
Introduction to Classes and Objects

C++ is a middle level programming language developed by
Bjarne Stroustrup in 1970 at Bell laboratories. C++ is a general

purpose, case-sensitive, free-form programming language which
supports procedural, object-oriented, and generic programming.

Now days, Object oriented programming playing significant role
in design and implementation of software systems. It simplifies
the development of large and complex software systems and helps
in the production of software, which is modular, easily
understandable, reusable, and adaptable to changes. Object
oriented modelling is a new way of visualizing problems using
models organized around the real world concepts. Objects are the
result of programming methodology rather than a language.

 Figure1: Class grouping data and functions

Object oriented programming constructing a modelled out of data types called classes.
Defining variables of class data type is known as class instantiation and such variables are
called objects (It is an instance of a class). A class encloses both data and functions that
operate on the data, into a single unit shown in figure1. The variables and functions enclosed
in a class are called data members and member functions respectively. Member functions
define the permissible operations on the data members of a class.

 Placing data and functions together in a single unit is the central aim of object oriented
programming. Classes are the basic language construct of c++ for creating user defined data

Data1

Data2

Data3

Fun1 ()

Fun2 ()

Fun3 ()

Data

Functions

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

types. These are extension of structures. The only difference is that, all member of structures
are public by default whereas, the members of classes are private by default. Class follows
the principle data and member functions are private by default until we specifically declared
as public.

Class

A class is a name or blue print form of an object. Thus, class can be declared as collection of
data members along with member functions. This property combining of data and functions
into a single unit is called encapsulation. This class doesn’t define any data; it just defines
class name, what an object of class consists of and which operations performed on such an
object.

The syntax of class shown in below figure:

class Classname{

 // body of a class

 Access_Specifier:

 Member1;

 Member2;

 ………

};

Where class keyword indicates that the name which follows defined by user. The body of
class enclosed with in curly braces followed by a semicolon- the end of class specification.
The body of class contains declaration of variables and functions, collectively known as
members. The variables declared inside class is called as data members and functions defined
in class are called as member functions.

Access_specifier, is used to define the visibility of members. An access specifier is one of
the following three keywords: private, public, protected. These access specifiers modify the
access rights for the members that follow them.

private: Members of a class are accessible only from within other members of the same
class.

protected: Members of a class are accessible from within other members of the same class
and also members of their derived classes.

public: Members are accessible anywhere in the class, where object visible.

The following example illustrates the specification of a class called student having roll_ no
and name as its data members.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

class Student{

 private:

 int roll_no; //roll number

 char name[50]; //student name

 void setdata(int roll_no_in char* name_in){

 roll_no=roll_no_in;

 strcpy(name,name_in);

 }

 void getdata(){

 cout<<”Roll No”<<roll_no<<endl;

 cout<<”Name:”<<name<<endl;

 }

};

A class should be given some meaningful name, reflecting the information it holds. The class
student contains two data members and two member functions. The data members are private
by default. The member function setdata() can be used to assign values to the data members
roll_no and name. The member function getdata() can be used for displaying the values of
data members. Three different notations for representation of the student class is shown in
figure 2.

(a) (b) (c)

 Figure(2): Different representations of class student

int roll_no;

char name[20];

se

int roll_no

char name[20]

setdata ()

getdata ()

getdata ()

setdata ()

Private:

roll_no

name

Setdata ()

Getdata ()

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Object

An object is an instance of a class. A class specify only structure of an object and it must be
instantiated to use services provided by it. This process of creating objects of a class is called
class instantiation. It is the definition of object that actually creates objects in the program by
setting aside memory space for its storage. Hence, a class is like a blueprint of a house and it
indicates how the data and functions are used when the class instantiated. The necessary
resources are allocated only when a class is instantiated. The syntax for defining an object of
class shown in below:

ClassName objectname;

An example of instantiation for creating objects for student class is shown below.

Student s1;

It creates the object s1 of the class student. More than one object can be created with a single
statement as follows:

Student s1, s2, s3;

It creates multiple objects for the class student.

The definition of an object is similar to that of a variable of any primitive data type. Objects
can also be created by placing their names immediately after the closing brace like in the
creation of the structure variables.

class Student{

 ………..

