REAL AND COMPLEX MATRICES QUATRADTIC FORMS

I YEAR B.Tech

By
Mr. Y. Prabhaker Reddy
Asst. Professor of Mathematics
Guru Nanak Engineering College
Ibrahimpatnam, Hyderabad.

SYLLABUS OF MATHEMATICAL METHODS (as per JNTU Hyderabad)

Name of the Unit	Name of the Topic
Unit-I Solution of Linear systems	Matrices and Linear system of equations: Elementary row transformations - Rank - Echelon form, Normal form - Solution of Linear Systems - Direct Methods - LU Decomposition from Gauss Elimination - Solution of Tridiagonal systems - Solution of Linear Systems.
Unit-II Eigen values and Eigen vectors	Eigen values, Eigen vectors - properties - Condition number of Matrix, Cayley Hamilton Theorem (without proof) - Inverse and powers of a matrix by Cayley Hamilton theorem - Diagonalization of matrix - Calculation of powers of matrix Model and spectral matrices.
Unit-III Linear Transformations	Real Matrices, Symmetric, skew symmetric, Orthogonal, Linear Transformation Orthogonal Transformation. Complex Matrices, Hermition and skew Hermition matrices, Unitary Matrices - Eigen values and Eigen vectors of complex matrices and their properties. Quadratic forms - Reduction of quadratic form to canonical form, Rank, Positive, negative and semi definite, Index, signature, Sylvester law, Singular value decomposition.
Unit-IV Solution of Nonlinear Systems	Solution of Algebraic and Transcendental Equations- Introduction: The Bisection Method - The Method of False Position - The Iteration Method - Newton -Raphson Method Interpolation:Introduction-Errors in Polynomial Interpolation - Finite differences- Forward difference, Backward differences, Central differences, Symbolic relations and separation of symbols-Difference equations - Differences of a polynomial - Newton's Formulae for interpolation - Central difference interpolation formulae - Gauss Central Difference Formulae - Lagrange's Interpolation formulae- B. Spline interpolation, Cubic spline.
Unit-V Curve fitting \& Numerical Integration	Curve Fitting: Fitting a straight line - Second degree curve - Exponential curve Power curve by method of least squares. Numerical Integration: Numerical Differentiation-Simpson's 3/8 Rule, Gaussian Integration, Evaluation of Principal value integrals, Generalized Quadrature.
Unit-VI Numerical solution of ODE	Solution by Taylor's series - Picard's Method of successive approximation- Euler's Method -Runge kutta Methods, Predictor Corrector Methods, Adams- Bashforth Method.
Unit-VII Fourier Series	Determination of Fourier coefficients - Fourier series-even and odd functions Fourier series in an arbitrary interval - Even and odd periodic continuation - Halfrange Fourier sine and cosine expansions.
Unit-VIII Partial Differential Equations	Introduction and formation of PDE by elimination of arbitrary constants and arbitrary functions - Solutions of first order linear equation - Non linear equations Method of separation of variables for second order equations - Two dimensional wave equation.

CONTENTS

UNIT-III
REAL AND COMPLEX MATRICES, QUADRATIC FORMS
$>$ Definitions of Hermitian and skew Hermitian matrices
$>$ Quadratic forms
$>$ Types of Quadratic foms
$>$ Canonical form

REAL AND COMPLEX MATRICES \& QUADRATIC FORMS

Conjugate Matrix: Suppose A is any matrix, then the conjugate of the matrix A is denoted by \bar{A} and is defined as the matrix obtained by taking the conjugate of every element of A.

* Conjugate of $a+i b$ is $a-i b$
* $\overline{(\bar{A})}=A$
* $\overline{A . B}=\bar{A} \cdot \bar{B}$
* $\overline{A+B}=\bar{A}+\bar{B}$

Ex: If $A=\left[\begin{array}{cc}1 & 2+3 i \\ 3-4 i & -2 i\end{array}\right] \Rightarrow \bar{A}=\left[\begin{array}{cc}1 & 2-3 i \\ 3+4 i & 2 i\end{array}\right]$
Conjugate Transpose of a matrix (or) Transpose conjugate of a matrix: Suppose A is any square matrix, then the transpose of the conjugate of A is called Transpose conjugate of A. It is denoted by $A^{\theta}=(\bar{A})^{T}=\overline{\left(A^{T}\right)}$.
Ex: If $A=\left[\begin{array}{cc}1-i & -2 i \\ 4-3 i & 5-4 i\end{array}\right]$ then $\bar{A}=\left[\begin{array}{cc}1+i & 2 i \\ 4+3 i & 5+4 i\end{array}\right]$
Now, $(\bar{A})^{T}=\left[\begin{array}{cc}1+i & 4+3 i \\ 2 i & 5+4 i\end{array}\right]=A^{\theta}$

* $\left(A^{\theta}\right)^{\theta}=A$
* $(A+B)^{\theta}=A^{\theta}+B^{\theta}$
* $(A B)^{\theta}=B^{\theta} A^{\theta}$

Hermitian Matrix: A square matrix A is said to be Hermition if $A^{\theta}=A$
Ex: If $A=\left[\begin{array}{cc}2 & 5+i \\ 5-i & 6\end{array}\right]$ is a Hermition matrix

* The diagonal elements of Hermitian matrix are purely Real numbers.
* A is Hermition $\Rightarrow a_{i j}=\left\{\begin{array}{lll}\text { real } & \text { if } & i=j \\ \overline{a_{\jmath \imath}} & \text { if } & i \neq j\end{array}\right.$
* The number of Independent elements in a Hermitian matrix are $\frac{n(n+1)}{2}, n$ is Order.

