MATHEMATICAL METHODS

NUMERICAL DIFFERENTIATION & INTEGRATION

I YEAR B.Tech

AS PER JNTU-HYDERABAD NEW SYLLABUS

By

Mr. Y. Prabhaker Reddy

Asst. Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad.

SYLLABUS OF MATHEMATICAL METHODS (as per JNTU Hyderabad)

Name of the Unit	Name of the Topic
II.u.it I	Matrices and Linear system of equations: Elementary row transformations – Rank
Unit-I Solution of Linear systems	– Echelon form, Normal form – Solution of Linear Systems – Direct Methods – LU
	Decomposition from Gauss Elimination – Solution of Tridiagonal systems – Solution
	of Linear Systems.
Unit-II Eigen values and Eigen vectors	Eigen values, Eigen vectors - properties - Condition number of Matrix, Cayley -
	Hamilton Theorem (without proof) – Inverse and powers of a matrix by Cayley –
	Hamilton theorem – Diagonalization of matrix – Calculation of powers of matrix –
	Model and spectral matrices.
Unit-III Linear Transformations	Real Matrices, Symmetric, skew symmetric, Orthogonal, Linear Transformation -
	Orthogonal Transformation. Complex Matrices, Hermition and skew Hermition
	matrices, Unitary Matrices - Eigen values and Eigen vectors of complex matrices and
	their properties. Quadratic forms - Reduction of quadratic form to canonical form,
	Rank, Positive, negative and semi definite, Index, signature, Sylvester law, Singular
	value decomposition.
	Solution of Algebraic and Transcendental Equations- Introduction: The Bisection
	Method – The Method of False Position – The Iteration Method - Newton –Raphson
Unit-IV	Method Interpolation:Introduction-Errors in Polynomial Interpolation - Finite
Solution of Non-	differences- Forward difference, Backward differences, Central differences, Symbolic
	relations and separation of symbols-Difference equations – Differences of a
linear Systems	polynomial - Newton's Formulae for interpolation - Central difference interpolation
	formulae - Gauss Central Difference Formulae - Lagrange's Interpolation formulae- B.
	Spline interpolation, Cubic spline.
Unit-V	Curve Fitting: Fitting a straight line - Second degree curve - Exponential curve -
Curve fitting &	Power curve by method of least squares.
Numerical	Numerical Integration: Numerical Differentiation-Simpson's 3/8 Rule, Gaussian
Integration	Integration, Evaluation of Principal value integrals, Generalized Quadrature.
Unit-VI	Solution by Taylor's series - Picard's Method of successive approximation- Euler's
Numerical	Method -Runge kutta Methods, Predictor Corrector Methods, Adams- Bashforth
solution of ODE	Method.
Unit-VII Fourier Series	Determination of Fourier coefficients - Fourier series-even and odd functions -
	Fourier series in an arbitrary interval - Even and odd periodic continuation - Half-
	range Fourier sine and cosine expansions.
Unit-VIII	Introduction and formation of PDE by elimination of arbitrary constants and
Partial	arbitrary functions - Solutions of first order linear equation - Non linear equations -
Differential	Method of separation of variables for second order equations - Two dimensional wave equation.
Equations	wave equation.

CONTENTS

UNIT-V NUMERICAL DIFFERENTIATION & INTEGRATION

- Numerical Differentiation
- > Numerical Integration
- > Trapezoidal Rule
- Simpson's 1/3 Rule
- Simpson's 3/8 Rule

Numerical Differentiation and Integration

Numerical Differentiation

x : x_0 x_1 x_2 ... x_n \longrightarrow Equally Spaced Arguments $y = f(x): f_0$ f_1 f_2 ... f_n

Aim: We want to calculate $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$, ... at the tabulated points.

The intention of Using these formulas is that, without finding the polynomial for the given curve, we will find its first, second, third, . . . derivatives.

Since Arguments are equally spaced, we can use Forward, Backward or Central differences.

