3}=6 \times 6 \times 6 \\
& r^{3}=6^{3} \\
& r=6 \mathrm{~cm} .
\end{aligned}
$$

\therefore The radius of the sphere is 6 cm .
15.A hemispherical bowl of internal radius 15 cm . contains a liquid. The liquid is to be filled into cylindrical bottles of diameter 5 cm and height $\quad 6 \mathrm{~cm}$. How many bottles are necessary to empty the bowl?
A. Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

Internal radius of hemisphere $(\mathrm{r})=15 \mathrm{~cm}$
\therefore Volume liquid contained in hemisphere bowl $=\frac{2}{3} \times \pi \times(15)^{3} \mathrm{~cm}^{3}$

$$
=2250 \pi \mathrm{~cm}^{3}
$$

This liquid is to be filled in cylinder bottles and the height of each bottle (h) $=6 \mathrm{~cm}$ Radius of cylindrical bottle $(\mathrm{R})=\frac{5}{2} \mathrm{~cm}$
\therefore Volume of 1 cylindrical bottle $=\pi \mathrm{R}^{2} h$

$$
\begin{aligned}
& =\pi \times\left(\frac{5}{2}\right)^{2} \times 6 \\
& =\pi \times \frac{25}{4} \times 6 \mathrm{~cm}^{3} \\
& =\frac{75}{2} \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Number of cylindrical bottles required $=\frac{\text { volume of hemispherical bowl }}{\text { volume of 1 cylindrical bottle }}$

$$
\begin{aligned}
& =\frac{2250 \pi}{\frac{75}{2} \pi} \\
& =\frac{2 \times 2250}{75} \\
& =60 .
\end{aligned}
$$

16. A metallic sphere of radius 4.2 cm is melted and recast into the shape of cylinder of radius 6 cm . Find the height of the cylinder.
A. Let the height, of the cylinder $=\mathrm{h} \mathrm{cm}$

Volume of cylinder $=$ volume of sphere

$$
\begin{aligned}
=\pi \times 6^{2} \times h=\frac{4}{3} \times \pi(4.2)^{3} \Rightarrow h & =\frac{4}{3} \times \frac{\pi \times 4.2 \times 4.2 \times 4.2}{\pi \times 6 \times 6} \\
\mathrm{~h} & =4 \times 0.7 \times 0.7 \times 1.4 \\
\mathrm{~h} & =2.744 \mathrm{~cm}
\end{aligned}
$$

17. Find the area of required cloth to cover the heap of grain in conical shape whose diameter is 8 cm and slant height of 3 m .
A. \quad diameter $(\mathrm{d})=8 \mathrm{~m}$

Radius (r) $=\frac{d}{2}=\frac{8}{2}=4$
Slant height $(1)=3$

Surface area of cone $=\pi r l$

$$
\begin{aligned}
& =\frac{22}{7} \times 4 \times 3 \\
& =\frac{22 \times 12}{7}=\frac{264}{7} \\
& =37.71
\end{aligned}
$$

Area of the cloth to cover the heap of the grain $=37.71$
18. If the total surface area of a cube is $\mathbf{6 0 0} \mathrm{sq} . \mathrm{cm}$. Then find its diagonal.
A. Total surface area $=61^{2}$

$$
\begin{aligned}
& 61^{2}=600 \\
& l^{2}=\frac{600}{6} \\
& 1=\sqrt{ } 100 \\
& 1=10
\end{aligned}
$$

Diagonal of cube $=\sqrt{ } 31$

$$
=\sqrt{3} \times 10
$$

Diagonal $=10 \sqrt{3} \mathrm{~cm}$
19. The diagonal of a cube is $6 \sqrt{ } 3 \mathrm{~cm}$. Then find its volume.
A. Diagonal of a cube $=\sqrt{ } 31$

$$
\begin{aligned}
& \sqrt{3} 1=6 \sqrt{ } 3 \\
& l=\frac{6 \sqrt{3}}{\sqrt{3}}=6
\end{aligned}
$$

Volume of cube $=1^{3}$

$$
=6 \times 6 \times 6
$$

Volume $=216 \mathrm{~cm}^{3}$.

Extra Problems

1.A sphere, a cylinder and a cone are of the same radius and same height.

Find the ratio of their curved surface areas?
A. Let r be the common radius of a sphere, a cone and a cylinder.