 ………..

}s1, s2, s3;

In C++, convention of defining objects at the point of class specification is rarely followed.
The user would like to define the objects as and when required, or at the point of their usage.

Accessing Class Members: Once the object of a class instantiated we can access its
members. This is achieved by using the member access operator, dot (.). The syntax for
accessing both its data and functions of class is shown below figure.

Objectname . datamember

Figure (a): Syntax for accessing data member of a class

Name of the user defined object

Member access specifier

Data member of a class

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Objectname . Functionname (arguments)

Figure (b): Syntax for accessing member function of a class

If a member to be accessed in a function, then a pair of parenthesis is to be added following
function name. The following statements access member functions of the object s1, which is
an instance of the student class:

s1.setdata(10, “Tarunkumar”);

s1.getdata();

The following program student.cpp demonstrates the declaration of class Student with the
operations on its objects.

//Student.cpp: member functions defined inside the body of the student class

#include<iostream>

#include<cstring>

class Student{

 private:

 int roll_no; //roll number

 char name[50]; //student name

 public:

 // initializing data members

 void setdata(int roll_no_in char* name_in){

 roll_no=roll_no_in;

 strcpy(name,name_in);

 }

 // display data members on the console screen

 void getdata(){

 cout<<”Roll No:”<<roll_no<<endl;

Member access specifier

Name of the member function

Name of the user defined object

Arguments to the function

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 cout<<”Name:”<<name<<endl;

 }

};

int main(){

 Student s1; // first object/variable of class student

 Student s2; // second object/variable of class student

 s1.setdata(1, “Tarun kumar”); // object s1 calls member setdata()

 s2.setdata(10, “Pallavi”); // object s2 calls member setdata()

 cout<<”Student Details…..”<,endl;

 s1.outdata(); // object s1 calls member function outdata()

 s2.outdata(); // object s2 calls member function outdata()

}

Output:

Student Details…..

Roll No: 1

Name: Tarun Kumar

Roll No: 10

Name: Pallavi

Access Control Specifiers: Each user has different privileges to access object. A class
differentiates these access privileges by portioning its contents and associating each one of
them with any one of the following keywords:

• Private

• Public
• Protected

These keywords are called access – control specifiers. All the members that follow a key
word belong to that type. If no keyword is specified, then the members are assumed to have
private privilege.

Private: The private data members of a class have strict access control. Only the member
functions of same class can access these members. The private members of a class are

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

inaccessible outside the class. If someone tries to access these private members, they will get
compile time error. By default member functions and class variables are private.

class PrivateAccess{

 private: // private access specifier

int x; //Data member declaration

void display(){} //member function declaration

};

Public: The public data members of a class are visible to outside the class, should be
declared in public section. All the data members and member functions are accessible
anywhere in the program without any restriction either by same class or external class.

class PublicAccess{

 public: // public access specifier

 int x; //Data member declaration

 void display(){} //member function declaration

};

Protected: This is similar to private; it makes data members inaccessible outside the class.
But they can be accessed by sub class of that same class (called inheritance).

class ProtectedAccess{

 protected: // protected access specifier

 int x; //Data member declaration

 void display(){} //member function declaration

};

Class Scope: There should be a mechanism of binding the functions to the class to which
they belong. This is done by using scope resolution operator (::). It acts as an identity-label to
inform the compiler, the class to which the function belongs.

This operator can also be used to quantify the hidden names in the class, global scope name is
hidden by explicit declaration same class or block, and still we can use them.

The below example illustrates the use of scope resolution operator.

// This Example program illustrates the accessing the global variable using scope
resolution operator

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

#include <iostream>
using namespace std;

char ch = 'x'; // global variable

int main() {
 char ch = 'y'; //local variable

 cout << "Local ch: " << ch<< "\n";
 cout << "Global ch: " << ::ch<< "\n"; //using scope resolution operator

 return 0;
}
// This Example program illustrates the use of scope resolution operator in class

#include <iostream>
using namespace std;

class ClassScope {
public:
 void display(); //function declaration
};

// function definition outside the class

void ClassScope::display() {
 cout << "Function defined outside the class.\n";
}

int main() {
ClassScopex;
 c.display();

 return 0;
}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