Differentiation using Forward Differences

We know that $\Delta f(x) = f(x+h) - f(x)$ By Taylor's Series expansion, we have $f(x+h) = f(x) + \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(0) + \dots$ Define $D \equiv \frac{d}{dx}$ so that f'(x) = Df, $f''(x) = D^2f$, $f'''(x) = D^3f$, \dots $\therefore f(x+h) = \left[1 + hD + \frac{h^2D^2}{2!} + \frac{h^3D^3}{3!} + \dots\right]f(x)$

$$= e^{hD} f(x) \quad \left(\because e^x = 1 + x + \frac{x^2}{2!} + \dots \right)$$

Now, $\Delta f(x) = f(x+h) - f(x)$

$$\Delta f(x) = e^{hD} f(x) - f(x)$$
$$\Rightarrow \Delta f(x) = (e^{hD} - 1)f(x)$$
$$\therefore \Delta \equiv e^{hD} - 1$$

$$\Rightarrow e^{hD} \equiv 1 + \Delta$$

Taking Log on both sides, we get $hD \equiv \log(1 + \Delta)$

$$\Rightarrow hD \equiv \Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots \Rightarrow D \equiv \frac{1}{h} \left(\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots \right)$$
$$\Rightarrow Dy_i \equiv \frac{1}{h} \left(\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots \right) y_i$$
$$\Rightarrow \left(\frac{dy}{dx} \right)_{y=y_i} = \frac{1}{h} \left(\Delta y_i - \frac{\Delta^2}{2} y_i + \frac{\Delta^3}{3} y_i - \frac{\Delta^4}{4} y_i + \dots \right)$$

To find Second Derivative We have $hD \equiv \Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots$ Squaring on both sides, we get $(hD)^2 \equiv \left(\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots\right)^2$

$$\Rightarrow h^{2}D^{2} \equiv \left(\Delta - \frac{\Delta^{2}}{2} + \frac{\Delta^{3}}{3} + ...\right)^{2}$$

$$\equiv \left(\Delta^{2} + \frac{\Delta^{4}}{4} + \frac{\Delta^{6}}{9} - \Delta^{3} - \frac{\Delta^{5}}{3} + \frac{2}{3}\Delta^{4} + ...\right) (\because (a - b + c)^{2} = a^{2} + b^{2} + c^{2} - 2ab - 2bc + 2ca)$$

$$\equiv \left(\Delta^{2} - \Delta^{3} + \frac{11}{12}\Delta^{4} + ...\right)$$

$$\Rightarrow D^{2} \equiv \frac{1}{h^{2}} \left(\Delta^{2} - \Delta^{3} + \frac{11}{12}\Delta^{4} + ...\right)$$

$$\Rightarrow \left(\frac{d^{2}y}{dx^{2}}\right)_{x=x_{i}} \equiv \frac{1}{h^{2}} \left(\Delta^{2}y_{i} - \Delta^{3}y_{i} + \frac{11}{12}\Delta^{4}y_{i} + ...\right)$$

To find Third Derivative

We have $hD \equiv \Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots$ Cubing on both sides, we get $(hD)^3 \equiv \left(\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots\right)^3$ $\Rightarrow h^3D^3 \equiv \left(\Delta - \frac{\Delta^2}{2} + \dots\right)^3$ $\Rightarrow h^3D^3 \equiv \left(\Delta^3 - \frac{\Delta^6}{8} - \frac{3}{2}\Delta^4 + \frac{3}{4}\Delta^5 + \dots\right) \quad (\because (a - b)^3 = a^3 - b^3 - 3a^2b + 3ab^2)$ $\Rightarrow D^3 \equiv \frac{1}{h^3} \left(\Delta^3 - \frac{3}{2}\Delta^4 + \dots\right)$ $\Rightarrow \left(\frac{d^3y}{dx^3}\right)_{\mu = \mu} \equiv \frac{1}{h^3} \left(\Delta^3y_i - \frac{3}{2}\Delta^4y_i + \dots\right)$

Differentiation using Backward differences

We know that $\nabla f(x) = f(x) - f(x - h)$

By Taylor's Series expansion, we have

$$f(x-h) = f(x) - \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) - \frac{h^3}{3!}f'''(0) + \dots$$

Define $D \equiv \frac{d}{dx}$ so that f'(x) = Df, $f''(x) = D^2 f$, $f'''(x) = D^3 f$, ... $\therefore f(x - h) = \left[1 - hD + \frac{h^2 D^2}{2!} - \frac{h^3 D^3}{3!} + \dots\right] f(x)$ $= e^{-hD} f(x) \quad \left(\because e^{-x} = 1 - x + \frac{x^2}{2!} - \dots\right)$