Height of sphere $=$ its diameter $=2 r$
Then, the height of the cone $=$ height of cylinder $=$ height of sphere $=2 r$

Let 1 be the slant height of cone $=\sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
& =\sqrt{r^{2}+(2 r)^{2}} \\
& =\sqrt{5} r
\end{aligned}
$$

$\because S_{1}=$ curved surface area of sphere $=4 \pi r^{2}$
$S_{2}=$ curved surface area of cylinder $=2 \pi r h=2 \pi r \times 2 r$

$$
=4 \pi r^{2}
$$

$\mathrm{S}_{3}=$ curved surface area of cone $=\pi \mathrm{rl}$

$$
=\pi r \times \sqrt{ } 5 r
$$

www.sakshieducation.com

$$
=\sqrt{ } 5 \pi r^{2}
$$

Ratio of curved surface area as

$$
\begin{aligned}
\therefore S_{1}: S_{2}: S_{3} & =4 \pi r^{2}: 4 \pi r^{2}: \sqrt{ } 5 \pi r^{2} \\
& =4: 4: \sqrt{ } 5 .
\end{aligned}
$$

2. A right circular cylinder has base radius 14 cm and height 21 cm . Find
(i) Area of base or area of each end
(ii) Curved surface area
(iii) Total surface area
(iv) Volume of the right circular cylinder
A. Radius of the cylinder $(\mathrm{r})=14 \mathrm{~cm}$

Height of the cylinder $(\mathrm{h})=21 \mathrm{~cm}$
(i) Area of base (area of each end) $\pi r^{2}=\frac{22}{7} \times(14)^{2}$

$$
\begin{aligned}
& =\frac{22}{7} \times 196 \\
& =616 \mathrm{~cm}^{2}
\end{aligned}
$$

(ii) curved surface area $=2 \pi \mathrm{rh}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 14 \times 21 \\
& =1848 \mathrm{~cm}^{2}
\end{aligned}
$$

(iii) Total surface area $=2 \times$ area of the base + curved surface area

$$
\begin{aligned}
& =2 \times 616+1848 \\
& =3080 \mathrm{~cm}^{2}
\end{aligned}
$$

(iv) volume of cylinder $=\pi r^{2} h=$ area of the base \times height

$$
\begin{aligned}
& =616 \times 21 \\
& =12936 \mathrm{~cm}^{3} .
\end{aligned}
$$

3.A joker's cap is in the form of right circular cone whose base radius is $\quad 7 \mathrm{~cm}$
and height is 24 cm . Find the area of the sheet required to make 10 such caps.
A. Radius of the base $(\mathrm{r})=7 \mathrm{~cm}$

Height of the cone $(\mathrm{h})=24 \mathrm{~cm}$
\therefore Slant height $(\mathrm{l})=\sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
& =\sqrt{7^{2}+24^{2}} \\
& =\sqrt{49+576} \\
& =\sqrt{625} \\
& =25 \mathrm{~cm}
\end{aligned}
$$

Thus, lateral surface area of the joker cap $=\pi \mathrm{rl}$

$$
\begin{aligned}
& =\frac{22}{7} \times 7 \times 25 \\
& =550 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Total area of the sheet required to make 10 such caps

$$
\begin{aligned}
& =10 \times 550 \mathrm{~cm}^{2} \\
& =5500 \mathrm{~cm}^{2} .
\end{aligned}
$$

4. A heap of rice is in the form of a cone of diameter 12 m and height 8 m . Find its volume? How much canvas cloth is required to cover the heap?
A. Diameter of the conic heap of rice $=12 \mathrm{~m}$
\therefore Its radius (r) $=\frac{12}{2} m=6 m$
Its volume (v) $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times 3.14 \times 6^{2} \times 8 \\
& =301.44 \mathrm{~m}^{3}
\end{aligned}
$$

\therefore Volume $=301.44 \mathrm{~m}^{3}$.
The lateral height $(\mathrm{l})=\sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
& =\sqrt{6^{2}+8^{2}} \\
& =\sqrt{36+64} \\
& =\sqrt{ } 100 \\
& =10 \mathrm{~m}
\end{aligned}
$$

Required canvas cloth to cover the heap = curved surface area of heap

$$
\begin{aligned}
& =\pi r \mathrm{l}=3.14 \times 6 \times 10 \mathrm{~m}^{2} \\
& =188.4 \mathrm{~m}^{2}
\end{aligned}
$$

5.A toy is in the form of a cone mounted on a hemisphere. The diameter of the base and the height of the cone are 6 cm and 4 cm respectively. Determine the surface area of the toy.
A. Diameter of the cone $(\mathrm{d})=6 \mathrm{~cm}$

Radius of the cone (r) $=\frac{d}{2}=\frac{6}{2}=3 \mathrm{~cm}$
Height of the cone $(\mathrm{h})=4 \mathrm{~cm}$

$$
\begin{aligned}
\text { Slant height } & (1)=\sqrt{r^{2}+h^{2}} \\
= & \sqrt{3^{2}+4^{2}} \\
= & \sqrt{9+16} \\
= & \sqrt{25} \\
= & 5 \mathrm{~cm}
\end{aligned}
$$

\therefore Surface area of cone $=\pi \mathrm{rl}$

$$
\begin{aligned}
& =3.14 \times 3 \times 5 \\
& =47.1 \mathrm{~cm}^{2}
\end{aligned}
$$

Surface area of hemisphere $=2 \pi r^{2}$

$$
\begin{aligned}
& =2 \times 3.14 \times 3 \times 3 \\
& =56.52 \mathrm{~cm}^{2}
\end{aligned}
$$

