Chapter -8

Similar Triangles

Key Concepts:

1.A polygon in which all sides and angles are equal is called a regular polygon.

2. Properties of similar Triangles:

a) Corresponding sides are in the same ratio
b) Corresponding angles are equal
3.All regular polygons having the same number of sides are always similar
4.All squares and equilateral triangles are similar.
5.All congruent figures are similar but all similar figures need not be congruent.
6.Thales Theorem (Basic proportionality Theorem): If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.
7.If a line divides two sides of a triangle in the same ratio. Then the line is parallel to the third side.
8.AAA criterion for similarity: In two triangles, if the angles are equal, then the sides opposite to the equal angles are in the same ratio (or proportional) and hence the two triangles are similar.
9.SSC criterion for similarity: if in two triangles the sides of one triangle are proportional to the sides of the other triangle, then their corresponding angles are equal and hence the triangles are similar.
10.SAS criterion for similarity: if one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.
11.If the areas of two similar triangles are equal, then they are congruent.
12.Pythagoras theorem (Baudhayan Theorem): In a right angle triangle, the square of hypotenuse is equal to the sum of the squares of the other two sides.

Short Questions

1. In $\triangle \mathrm{ABC}, \mathrm{DE} / / \mathrm{BC}$ and $\frac{A D}{D B}=\frac{3}{5}, \mathrm{AC}=5.6$. Find AE .

Sol: In $\triangle \mathrm{ABC}, \mathrm{DE} / / \mathrm{BC}$

$$
\begin{aligned}
& \Rightarrow \frac{A D}{D B}=\frac{A E}{E C} \text { (By Thales Theorem) } \\
& \frac{A D}{D B}=\frac{3}{5}(\text { Given }), \text { so } \frac{A E}{E C}=\frac{3}{5}
\end{aligned}
$$

Given $\mathrm{AC}=5.6 ; \quad \mathrm{AE}: \mathrm{EC}=3: 5$

$$
\begin{aligned}
& \frac{A E}{A C-A E}=\frac{3}{5} \\
& \frac{A E}{5.6-A E}=\frac{3}{5}
\end{aligned}
$$

$$
\begin{aligned}
& 5 \mathrm{AE}=3(5.6-\mathrm{AE})(\text { cross multiplication }) \\
& 8 \mathrm{AE}=16.8 \\
& \Rightarrow A E=\frac{16.8}{8}=2.1 \mathrm{~cm}
\end{aligned}
$$

2.In a trapezium $\mathrm{ABCD}, \mathrm{AB} / / \mathrm{DC}$. E and F are points on non - parallel sides AD and BC respectively such that $\mathrm{EF} / / \mathrm{AB}$ show that $\frac{A E}{E D}=\frac{B F}{F C}$.
A. Let us join AC to intersect EF at G .
$\mathrm{AB} / / \mathrm{DC}$ and $\mathrm{EF} / / \mathrm{AB}$ (Given)
$\Rightarrow \mathrm{EF} / / \mathrm{DC}$ (Lines parallel to the same line are parallel to each other)

In $\quad \Delta \mathrm{ABC}, \mathrm{EG} / / \mathrm{DC}$

So, $\frac{A E}{E D}=\frac{A G}{G C}($ By Thales Theorem $) \rightarrow(1)$

Similarly In $\Delta \mathrm{CAB}$ GF//AB
$\frac{C G}{G A}=\frac{C F}{F B}($ By Thales Theorem $)$

$\frac{A G}{G C}=\frac{B F}{F C} \longrightarrow(2)$
From (1) and (2)
$\frac{A E}{E D}=\frac{B F}{F C}$
3.Prove that in two triangles, if the angles are equal, then the sides opposite to the equal angles are in the same ratio (or proportional) and hence the two triangles are similar.

Sol: Given: In triangles ABC and DEF
$\angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}$ and $\angle \mathrm{C}=\angle \mathrm{F}$

RTP: $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$
Construction: locate points P and Q on DE and DF respectively such that $\mathrm{AB}=\mathrm{DP}$ and $A C=D Q$. Join PQ.

Proof: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DPQ}$

$\angle \mathrm{B}=\angle \mathrm{P}=\angle \mathrm{E}$ and $\mathrm{PQ} / / \mathrm{EF}$
$\frac{D P}{P E}=\frac{D Q}{Q F}$
i.e $\frac{A B}{D E}=\frac{A C}{D F}$

Similarly $\frac{A B}{D E}=\frac{B C}{E F}$ and so $\frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Hence proved
4. Prove that if the areas of two similar triangles are equal then they are congruent.