Now, $\nabla f(x) = f(x) - f(x - h)$

$$\nabla f(x) = f(x) - e^{-hD} f(x)$$

 $\Rightarrow \nabla f(x) = (1 - e^{-hD}) f(x)$

$$\therefore \ \nabla \equiv 1 - e^{-hD}$$

$$\implies e^{-hD} \equiv 1 - \nabla$$

Taking Log on both sides, we get $-hD \equiv \log(1 - \nabla)$

$$\Rightarrow -hD \equiv -\nabla - \frac{\nabla^2}{2} - \frac{\nabla^3}{3} - \frac{\nabla^4}{4} + \dots \Rightarrow D \equiv \frac{1}{h} \left(\nabla + \frac{\nabla^2}{2} + \frac{\nabla^3}{3} + \frac{\nabla^4}{4} + \dots \right)$$
$$\Rightarrow Dy_i \equiv \frac{1}{h} \left(\nabla + \frac{\nabla^2}{2} + \frac{\nabla^3}{3} + \frac{\nabla^4}{4} + \dots \right) y_i$$
$$\Rightarrow \left(\frac{dy}{dx} \right)_{y=y_i} = \frac{1}{h} \left(\nabla y_i + \frac{\nabla^2}{2} y_i + \frac{\nabla^3}{3} y_i + \frac{\nabla^4}{4} y_i + \dots \right)$$

To find Second Derivative

We have $hD \equiv \nabla + \frac{\nabla^2}{2} + \frac{\nabla^3}{3} + \frac{\nabla^4}{4} + \dots$ Squaring on both sides, we get $(hD)^2 \equiv \left(\nabla + \frac{\nabla^2}{2} + \frac{\nabla^3}{3} + \frac{\nabla^4}{4} + \dots\right)^2$

$$\Rightarrow h^{2}D^{2} \equiv \left(\nabla + \frac{\nabla^{2}}{2} + \frac{\nabla^{3}}{3} + ...\right)^{2}$$

$$\equiv \left(\nabla^{2} + \frac{\nabla^{4}}{4} + \frac{\nabla^{6}}{9} + \nabla^{3} + \frac{\nabla^{5}}{3} + \frac{2}{3}\nabla^{4} + ...\right) (\because (a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca)$$

$$\equiv \left(\nabla^{2} + \nabla^{3} + \frac{11}{12}\nabla^{4} + ...\right)$$

$$\Rightarrow D^{2} \equiv \frac{1}{h^{2}} \left(\nabla^{2} + \nabla^{3} + \frac{11}{12}\nabla^{4} + ...\right)$$

$$\Rightarrow \left(\frac{d^{2}y}{dx^{2}}\right)_{x=x_{i}} \equiv \frac{1}{h^{2}} \left(\nabla^{2}y_{i} + \nabla^{3}y_{i} + \frac{11}{12}\nabla^{4}y_{i} + ...\right)$$

To find Third Derivative

We have $hD \equiv \nabla + \frac{\nabla^2}{2} + \frac{\nabla^3}{3} + \frac{\nabla^4}{4} + \dots$	
Cubing on both sides, we get $(hD)^3 \equiv \left(\nabla + \frac{\nabla^2}{2} + \frac{\nabla^3}{3} + \frac{\nabla^4}{4} + \dots\right)^3$	$\Big)^3$
$\implies h^3 D^3 \equiv \left(\nabla + \frac{\nabla^2}{2} + \dots\right)^3$	
$\implies h^{3}D^{3} \equiv \left(\nabla^{3} + \frac{\nabla^{6}}{8} + \frac{3}{2}\nabla^{4} + \frac{3}{4}\nabla^{5} + \dots\right) (\because (a+b)^{3} = a^{3} + \frac{3}{4}\nabla^{5} + \dots)$	$b^3 + 3a^2b + 3ab^2$
$\implies D^3 \equiv \frac{1}{h^3} \left(\nabla^3 + \frac{3}{2} \nabla^4 + \dots \right)$	
$\implies \left(\frac{d^3y}{dx^3}\right)_{x=x_i} \equiv \frac{1}{h^3} \left(\nabla^3 y_i + \frac{3}{2}\nabla^4 y_i + \dots\right)$	

Differentiation using Central differences

We know that the Stirling's Formula is given by

 $y = y_0 + \frac{p}{2}(\Delta y_0 + \Delta y_{-1}) + \frac{p^2}{2}\Delta^2 y_{-1} + \frac{(p^3 - p)}{12}(\Delta^3 y_{-1} + \Delta^3 y_{-2}) + \frac{(p^4 - p^2)}{24}\Delta^4 y_{-2} + \dots$