Thus, total surface area of the toy

$$
\begin{aligned}
& =\text { SA of cone }+ \text { SA of hemisphere } \\
& =47.1 \mathrm{~cm}^{2}+56.52 \mathrm{~cm}^{2} \\
& =103.62 \mathrm{~cm}^{2}
\end{aligned}
$$

6. A solid is in the form of a right circular cylinder with a hemisphere at one end and a cone at the other end. The radius of the common base is 8 cm and the heights of the cylindrical and conical portions are 10 cm and 6 cm respectively. Find the total surface area of the solid.
A. Radius of the hemisphere $(\mathrm{r})=8 \mathrm{~cm}$

Surface area of hemisphere $=2 \pi r^{2}$

$$
\begin{aligned}
& =2 \times 3.14 \times 8 \times 8 \\
& =401.92 \mathrm{~cm}^{2}
\end{aligned}
$$

Height of the cylinder $(\mathrm{h})=10 \mathrm{~cm}$
Surface area of cylinder $=2 \pi$ rh

$$
\begin{aligned}
& =2 \times 3.14 \times 8 \times 10 \\
& =502.4 \mathrm{~cm}^{2}
\end{aligned}
$$

Height of the cone $(\mathrm{h})=6 \mathrm{~cm}$.
Slant height $(\mathrm{l})=\sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
& =\sqrt{6^{2}+8^{2}} \\
& =\sqrt{36+64} \\
& =\sqrt{100} \\
& =10 \mathrm{~cm}
\end{aligned}
$$

Surface area of the cone $=\pi \mathrm{rl}$

$$
\begin{aligned}
& =3.14 \times 8 \times 10 \\
& =251.2 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Total surface area of the solid
$=$ SA of hemisphere + SA of cylinder + SA of cone
$=401.92+502.4+251.2$
$=1155.52 \mathrm{~cm}^{2}$
(If we take $\pi=\frac{22}{7}$ we get $1156.58 \mathrm{~cm}^{2}$)
7.A medicine capsule is in the shape of a cylinder with two hemispheres stuck to each of its ends. The length of the capsule is 14 mm and width is 5 mm . Find its surface area.
A. length of the cylinder $=\mathrm{AB}$

$$
\begin{aligned}
& =14 \mathrm{~mm}-2 \times 2.5 \mathrm{~mm} \\
& =14 \mathrm{~mm}-5 \mathrm{~mm}=9 \mathrm{~mm}
\end{aligned}
$$

Curved surface area of cylinder $=2 \pi \mathrm{rh}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 2.5 \times 9 \\
& =141.43 \mathrm{~mm}^{2} .
\end{aligned}
$$

Curved surface area of hemisphere $=2 \pi r^{2}$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 2.5 \times 2.5 \\
& =39.29 \mathrm{~mm}^{2}
\end{aligned}
$$

\therefore Total surface area of the capsule

$$
\begin{aligned}
& =\text { CSA of cylinder }+2 \times \text { CSA of hemisphere } \\
& =141.43 \mathrm{~mm}^{2}+2 \times 39.29 \mathrm{~mm}^{2} \\
& =220.01 \mathrm{~mm}^{2}
\end{aligned}
$$

8.A storage tank consists of a circular cylinder with a hemisphere struck on either end. If the external diameter of the cylinder be 1.4 m and its length be 8 m . Find the cost of painting it on the outside at rate of Rs. 20 per \mathbf{m}^{2}.
A. The external diameter of the cylinder $=1.4 \mathrm{~m}$
\therefore Its radius (r) $=\frac{1.4}{2} m=0.7 m$
Its length or height $(\mathrm{h})=8 \mathrm{~m}$
Curved surface area of each hemisphere $=2 \pi r^{2}$

$$
\begin{aligned}
& =2 \times 3.14 \times 0.7 \times 0.7 \\
& =3.08 \mathrm{~m}^{2}
\end{aligned}
$$

Curved surface area of cylinder $=2 \pi \mathrm{rh}$

$$
\begin{aligned}
& =2 \times 3.14 \times 0.7 \times 8 \\
& =35.17 \mathrm{~m}^{2} .
\end{aligned}
$$

\therefore Total surface area of the storage tank

$$
\begin{aligned}
& =35.17 \mathrm{~m}^{2}+2 \times 3.08 \mathrm{~m}^{2} \\
& =35.17 \mathrm{~m}^{2}+6.16 \mathrm{~m}^{2} \\
& =41.33 \mathrm{~m}^{2}
\end{aligned}
$$

The cost of painting it on the outside at rate of Rs 20 per $1 \mathrm{~m}^{2}$

$$
\begin{aligned}
& =\text { Rs } 20 \times 41.33 \\
& =\text { Rs. } 826.60 .
\end{aligned}
$$

9.A solid toy is in the form of a right circular cylinder with hemispherical shape at one end and a cone at the other end. Their common diameter is 4.2 cm and the height of the cylindrical and conical portions are 12 cm and 7 cm respectively. Find the volume of the solid toy.
A.