Sol: $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

So $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2}$

But $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=1$ (areas are equal)
$\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2}=1$
So $\mathrm{AB}^{2}=\mathrm{PQ}^{2} ; \mathrm{BC}^{2}=\mathrm{QR}^{2} ; \mathrm{AC}^{2}=\mathrm{PR}^{2}$

From which we get $\mathrm{AB}=\mathrm{PQ}, \mathrm{BC}=\mathrm{QR}, \mathrm{AC}=\mathrm{PR}$
$\therefore \Delta \mathrm{ABC} \cong \triangle \mathrm{PQR}$ (by SSS congruency)
5.In a right angle triangle the square of hypotenuse is equal to the sum of the squares of the other two sides (Pythagoras theorem, (BAUDHAYAN THEOREM)).

Sol: Given: $\triangle \mathrm{ABC}$ is a right angle triangle

RTP: $\mathrm{Ac}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Construction: Draw BD \perp AC
Proof: $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$

$$
\begin{aligned}
& \frac{A D}{A B}=\frac{A B}{A C} \text { (sides are proportional) } \\
& \mathrm{AD} \cdot \mathrm{AC}=\mathrm{AB}^{2} \rightarrow(1)
\end{aligned}
$$

Also $\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$

$$
\Rightarrow \frac{C D}{B C}=\frac{B C}{A C}
$$

$$
\mathrm{CD} . \mathrm{AC}=\mathrm{BC}^{2} \rightarrow(2)
$$

(1) $+(2)$

$$
\mathrm{AD} \cdot \mathrm{AC}+\mathrm{CD} \cdot \mathrm{AC}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

$$
\mathrm{AC}(\mathrm{AD}+\mathrm{CD})=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

$$
\mathrm{AC} \cdot \mathrm{AC}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

6.The ratio of the areas of two similar triangles is equal to the ratio of the of their corresponding sides.

Sol: Given: $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$

RPT: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{R P}\right)^{2}$

Construction: Draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{PN} \perp \mathrm{QR}$
Proof: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{\frac{1}{2} \times B C \times A M}{\frac{1}{2} \times Q R \times P N}=\frac{B C \times A M}{Q R \times P N} \longrightarrow(1)$

In $\triangle \mathrm{ABM} \& \Delta \mathrm{PQN}$
$\angle \mathrm{B}=\angle \mathrm{Q}$
$(\because \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR})$
$\angle \mathrm{M}=\angle \mathrm{N}=90^{\circ}$
$\therefore \triangle \mathrm{ABM} \sim \Delta \mathrm{PQN} \quad$ (by AA similarity)

$\frac{A M}{P N}=\frac{A B}{P Q}$
also $\triangle \mathrm{ABC} \& \Delta \mathrm{PQR}$ (Given)
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R} \longrightarrow(3)$

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B}{P Q} \times \frac{A B}{P Q}[\operatorname{now}(1),(2) \&(3)] \\
& =\left(\frac{A B}{P Q}\right)^{2}
\end{aligned}
$$

Now by using (3), we get

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2} \text { Hence proved }
$$

7.Prove that the sum of the squares of the sides of a Rhombus is equal to the sum $\mathcal{\&}$ squares of its diagonals.

Sol: in rhombus ABCD
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and
Diagonals of rhombus perpendicularly bisect each other at ' 0 '

So, $O A=O C \Rightarrow O A=\frac{A}{2}$

$$
O B=O D \Rightarrow O D=\frac{B D}{2}
$$

In $\triangle \mathrm{AOD}, \angle \mathrm{AOD}=90^{\circ}$

$$
\begin{aligned}
\mathrm{AD}^{2}= & \mathrm{OA}^{2}+\mathrm{OD}^{2}(\text { Pythagoras Theorem }) \\
& =\left(\frac{A C}{2}\right)^{2}+\left(\frac{B D}{2}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{A C^{2}}{4}+\frac{B D^{2}}{4} \\
& A D^{2}=\frac{A C^{2}+B D^{2}}{4}
\end{aligned}
$$

$$
4 \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}
$$

$$
\mathrm{AD}^{2}+\mathrm{AD}^{2}+\mathrm{AD}^{2}+\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}
$$

$$
\text { But } \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD} \text { (Given) }
$$

$$
\therefore \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}
$$

8.Prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side (using basic proportionality theorem)