Where $p = \frac{x - x_0}{h}$ Now, Differentiating w.r.t. x, we get $\frac{dy}{dx} = \frac{dy}{dp} \cdot \frac{dp}{dx}$ $\frac{dy}{dx} = \frac{1}{h} \cdot \frac{dy}{dp}$ $\left(\because \frac{dp}{dx} = \frac{1}{h}\right)$ $\Rightarrow \frac{dy}{dx} = \frac{1}{h} \left(\frac{1}{2}(\Delta y_0 + \Delta y_{-1}) + p\Delta^2 y_{-1} + \frac{(3p^2 - 1)}{12}(\Delta^3 y_{-1} + \Delta^3 y_{-2}) + \frac{(4p^3 - 2p)}{24}\Delta^4 y_{-2} + ...\right)$ At $x = x_0 \Rightarrow p = 0$ $\Rightarrow \left(\frac{dy}{dx}\right)_{x=x_0} = \frac{1}{h} \left(\frac{1}{2}(\Delta y_0 + \Delta y_{-1}) - \frac{1}{12}(\Delta^3 y_{-1} + \Delta^3 y_{-2}) + ...\right)$ Similarly, $\left(\frac{d^2 y}{dx^2}\right)_{x=x_0} = \frac{1}{h^2} \left(\Delta^2 y_{-1} - \frac{1}{12}\Delta^4 y_{-2} + \frac{1}{90}\Delta^6 y_{-3} - ...\right)$ $\left(\frac{d^3 y}{dx^3}\right)_{x=x_0} = \frac{1}{h^3} \left(\frac{1}{2}(\Delta^3 y_{-1} + \Delta^3 y_{-2}) + ...\right)$

When we have to use these formulae?

When we are asked to find $\frac{dy}{dx}$ at the point $x = x_i$, the problem analyzing should be as follows: If the point $x = x_i$ is nearer to the starting arguments of the given table, then use Forward difference formulas for differentiation

If the point $x = x_i$ is nearer to the ending arguments of the given table, then use Backward difference formulas for differentiation

If the point $x = x_i$ is nearer to the Middle arguments of the given table, then use Central difference formulas for differentiation.

Numerical Integration

We know that a definite integral of the form $\int_a^b f(x)dx$ represents the area under the curve y = f(x), enclosed between the limits x = a and x = b.

Let $I = \int_{a}^{b} f(x) dx$. Here the value of *I* is a Numerical value.

Aim: To find the approximation to the Numerical value of *I*. The process of finding the approximation to the definite Integral is known as Numerical Integration.

Let $x_0, x_1, x_2, ..., x_n$ be given set of observations, and let $y_0, y_1, y_2, ..., y_n$ be the corresponding values for the curve y = f(x).

$$I \cong h \int_0^n \left[f_0 + s \frac{\Delta f_0}{1!} + s(s-1) \frac{\Delta^2 f_0}{2!} + \dots + s(s-1)(s-2) \dots (s-[n-1]) \frac{\Delta^n f_0}{n!} \right] ds$$

This formulae is also known as Newton Cotes closed type Formulae.

- If n = 1, the formula is known as Trapezoidal Rule
- If n = 2, the formula is known as Simpson's $\frac{1}{3}rd$ Rule

• If n = 3, the formula is known as Simpson's $\frac{3}{8}th$ Rule

Trapezoidal Rule

$$I \approx \frac{h}{2} [(y_0 + y_n) + 2(y_1 + y_2 + y_3 + ... + y_{n-1})]$$

i.e. $I \approx \frac{h}{2} [(First term + Last term) + 2(Sum of remaining terms)]$
Here *n* is number of Intervals, and $h = \frac{b-a}{n}$
Simpson's $\frac{1}{3}rd$ Rule
 $I \approx \frac{h}{2} [(y_0 + y_{2n}) + 4(y_1 + y_3 + ... + y_{2n-1}) + 2(y_2 + y_4 + ... + y_{2n-2})]$
i.e. $I \approx \frac{h}{2} [(First term + Last term) + 4(Sum of odd terms) + 2(sum of even terms)]$
Simpson's $\frac{3}{8}th$ Rule
 $I \approx \frac{h}{2} [(y_0 + y_{3n}) + 3(y_1 + y_2 + y_4 + y_6 + ... + y_{3n-1}) + 2(y_3 + y_6 + ... + y_{3n-3})]$

i.e. $I \cong \frac{n}{2}[(First term + Last term) + 3(Sum of terms which are not multiples of 3) + 2(sum of terms which are multiples of 3)$

- If Even number of Intervals are there, it is preferred to use Simpson's $\frac{1}{3}rd$ Rule (Or) Trapezoidal Rule.
- ▶ If Number of Intervals is multiple of 3, then use Simpson's $\frac{3}{8}th$ Rule (Or) Trapezoidal Rule.
- If Odd number of Intervals are there, and which is not multiple of 3, then use Trapezoidal Rule. Ex: 5, 7 etc.
- ▶ For any number of Intervals, the default Rule we can use is Trapezoidal.