Let height of the conical portion $h_{1}=7 \mathrm{~cm}$
The height of cylindrical portion $\mathrm{h}_{2}=12 \mathrm{~cm}$
radius $(\mathrm{r})=\frac{4.2}{2}=2.1=\frac{21}{10} \mathrm{~cm}$
volume of the solid toy
$=$ volume of the cone + volume of the cylinder + volume of the hemisphere.

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h_{1}+\pi r^{2} h_{2}+\frac{2}{3} \pi r^{3} \\
& =\pi r^{2}\left[\frac{1}{3} h_{1}+h_{2}+\frac{2}{3} r\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{22}{7} \times\left[\frac{21}{10}\right]^{2} \times\left[\frac{1}{3} \times 7+12+\frac{2}{3} \times \frac{21}{10}\right] \\
& =\frac{22}{7} \times \frac{441}{100} \times\left[\frac{7}{3}+\frac{12}{1}+\frac{7}{5}\right] \\
& =\frac{22}{7} \times \frac{441}{100} \times\left[\frac{35+180+21}{15}\right] \\
& =\frac{22}{7} \times \frac{441}{100} \times \frac{236}{15} \\
& =\frac{27258}{125} \\
& =218.064 \mathrm{~cm}^{3} .
\end{aligned}
$$

10.A cylindrical container is filled with ice-cream whose diameter is 12 cm and height is 15 cm . The whole ice-cream is distributed to 10 children in equal cones having hemispherical tops. If the height of the conical portion is twice the diameter of its base find the diameter of the ice- cream cone.
A. Let the radius of the base of conical ice cream $=x \mathrm{~cm}$.
\therefore Diameter $=2 \mathrm{x} \mathrm{cm}$

Then, the height of the conical ice-cream
$=2($ diameter $)=2(2 x)=4 x \mathrm{~cm}$
Volume of ice - cream cone
$=$ volume of conical portion + volume of hemispherical portion

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3} \\
& =\frac{1}{3} \pi r^{2}(4 x)+\frac{2}{3} \pi x^{3} \\
& =\frac{4 \pi x^{3}+2 \pi x^{3}}{3}=\frac{6 \pi x^{3}}{3} \\
& =2 \mathrm{x}^{3} \mathrm{~cm}^{3}
\end{aligned}
$$

Diameter of cylindrical container $=12 \mathrm{~cm}$

$$
\text { Its height }(\mathrm{h})=15 \mathrm{~cm}
$$

\therefore Volume of cylindrical container $=\pi r^{2} h$

$$
\begin{aligned}
& =\pi(6)^{2}(15) \\
& =540 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Number of children to whom ice-creams is given $=10$

$$
\begin{aligned}
& \frac{\text { volume of cylindrical container }}{\text { volume of oneice - cream cone }}=10 \\
& \Rightarrow \frac{540 \pi}{2 \pi x^{3}}=10 \\
& \Rightarrow 2 \pi x^{3} \times 10=540 \pi \\
& \Rightarrow x^{3}=\frac{540}{2 \times 10}=27 \\
& \Rightarrow \mathrm{x}^{3}=27 \\
& \Rightarrow \mathrm{x}^{3}=3^{3} \\
& \therefore \mathrm{x}=3
\end{aligned}
$$

\therefore Diameter of ice-cream cone $2 \mathrm{x}=2(3)=6 \mathrm{~cm}$.
11.An iron pillar consists of a cylindrical portion of 2.8 cm height and 20 cm in diameter and a cone of 42 cm height surmounting it. Find the weight of the pillar if $1 \mathrm{~cm}^{3}$ of iron weighs 7.5 g .
A. \quad Height of the cylinder portion $=2.8 \mathrm{~m}$

$$
=280 \mathrm{~cm}
$$

Diameter of the cylinder $=20 \mathrm{~cm}$
Radius of the cylinder $=\frac{20}{2} \mathrm{~cm}=10 \mathrm{~cm}$
Volume of the cylinder $=\pi r^{2} \mathrm{~h}$

$$
\begin{aligned}
& =\frac{22}{7} \times 10 \times 10 \times 280 \mathrm{~cm}^{3} \\
& =88000 \mathrm{~cm}^{3}
\end{aligned}
$$

Height of the cone $(\mathrm{h})=42 \mathrm{~cm}$
Radius of the cone $(\mathrm{r})=10 \mathrm{~cm}$
Volume of the cone (v) $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 10 \times 10 \times 42 \mathrm{~cm}^{3} \\
& =4400 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of the pillar

$$
\begin{aligned}
& =88000 \mathrm{~cm}^{3}+4400 \mathrm{~cm}^{3} \\
& =92400 \mathrm{~cm}^{3}
\end{aligned}
$$

Weight of $1 \mathrm{~cm}^{3}$ of iron $=7.5 \mathrm{~g}$
Weight of the pillar $=7.5 \times 92400 \mathrm{~g}$

$$
\begin{aligned}
& =693000 \mathrm{~g} \\
& =693 \mathrm{~kg} .
\end{aligned}
$$