Skew Hermitian Matrix: A square matrix A is said to be Skew Hermition if $A^{\theta}=-A$ Ex: If $A=\left[\begin{array}{ccc}i & 3+i & 4 \\ -3+i & 0 & 6 \\ -4 & -6 & 3 i\end{array}\right]$ is a Skew Hermition Matrix.

* The diagonal elements of Skew Hermition matrix are either ' 0 ' or Purely Imaginary.
* A is Skew Hermition $\Rightarrow a_{i j}=\left\{\begin{array}{ccc}\text { Imaginary (or) } 0 & \text { if } i=j \\ \overline{a_{\jmath \iota}} & \text { if } i \neq j\end{array}\right.$
* The no. of Independent elements in a Skew Hermitian matrix are $\frac{n(n-1)}{2}, n$ is Order

Orthogonal Matrix: A square matrix A is said to be Orthogonal if $A A^{T}=A^{T} A=I$ Ex: $A=\left[\begin{array}{rr}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$

* If A is orthogonal, then A^{T} is also orthogonal.
* If A, B are orthogonal matrices, then $A B$ is orthogonal.

Unitary Matrix: A square matrix A is said to be Unitary matrix if $A A^{\theta}=A^{\theta} A=I$

* If A is a Unitary matrix, then A^{T}, A^{θ} are also Unitary.
* If A, B are Unitary matrices, then $A B$ is Unitary.

Normal Matrix: A square matrix A is said to be Normal matrix if
i. $\quad A A^{T}=A^{T} A$ (if A is Real)
ii. $A A^{\theta}=A^{\theta} A$ (if A is non-real i.e. Complex)

* Orthogonal and Unitary matrices are Normal Matrices.
* Symmetric and Hermition matrices are Normal Matrices.

Quadratic Forms

Definition: An expression of the form $Q=X^{T} A X=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}$, where $a_{i j}$'s are constants, is called a quadratic form in n variables $x_{1}, x_{2}, \ldots, x_{n}$.

If the constants $a_{i j}$'s are real numbers, it is called a real quadratic form.
The second order homogeneous expression in n variables is called a Quadratic form.

Examples

1) $3 x^{2}+5 x y+3 y^{2}$ is a quadratic form in 2 variables x and y.
2) $3 x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}$ is a quadratic form in 3 variables x_{1}, x_{2}, x_{3} etc.

Canonical Form: The Quadratic form which is in the form of sum of squares.
Let $X^{T} A X$ be a Quadratic form.
Let $X=P Y$ be the transformation used for transforming the quadratic form to canonical form.

$$
\text { i.e. } \begin{aligned}
X^{T} A X & =(P Y)^{T} A(P Y) \\
& =Y^{T} P^{T} A P Y
\end{aligned}
$$

This is the canonical form when $P^{T} A P=D$, where D is a diagonal matrix.
There are two types of Transformations:

- Orthogonal Transformation (in which P is Orthogonal)
- Congruent Transformation (in which P is non-singular matrix)

Index of a Real Quadratic Form

When the quadratic form $X^{T} A X$ is reduced to the canonical form, it will contain only r terms, if the rank of A is r. The terms in the canonical form may be positive, zero or negative.

The number of positive terms in a normal form of quadratic form is called the index (s) of the quadratic form. It is denoted by s.

- The number of positive terms in any two normal reductions of quadratic form is the same.
- The number of negative terms in any two normal reductions of quadratic form is the same.

Signature of a Quadratic Form

If r is the rank of a quadratic form and s is the number of positive terms in its normal form, then $(2 s-r)$ will give the signature of the quadratic form.

Types of Quadratic Forms (or) Nature of Quadratic Forms

There are five types of Quadratic Forms

- Positive definite
- Negative definite
- Positive semi definite
- Negative semi definite
- Indefinite

The Quadratic form $X^{T} A X$ in n variables is said to be

- Positive definite: All the Eigen values of A are positive.
- Negative definite: All the Eigen values of A are negative.
- Positive semi definite: All the Eigen values of A are ≥ 0, and atleast one eigen value is zero.
- Negative semi definite: All the Eigen values of A are ≤ 0, and atleast one eigen value is zero.
- Indefinite: All the Eigen values of A has positive as well as Negative Eigen values.

Procedure to Reduce Quadratic form to Canonical form by Orthogonal Transformation

Step 1: Write the coefficient matrix A associated with the given quadratic form.
Step 2: Find the eigen values of A.
Step 3: Write the canonical form using $\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\ldots+\lambda_{n} y_{n}^{2}$.
Step 4: Form a matrix P containing the normalized eigen vectors of A. Then $X=P Y$ gives the required orthogonal transformation, which reduces Quadratic form to canonical form.