Sol: Given: In $\triangle \mathrm{ABC}, \mathrm{D}$ is the mid-point of AB and $\mathrm{DE} / / \mathrm{BC}$
To prove: $\mathrm{AE}=\mathrm{CE}$
Proof: by Thales theorem

$$
\frac{A D}{D B}=\frac{A E}{E C} \longrightarrow(1)
$$

But D is the mid - point of $A B$

$$
\Rightarrow \mathrm{AD}=\mathrm{DB}
$$

$$
\frac{A D}{D B}=1
$$

From (1) we get

$$
\begin{aligned}
& \frac{A E}{E C}=1 \\
& \mathrm{AE}=\mathrm{CE}
\end{aligned}
$$

$\therefore \mathrm{AC}$ is bisected by the parallel line
9.Prove that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Sol: Given: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and AM and DN are their corresponding medians.

To prove: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A M^{2}}{D N^{2}}$

Proof: It is given that $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

By the theorem an areas of similarity triangles

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A B^{2}}{D E^{2}} \\
& \frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D E^{2}} \longrightarrow(1)
\end{aligned}
$$

Also $\frac{A B}{D E}=\frac{B C}{E F}=\frac{2 B M}{2 E N}=\frac{B M}{E N}$

$$
\Rightarrow \frac{A B}{D E}=\frac{B M}{E N}
$$

Clearly $\angle \mathrm{ABM}=\angle \mathrm{DEN}$

SAS similarity criterion,
$\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$

$$
\frac{A B}{D E}=\frac{A M}{D N} \longrightarrow(2)
$$

From (1) and (2) we get

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{A M^{2}}{D N^{2}}
$$

Hence proved
10.A person 1.65 m tall casts 1.8 m shadow. At the same instance, a lamp-posts casts a shadow of 5.4 m . Find the height of the lamppost?

Sol: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$

$\angle \mathrm{B}=\angle \mathrm{Q}=90^{\circ}$
$\angle \mathrm{C}=\angle \mathrm{R} \mathrm{AC} / / \mathrm{PR}$, (all sun's rays are parallel at any instance)
$\Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$ (by AA similarly)
$\frac{A B}{P Q}=\frac{B C}{Q R}$ (corresponding parts of similar triangles)
$\frac{1.65}{P Q}=\frac{1.8}{5.4}$
$P Q=\frac{1.65 \times 54}{1.8}=4.95 \mathrm{~m}$

Height of the lamp post $=4.95 \mathrm{~m}$.
11. The perimeters of two similar triangles are 30 cm and 20 cm respectively. If one side of the first triangle is 12 cm , determine the corresponding side of the second triangle

Sol: Let the corresponding side of the second triangle be x m

We know that,

The ratio of perimeters of similar triangles $=$ ratio of corresponding sides

$$
\Rightarrow \frac{30}{20}=\frac{12}{x} \Rightarrow x=8 \mathrm{~cm}
$$

\therefore Corresponding side of the second triangle $=8 \mathrm{~cm}$
12. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas are respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$ If $E F=15.4 \mathrm{~cm}$, Then Find BC.

Sol: $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\left(\frac{B C}{E F}\right)^{2}$
$\frac{64}{121}=\left(\frac{B C}{15.4}\right)^{2}$
$\frac{8}{11}=\frac{B C}{15.4} \Rightarrow B C=\frac{15.4 \times 8}{11}=11.2 \mathrm{~cm}$
13. $\Delta \mathrm{ABC} \sim \triangle \mathrm{DEF}, \mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and area of $\Delta \mathrm{ABC}=54 \mathrm{~cm}$ area of $\triangle \mathrm{DEF}$.

Sol: $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF} \mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$
Area of $\triangle \mathrm{ABC}=54 \mathrm{~cm}^{2}$

By the theorem on areas of similar triangles,
$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\frac{B C^{2}}{E F^{2}}$
$\frac{54 \mathrm{~cm}^{2}}{\operatorname{ar}(\triangle D E F)}=\frac{9 \mathrm{~cm}^{2}}{16 \mathrm{~cm}^{2}}$
\therefore Area of $\triangle \mathrm{DEF}=96 \mathrm{~cm}^{2}$
14.The areas of two similar triangles are $81 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the altitude of the bigger triangle is 4.5 cm . Find the corresponding altitude of the similar triangle.