12. A pen stand is made of wood in the shape of cuboid with three conical depressions to hold the pens. The dimensions of the coboid are 15 cm by $\quad 10 \mathrm{~cm}$ by 3.5 cm . The radius of each of the depressions is 0.5 cm and depth is 1.4 cm . Find the volume of wood in the entire stand.
A. It is given that the dimensions of the wooden cuboid pen stand are
$\mathrm{l}=15 \mathrm{~cm}, \mathrm{~b}=10 \mathrm{~cm}, \mathrm{~h}=3.5 \mathrm{~cm}$
volume of the cuboid $\left(\mathrm{v}_{1}\right)=\mathrm{lbh}$
$=15 \times 10 \times 3.5 \mathrm{~cm}^{3}=525 \mathrm{~cm}^{3}$
Radius of each conical depression (r) $=0.5 \mathrm{~cm}$
Depth of each conical depression (h) $=1.4 \mathrm{~cm}$
Volume of each conical depression $\left(\mathrm{v}_{2}\right)=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 0.5 \times 0.5 \times 1.4 \mathrm{~cm}^{3} \\
& =0.367 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of three conical depressions $=0.367 \times 3=1.101$
Volume of wood in entire stand $=525 \mathrm{~cm}^{3}-1.101$

$$
=523.899=523.9 \mathrm{~cm}^{3}
$$

13.The diameter of the internal and external surfaces of a hollow hemispherical shell are 6 cm and 10 cm . Respectively it is melted and recast into a solid cylinder of diameter 14 cm . Find the height of the cylinder.

A. Radius of hollow hemispherical shell $=\frac{10}{2}=5 \mathrm{~cm}=R$

Internal radius of hollow hemispherical shell $=\frac{6}{2}=3 \mathrm{~cm}=r$
Volume of hollow hemispherical shell
$=$ External volume - Internal volume

$$
\begin{aligned}
& =\frac{2}{3} \pi R^{3}-\frac{2}{3} \pi r^{3} \\
& =\frac{2}{3} \pi\left(R^{3}-r^{3}\right) \\
& =\frac{2}{3} \pi\left(5^{3}-3^{3}\right) \\
& =\frac{2}{3} \pi(125-27) \\
& =\frac{2}{3} \pi \times 98 \mathrm{~cm}^{3} \\
& =\frac{196 \pi}{3} \mathrm{~cm}^{3} \longrightarrow(1)
\end{aligned}
$$

Since, this hollow hemispherical shell is melted and recast into a solid So their volumes must be equal

Diameter of cylinder $=14 \mathrm{~cm}$
So, radius of cylinder $=7 \mathrm{~cm}$
Let the height of cylinder $=\mathrm{h}$
\therefore volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\pi \times 7 \times 7 \times \mathrm{hcm}^{3} \\
& =49 \pi \mathrm{~h} \mathrm{~cm}^{3} \rightarrow(2)
\end{aligned}
$$

According to given condition
Volume of hollow hemispherical shell = volume of solid cylinder

$$
\frac{196}{3} \pi=49 \pi h \quad[\text { from equation }(1) \text { and (2)] }
$$

$$
\begin{aligned}
& h=\frac{196}{3 \times 49} \\
& h=\frac{4}{3} \mathrm{~cm}
\end{aligned}
$$

Hence, height of the cylinder $=1.33 \mathrm{~cm}$.
14.The diameter of a metallic sphere is 6 cm . It is melted and drawn into a wire having diameter of the cross section as 0.2 cm . Find the length of the wire?
A. We have diameter of metallic sphere $=6 \mathrm{~cm}$
\therefore Radius of metallic sphere $=3 \mathrm{~cm}$.
Also we have,

Diameter of cross-section of cylindrical wire $=0.2 \mathrm{~cm}$
Radius of cross- section of cylindrical wire $=0.10 \mathrm{~m}$
Let the length of wire be ' 1 'cm.
Since the metallic sphere is covered into a cylindrical shaped wire of length hcm .
\therefore volume of the metal used in wire $=$ volume of sphere

$$
\begin{gathered}
\pi r^{2} h=\frac{4}{3} \pi r^{3} \\
\pi \times(0.1)^{2} \times h=\frac{4}{3} \times \pi \times 3^{3} \\
\pi \times\left(\frac{1}{10}\right)^{2} \times h=\frac{4}{3} \times \pi \times 27 \\
\pi \times \frac{1}{100} \times h=\frac{4}{3} \times \pi \times 27 \\
\text { www.sakshieducation.com }
\end{gathered}
$$

$$
\begin{aligned}
& h=\frac{36 \pi \times 100}{\pi} \\
& \mathrm{~h}=3600 \mathrm{~cm} \\
& \mathrm{~h}=36 \mathrm{~m} .
\end{aligned}
$$

Therefore the length of wire is 36 m .
15.How many spherical balls can be made out of a solid cube of lead whose measures 44 cm and each ball being 4 cm in diameters?
A. Side of lead cube $=44 \mathrm{~cm}$