Sol: We know that the ratio of areas of two similar triangles is equal to square of the ratio of their corresponding altitudes

$$
\begin{aligned}
& \Rightarrow \frac{\text { area of bigger triangle }}{\text { area of smaller triangle }}=\left(\frac{\text { altitude of bigger triangle }}{\text { altitude of smaller triangle }}\right)^{2} \\
& \Rightarrow \frac{81}{49}=\left(\frac{4.5}{x}\right)^{2} \Rightarrow x=3.5 \mathrm{~cm}
\end{aligned}
$$

Corresponding altitude of the smaller triangle $=3.5 \mathrm{~cm}$.
15.A ladder 25 m long reaches a window of building 20 m above the ground. Determine the distance of the foot of the ladder from the building.

Sol: In $\triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}$

$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2} \quad($ By Pythagoras Theorem $)$
$25^{2}=20^{2}+\mathrm{BC}^{2}$
$\mathrm{BC}^{2}=625-400=225 \mathrm{~m}$
$\mathrm{BC}=\sqrt{ } 225=15 \mathrm{~m}$
\therefore The distance of the foot of the ladder from the building is 15 m .
16.The hypotenuse of a right triangle is $\mathbf{6 m}$ more than twice of the shortest side if the third side is $\mathbf{2 m}$ less than the hypotenuse. Find the sides of the triangle.

Sol: Let the shortest side be x m
Then hypotenuse $=(2 x+6) m$, third side $=(2 x+4) m$
By Pythagoras Theorem we have
$(2 x+6)^{2}=x^{2}+(2 x+4)^{2}$
$4 x^{2}+36+24 x=x^{2}+4 x^{2}+16+16 x$
$x^{2}-8 x-20=0$
$(\mathrm{x}-10)(\mathrm{x}+2) \Rightarrow \mathrm{x}=+10, \mathrm{x}=-2$

But x can't be negative as side of a triangle

$$
\mathrm{x}=10 \mathrm{~m}
$$

Hence the sides of the triangle are $10 \mathrm{~m}, 26 \mathrm{~m}, 24 \mathrm{~m}$.
17. Prove that three times the square of any side of an equilateral triangle is equal to four times the square of altitude

Sol: In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{BC}=\mathrm{CA}, \mathrm{AD} \perp \mathrm{BC}$
To prove: $3 \mathrm{AB}^{2}=4 \mathrm{AD}^{2}$
Proof: we have $\mathrm{AB}=\mathrm{AC}$ (Given)
$\mathrm{AD}=\mathrm{AD}$ (common side)
$\angle \mathrm{ADB}=\angle \mathrm{ADC}$ (Given)
$\Delta \mathrm{ADB} \cong \Delta \mathrm{ADC}$ (RHS congruently property)
$\Rightarrow B D=C D=\frac{1}{2} B C=\frac{1}{2} A B$
$\Delta \mathrm{ADB}$ is right triangle
By Baudhayana Theorem

$$
\begin{aligned}
& \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \\
& =A D^{2}+\left(\frac{1}{2} A B\right)^{2}=A D^{2}+\frac{1}{4} A B^{2} \\
& A D^{2}=A B^{2}-\frac{1}{4} A B^{2} \\
& A D^{2}=\frac{1}{4} A B^{2}
\end{aligned}
$$

$$
3 \mathrm{AB}^{2}=4 \mathrm{AD}^{2} \quad \text { Hence proved }
$$

Essay Type Questions

1.Prove that if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points then the other two sides are divided in the same Ratio (proportionality theorem / Thales Theorem).

Sol: Given: In $\triangle \mathrm{ABC}, \mathrm{DE} / / \mathrm{BC}$ which intersects sides AB and AC at D and E respectively

RTP: $\frac{A D}{D B}=\frac{A E}{E C}$

Construction: Join B, E and C, D and then draw
$\mathrm{DM} \perp \mathrm{AC}$ and $\mathrm{EN} \perp \mathrm{AB}$

Proof: Area of $\triangle \mathrm{ADE}=\frac{1}{2} \times A D \times E N$

Area of $\triangle \mathrm{BDE}=\frac{1}{2} \times B D \times E N$

SO $\quad \frac{\text { Area of } \triangle A D E}{\text { Area of } \triangle B D E}=\frac{\frac{1}{2} \times A D \times E N}{\frac{1}{2} \times B D \times E N}=\frac{A D}{B D} \longrightarrow(1)$

Again Area of $\triangle \mathrm{ADE}=\frac{1}{2} \times A E \times D M$

Area of $\triangle \mathrm{CDE}=\frac{1}{2} \times E C \times D M$

$$
\frac{\operatorname{ar}(\triangle A B E)}{\operatorname{ar}(\triangle C D E)}=\frac{\frac{1}{2} \times A E \times D M}{\frac{1}{2} \times E C \times D M}=\frac{A E}{C E} \longrightarrow(2)
$$

Observe that $\triangle \mathrm{BDE}$ and $\Delta \mathrm{CDE}$ are on the same base DE and between same parallels BC and DE

So ar $(\triangle \mathrm{BDE})=$ ar $(\Delta \mathrm{CDE}) \rightarrow(3)$
From (1) (2) \& (3) we have

$$
\frac{A D}{D B}=\frac{A E}{C E}
$$

Hence proved
2.In the given figure $\mathrm{LM} / / \mathrm{AB} A \mathrm{AL}=\mathrm{x}-3, \mathrm{AC}=2 \mathrm{x}, \mathrm{BM}=\mathrm{x}-2$ and $\mathrm{BC}=$ find the value of x.

Sol: in $\triangle A B C, L M / / A B$

$$
\Rightarrow \frac{A L}{L C}=\frac{B M}{M C} \text { (By Thales Theorem) }
$$

$$
\frac{x-3}{2 x-(x-3)}=\frac{x-2}{(2 x+3)-(x-2)}
$$

$\frac{x-3}{(x+3)}=\frac{x-2}{x+5}$ (cross multiplication)
$(x-3)(x+5)=(x-2)(x+3)$
$x^{2}+2 x-15=x^{2}+x-6$
$2 x-x=-6+15 \Rightarrow x=9$.
3. What values of x will make $D E / / A B$ in the given figure.

Sol: In $\triangle \mathrm{ABC}, \mathrm{DE} / / \mathrm{AB}$

$$
\begin{aligned}
& \frac{C D}{A D}=\frac{C E}{C B} \\
& \frac{x+3}{8 x+9}=\frac{x}{3 x+4} \\
& (x+3)(3 x+4)=x(8 x+9) \\
& 3 x^{2}+13 x+12=8 x^{2}+9 x \\
& 5 x^{2}-4 x-12=0 \\
& (x-2)(5 x+6)=0 \Rightarrow x=2 ; \mathrm{x}=\frac{-6}{5}
\end{aligned}
$$

4.In $\triangle \mathrm{ABC}, \mathrm{DE} / / \mathrm{BC}, \mathrm{AD}=\mathrm{x}, \mathrm{DB}=\mathrm{x}-2, \mathrm{AE}=\mathrm{x}+2$ and $\mathrm{EC}=\mathrm{x}-1$ Find value of x . Sol: In $\triangle \mathrm{ABC}, \mathrm{DE} / / \mathrm{BC}$

$\frac{A D}{P B}=\frac{A E}{A C}($ by thales theorem $)$
$\frac{x}{x-2}=\frac{x+2}{x-1}$
$x(x-1)=(x+2)(x-2)$
$x^{2}-x=x^{2}-4 \Rightarrow x=4$.
5.In $\triangle \mathrm{PQR}, \mathrm{ST}$ is a line such that $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle \mathrm{PST}=\angle \mathrm{PRQ}$ prove that
$\triangle \mathrm{PQR}$ is isosceles triangle.

Sol: In $\triangle \mathrm{PQR}$, ST is a line such that $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle \mathrm{PST}=\angle \mathrm{PRQ}$

www.sakshieducation.com

By the converse theorem of Thales,

$$
\begin{aligned}
& \mathrm{ST} / / \mathrm{QR} \\
& \Rightarrow|P S T=| P Q R \text { (corresponding angles) } \rightarrow(1) \\
& P Q R=P R Q(\text { Given }) \rightarrow(2)
\end{aligned}
$$

From (1) and (2) we get
$\underline{P S T}=\mid P R Q$
$\Rightarrow \mathrm{PQ}=\mathrm{QR}$ (sides opposite to the equal angles)
$\therefore \Delta \mathrm{PQR}$ is an isosceles triangle
6.Prove that a line drawn through the mid-point of one side of a Triangle parallel to another side bisects the third side (using basic proportionality theorem)