Radius of spherical ball $=\frac{4}{2} \mathrm{~cm}=2 \mathrm{~cm}$
Now, volume of spherical ball $=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{22}{7} \times 2^{3} \mathrm{~cm}^{3} \\
& =\frac{4}{3} \times \frac{22}{7} \times 8 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of x spherical ball $=\frac{4}{3} \times \frac{22}{7} \times 8 \times x \mathrm{~cm}^{3}$
Its is clear that volume of x spherical balls = volume of lead cube

$$
\begin{aligned}
& \Rightarrow \frac{4}{3} \times \frac{22}{7} \times 8 \times x=(44)^{3} \\
& \Rightarrow \frac{4}{3} \times \frac{22}{7} \times 8 \times x=44 \times 44 \times 44 \\
& x=\frac{44 \times 44 \times 44 \times 3 \times 7}{4 \times 22 \times 8} \\
& x=11 \times 11 \times 3 \times 7
\end{aligned}
$$

$$
\begin{aligned}
& x=121 \times 21 \\
& x=2541
\end{aligned}
$$

Hence, total number of spherical balls $=2541$.
16.A women self help group (DWACRA) is supplied a rectangular solid (cuboid shape) of wax with diameters $66 \mathrm{~cm}, 42 \mathrm{~cm}, 21 \mathrm{~cm}$, to prepare cylindrical candles each 4.2 cm in diameters and 2.8 cm of height. Find the number of candles.
A. \quad volume of wax in rectangular filed $=\mathrm{lbh}$

$$
=(66 \times 42 \times 21) \mathrm{cm}^{3}
$$

Radius of cylindrical bottle $=\frac{4.2}{2} \mathrm{~cm}=2.1 \mathrm{~cm}$.
Height of the cylindrical candle $=2.8 \mathrm{~cm}$.
Volume of candle $=\pi r^{2} h$

$$
=\frac{22}{7} \times(2.1)^{2} \times 2.8
$$

Volume of x cylindrical wax candles $=\frac{22}{7} \times 2.1 \times 2.1 \times 2.8 \times x$
\therefore Volume of x cylindrical candles $=$ volume of wax in rectangular shape

$$
\begin{aligned}
& \because \frac{22}{7} \times 2.1 \times 2.1 \times 2.8 \times x=66 \times 42 \times 21 \\
& x=\frac{66 \times 42 \times 21 \times 7}{22 \times 2.1 \times 2.1 \times 2.8} \\
& x=1500
\end{aligned}
$$

Hence, the number of cylindrical wax candles is 1500
17. Metallic spheres of radius $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm , respectively are melted to form a single solid sphere. Find the radius of resulting sphere.

Sol: Radius of first sphere $=\left(\mathrm{r}_{1}\right)=6 \mathrm{~cm}$.
Radius of second sphere $=\left(r_{2}\right)=8 \mathrm{~cm}$.
Radius of third sphere $=\left(\mathrm{r}_{3}\right)=10 \mathrm{~cm}$
Let the radius of resulting sphere $=\mathrm{rcm}$
Sum of volumes of 3 spheres $=$ volumes of resulting sphere.

$$
\begin{aligned}
& \frac{4}{3} \pi r_{1}^{3}+\frac{4}{3} \pi r_{2}^{3}+\frac{4}{3} \pi r_{3}^{3}=\frac{4}{3} \pi r^{3} \\
& \frac{4}{3} \pi\left(r_{1}^{3}+r_{2}^{3}+r_{3}^{3}\right)=\frac{4}{3} \pi r^{3} \\
& r_{1}^{3}+r_{2}^{3}+r_{3}^{3}=r^{3} \\
& 6^{3}+8^{3}+10^{3}=\mathrm{r}^{3} \\
& 216+512+1000=\mathrm{r}^{3} \\
& \mathrm{r}^{3}=1728 \\
& \mathrm{r}^{3}=12^{3} \\
& \therefore \mathrm{r}=12 \mathrm{~cm} .
\end{aligned}
$$

18. A well of diameter 14 cm is dug 15 m deep. The earth taken out of it has
been spread evenly all around it in the shape of a circular ring of width 7 cm to form an embankment. Find the height of the embankment.

Sol: Well is in the shape of cylinder.
Depth of well $\left(b_{1}\right)=15 \mathrm{~m} / \mathrm{s}$
Diameter of well $\left(d_{1}\right)=14 \mathrm{~mm}$
$\operatorname{Radius}\left(\mathrm{r}_{1}\right)=\frac{d_{1}}{2}=\frac{14}{2}=7$ meters
Width of circular ring $(w)=7$ meters
Radius of outer circle $\left(\mathrm{r}_{2}\right)=\mathrm{r}_{1}+\mathrm{w}=7+7=14 \mathrm{~m}$