Sol: In $\triangle \mathrm{ABC}, \mathrm{D}$ is the mid-point of AB and $\mathrm{DE} / / \mathrm{BC}$

To prove: $\mathrm{AE}=\mathrm{EC}$

$$
\frac{A D}{D B}=\frac{A E}{E C}(\text { By Thales theorem }) \rightarrow(1)
$$

But D is the mid-point of $A B$

$$
\Rightarrow \mathrm{AD}=\mathrm{DB}
$$

$$
\frac{A D}{D B}=1
$$

$$
\frac{A E}{E C}=1 \text { from (1) }
$$

$$
\Rightarrow \mathrm{AE}=\mathrm{EC}
$$

AC is bisected by the parallel line.

One Mark Questions

1. Define regular polygon?

A. A polygon in which all sides and angles are equal is called a regular polygon.
2. Write the properties of similar triangles?
A. Corresponding sides are in the same ratio corresponding angles are equal

3. Which figures are called similar figures?

A. The geometrical figures which have same shape but not same size.
4. Which figures are called congruent figures?
A. The geometrical figures which have same size and same shape.

5. When do you say that two triangles are similar?

A. Two triangles are said to be similar if their
i) Corresponding angles are equal
ii) Corresponding sides are in the same ratio.
6. Sides of two similar triangles are in the ratio 2:3. Find the ratio of the areas of the triangle
A. $4: 9$

7. Write the basic proportionality theorem.

A. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

8. Write the converse of basic proportionality theorem.

A. If a line divides two sides of a triangle in the same ratio, then the line is parallel to the third side
9. Write AAA axiom.
A. In two triangles, if the angles are equal, then the sides opposite to the equal angles are in the same ratio (or proportion) and hence the two triangles are similar.
10. Write SSS criterion
A. If in two triangles the sides of one triangle are proportional to the sides of the other triangle, then their corresponding angles are equal and hence the triangles are similar.
11. Write SAS criterion.
A. If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, then the two triangles are similar.
12. State Pythagoras theorem
A. In a right triangle, the square of hypotenuse is equal to the sum of the squares of the other two sides.
13. Which is the longest side in a right triangle?
A. Hypotenuse
14. If the side of an equilateral triangle is ' a ' then find height?
A. $\frac{\sqrt{3}}{2}$ a units

Fill in the Blanks

1. In $\triangle \mathrm{ABC}$ if $\angle \mathrm{D}=90^{\circ}$ and $\mathrm{BD} \perp \mathrm{AC}$ then $\mathrm{BD}^{2}=$ \qquad
2. All squares and equilateral triangles are \qquad
3. Example of similar figures is \qquad
4. Example of non similar figures is \qquad
5. If a line divides two sides of a triangle in the same ratio. Then the line is to the \qquad
6. In $\triangle \mathrm{ABC}, \mathrm{BC}^{2}+\mathrm{AB}^{2}=\mathrm{AC}^{2}$ Then \qquad is a right angle
7. If D is the midpoint of BC in $\triangle \mathrm{ABC}$ then $\mathrm{AB}^{2}+\mathrm{AC}^{2}=$ \qquad
8. In $\triangle A B C, D$ and E are mid points of $A B$ and $A C$ then $D E: B C$ is \qquad .
9. The diagonal of a square is \qquad times to its side
10. If $\mathrm{ABC} \sim \mathrm{PQR}$ Than $\mathrm{AB}: \mathrm{AC}$ \qquad
11. The ratio of corresponding sides of two similar triangles is $3: 4$ Then the ratio of their areas is \qquad
12. Basic proportionality theorem is also known as \qquad theorem
13. Area of an equilateral triangle is \qquad
14. \qquad is the longest side of right angled triangle.

Key

1) AD.DC; 2) Similar; 3) Bangles if different sizes, any two squares;
2) Any two walls, square and rhombus;
3) Third side;
4) $\angle \mathrm{B}$;
5) $2 \mathrm{AD}^{2}+2 \mathrm{BD}^{2}$;
6) $1: 2$;
7) $\sqrt{ } 2$;
8) PQ : PR;
9) $9: 16$;
10) Thales; 13) $\frac{\sqrt{3}}{4} a^{2}$;
11) Hypotenuse.