Radius of inner circle $\left(\mathrm{r}_{1}\right)=7 \mathrm{mts}$
Radius of the earth taken from well = volume of circular ring

$$
\begin{aligned}
& \Rightarrow \pi \times r_{1}^{2} \times h_{1}=\pi\left(r_{2}^{2}-r_{1}^{2}\right) \times h_{2} \\
& \Rightarrow \frac{22}{7} \times 7^{2} \times 15=\frac{22}{7}\left(14^{2}-7^{2}\right) \times h_{2} \\
& \Rightarrow \frac{22}{7} \times 49 \times 15=\frac{22}{7}(196-49) \times h_{2} \\
& \Rightarrow 49 \times 15=147 \times h_{2} \\
& \Rightarrow h_{2}=\frac{49 \times 15}{147} \\
& \Rightarrow h_{2}=5 \text { meters. }
\end{aligned}
$$

19.How many silver coins 1.75 cm in diameter and thickness 2 mm , need to be melted to form a cuboid of dimensions $5.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 3.5 \mathrm{~cm}$?

Sol: Let the number of silver coins needed to melt $=\mathrm{n}$
Then total volume of n coins $=$ volume of the cuboid.

$$
\left.\begin{array}{ll}
& n \times \pi \mathrm{r}^{2} \mathrm{~h}=\mathrm{lbh} \\
n \times \frac{22}{7} \times\left[\frac{1.75}{2}\right]^{2} \times \frac{2}{10}=5.5 \times 10 \times 3.5 & {[\because \text { The shape of the coin is }} \\
\text { a cylinder and } \left.\mathrm{v}=\pi \mathrm{r}^{2} \mathrm{~h}\right]
\end{array}\right] \quad\left[\because 2 \mathrm{~mm}=\frac{2}{10} \mathrm{~cm}, r=\frac{d}{2}\right] .\left[\begin{array}{l}
n=55 \times 3.5 \times \frac{7 \times 2 \times 2 \times 10}{22 \times 1.75 \times 1.75 \times 2} \\
=\frac{55 \times 35 \times 7 \times 4}{22 \times 2 \times 1.75 \times 1.75} \\
=\frac{5 \times 35 \times 7}{1.75 \times 1.75} \\
=\frac{175 \times 7}{1.75 \times 1.75}=\frac{100 \times 1}{0.25}=400
\end{array}\right.
$$

$\therefore 400$ silver coins coins are needed.
20.A solid metallic sphere of diameter 28 cm is melted and recast into a number of smaller cones, each of diameters $4 \frac{2}{3} \mathrm{~cm}$ and height 3 cm . Find the number of cones so formed.
Sol: let the no.of small cones $=\mathrm{n}$
Then, total volume of n cones $=$ volume of sphere
Diameter $=28 \mathrm{~cm}$

Cones:

Radius, $\mathrm{r}=\frac{\text { diameter }}{2}$

$$
=\frac{4 \frac{2}{3}}{2}=\frac{\frac{14}{3}}{2}=\frac{7}{3} \mathrm{~cm}
$$

Height, $\mathrm{h}=3 \mathrm{~cm}$
Volume, $v=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times \frac{7}{3} \times \frac{7}{3} \times 3 \\
& =\frac{22 \times 7}{3 \times 3}=\frac{154}{9} \mathrm{~cm}^{3}
\end{aligned}
$$

Total volume of n -cones $=n . \frac{154}{9} \mathrm{~cm}^{3}$

Sphere:

Radius, $r=\frac{d}{2}=\frac{28}{2}=14 \mathrm{~cm}$
Volume, $v=\frac{4}{3} \pi r^{3}$

$$
=\frac{4}{3} \times \frac{22}{7} \times 14 \times 14 \times 14
$$

$=\frac{88 \times 28 \times 14}{3} \mathrm{~cm}^{3}$
$\therefore n \cdot \frac{154}{9}=\frac{88 \times 28 \times 14}{3}$
$n=\frac{88 \times 28 \times 14}{3} \times \frac{9}{154}=672$
\therefore No.of cones formed d $=672$.

Multiple Choices

1. Area of circle with d as diameter is \qquad sq.units
A) $\frac{\pi d^{2}}{4}$
B) πr^{2}
C) $\frac{\pi d^{3}}{2}$
D) None
2. Number of diameters of a circle is \qquad
A) 2
B) 3
C) 4
D) infinite
3. The ratio between the volume of a cone and a cylinder is
A) $1: 2$
B) $2: 1$
C) $1: 3$
D) None
4. Heap of stones is example of \qquad
A) circle
B) cone
C) triangle
D) curue
5. Volume of a cylinder $=88 \mathrm{~cm}^{3}, r=2 \mathrm{~cm}$ then $\mathrm{h}=$ \qquad cm
A) 8.5
B) 7
C) 6.4
D) None
6. \quad Area of Ring $=$ \qquad
A) $R^{2}-r^{2}$
B) $\pi\left(R^{2}-r^{2}\right)$
C) $\pi\left(R^{2}+r^{2}\right)$
D) None
7. Book is an example of \qquad
A) cube
B) cuboid
C) Cone
D) cylinder
8. The edge of a pencil gives an idea about
A) curue
B) secant
C) cone
D) cylinder
9. In a cylinder $d=40 \mathrm{~cm}, \mathrm{~h}=56 \mathrm{~cm}$ then $\mathrm{CSA}=$ \qquad cm^{2}
A) 7040
B) 70.40
C) 704
D) None
10. If each side of a cube is doubled then its volume becomes \qquad times
A) 6
B) 2
C) 8
D) 6.0
11. $r=2.1 \mathrm{~cm}$ then volume of the sphere is \qquad cm^{3}
A) 19.45
B) 55.44
C) 38.88
D) None
12. The volume of right circular cone with radius 6 cm and height 7 cm is cm^{3}
A) 164
B) 264
C) 816
D) None
13. Laddu is in \qquad shape
A) circular
B) spherical
C) conical
D) None
14. In a cylinder $r=1 \mathbf{c m}, h=7 \mathrm{~cm}$, then $T S A=$ \qquad cm^{2}
A) 53.18
B) 51.09
C) 99.28
D) 50.28
15. The base of a cylinder is \qquad
A) triangle
B) pentagon
C) circle
D) None
16. In a cylinder $r=10 \mathrm{~cm}, \mathrm{~h}=280 \mathrm{~cm}$ then volume $=$ \qquad cm^{3}
A) 88000
B) 8800
C) 880
D) None
17. Volume of cube is $\mathbf{1 7 2 8} \mathbf{~ c m}$ then its edge is \qquad cm
A) 21
B) 18
C) 12
D) 16
18. If d is the diameter of a sphere then its volume is \qquad cubic units
A) $\frac{1}{6} \pi d^{3}$
B) $\frac{1}{12} \pi d^{3}$
C) $\frac{1}{9} \pi r^{3}$
D) All
19. Volume of cylinder is \qquad
A) $\pi r^{2} h$
B) $\pi^{2} \mathrm{rh}^{2}$
C) $2 \pi \mathrm{rh}$
D) $2 \pi r(r+h)$
20. Circumference of semi circle is \qquad units
A) $\frac{22}{7} r$
B) $2 \pi r$
C) $\pi \mathrm{r} 2$
D) $\frac{\pi r^{2}}{2}$

Key:

1. A;
2. D;
3.C;
4.B;
3. B;
4. B;
5. B;
6. C;
7. A;
8. C;
9. C;
10. B;
11. B;
12. D;
13. C;
14. A;
15. C;
16. A;
17. A;
18. A.

Bit Blanks

1. The area of the base of a cylinder is 616 sq.units then its radius is \qquad
2. Volume of hemisphere is \qquad
3. T.S.A of a cube is $216 \mathrm{~cm}^{2}$ then volume is \qquad cm^{3}
4. In a square the diagonal is \qquad times of its side.
5. Volume of sphere with radius r units is \qquad cubic units.
6. In the cone $1^{2}=$ \qquad
7. Number of radii of a circle is \qquad
8. Number of a edges of a cuboid is \qquad
9. Diagonal of a cuboid is \qquad
10. In a hemisphere $\mathrm{r}=3.5 \mathrm{~cm}$ Then L. $\mathrm{S} . \mathrm{A}=$ \qquad cm^{2}
11. L.S.A of cone is \qquad
12. Rocket is a combination of \qquad and \qquad
13. Volume of cone is \qquad (or) \qquad
14. The surface area of sphere of radius 2.1 cm is \qquad cm^{2}
15. In a cone $\mathrm{r}=7 \mathrm{~cm}, \mathrm{~h}=21 \mathrm{~cm}$ Then $\mathrm{l}=$ \qquad cm
16. The base area of a cylinder is $200 \mathrm{~cm}^{2}$ and its height is 4 cm then its volume is
\qquad cm^{3}
17. The diagonal of a square is $7 \sqrt{ } 2 \mathrm{~cm}$. Then its area is \qquad cm^{2}
18. The ratio of volume of a cone and cylinder of equal diameter and height is \qquad
19. In a cylinder $\mathrm{r}=1.75 \mathrm{~cm}, \mathrm{~h}=10 \mathrm{~cm}$, then $\mathrm{CSA}=$ \qquad cm^{2}
20. T.S.A of cylinder is \qquad sq.units.

Key:

1) 14 cm ;
2) $\frac{2}{3} \pi r^{3}$;
3) 216 ;
4) $\sqrt{ } 2$;
5) $\frac{4}{3} \pi r^{3}$;
6) $\mathrm{r}^{2}+\mathrm{h}^{2}$;
7) infinite;
8) 12 ;
9) $\sqrt{l^{2}+b^{2}+h^{2}}$;
10) 77 ;
11) $\pi \mathrm{rl}$;
12) cone, cylinder;
13) $\frac{1}{3} \times$ volume of cylinder, $\frac{1}{3} \times \pi r^{2} h$;
14) 55.44 ;
15) $\sqrt{490}$;
16) 800 ;
17) 49 ;
18) $1: 3$;
19) 110 ;
20) $2 \pi r(h+r)$.
