MATHEMATICAL METHODS

INTERPOLATION

I YEAR B.Tech

By

Mr. Y. Prabhaker Reddy

Asst. Professor of Mathematics Guru Nanak Engineering College Ibrahimpatnam, Hyderabad.

SYLLABUS OF MATHEMATICAL METHODS (as per JNTU Hyderabad)

Name of the Unit	Name of the Topic				
	Matrices and Linear system of equations: Elementary row transformations – Rank				
Solution of Lincor	- Echelon form, Normal form - Solution of Linear Systems - Direct Methods - LU				
Solution of Linear	Decomposition from Gauss Elimination – Solution of Tridiagonal systems – Solution				
systems	of Linear Systems.				
Unit-II	Eigen values, Eigen vectors - properties - Condition number of Matrix, Cayley -				
Figon values and	Hamilton Theorem (without proof) - Inverse and powers of a matrix by Cayley -				
Figen vectors	Hamilton theorem - Diagonalization of matrix - Calculation of powers of matrix -				
Eigen vettors	Model and spectral matrices.				
	Real Matrices, Symmetric, skew symmetric, Orthogonal, Linear Transformation -				
Unit-III	Orthogonal Transformation. Complex Matrices, Hermition and skew Hermition				
Linear	matrices, Unitary Matrices - Eigen values and Eigen vectors of complex matrices and				
Transformations	their properties. Quadratic forms - Reduction of quadratic form to canonical form,				
I Talisioi mations	Rank, Positive, negative and semi definite, Index, signature, Sylvester law, Singular				
	value decomposition.				
	Solution of Algebraic and Transcendental Equations- Introduction: The Bisection				
	Method – The Method of False Position – The Iteration Method - Newton –Raphson				
Unit-IV	Method Interpolation:Introduction-Errors in Polynomial Interpolation - Finite				
Solution of Non-	differences- Forward difference, Backward differences, Central differences, Symbolic				
linear Systems	relations and separation of symbols-Difference equations – Differences of a				
inical systems	polynomial - Newton's Formulae for interpolation - Central difference interpolation				
	formulae - Gauss Central Difference Formulae - Lagrange's Interpolation formulae- B.				
	Spline interpolation, Cubic spline.				
Unit-V	Curve Fitting: Fitting a straight line - Second degree curve - Exponential curve -				
Curve fitting &	Power curve by method of least squares.				
Numerical	Numerical Integration: Numerical Differentiation-Simpson's 3/8 Rule, Gaussian				
Integration	Integration, Evaluation of Principal value integrals, Generalized Quadrature.				
Unit-VI	Solution by Taylor's series - Picard's Method of successive approximation- Euler's				
Numerical	Method -Runge kutta Methods, Predictor Corrector Methods, Adams- Bashforth				
solution of ODE	Method.				
Unit-VII	Determination of Fourier coefficients - Fourier series-even and odd functions -				
Fourier Series	Fourier series in an arbitrary interval - Even and odd periodic continuation - Half-				
i ourier berres	range Fourier sine and cosine expansions.				
Unit-VIII	Introduction and formation of PDE by elimination of arbitrary constants and				
Partial	arbitrary functions - Solutions of first order linear equation - Non linear equations -				
Differential Foliations wave equation.					
Lyuanons	· · · · · · · · · · · · · · · · · · ·				

CONTENTS

UNIT-IV(b) INTERPOLATION

- > Introduction
- > Introduction to Forward, Back ward and Central differences
- > Symbolic relations and Separation of Symbols
- > Properties
- > Newton's Forward Difference Interpolation Formulae
- > Newton's Backward Difference Interpolation Formulae
- > Gauss Forward Central Difference Interpolation Formulae
- > Gauss Backward Central Difference Interpolation Formulae
- > Striling's Formulae
- Lagrange's Interpolation

INTERPOLATION

The process of finding the curve passing through the points $(x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ is called as Interpolation and the curve obtained is called as Interpolating curve.

Interpolating polynomial passing through the given set of points is unique.

Let $x_0, x_1, x_2, ..., x_n$ be given set of observations and y = f(x) be the given function, then the method to find $f(x_m) \forall x_0 \le x_m \le x_n$ is called as an Interpolation.

If x_m is not in the range of x_0 and x_n , then the method to find (x_m) is called as Extrapolation.

The Interpolation depends upon finite difference concept.

If $x_0, x_1, x_2, ..., x_n$ be given set of observations and let $y_0 = f(x_0), y_1 = f(x_1), ..., y_n = f(x_n)$ be their corresponding values for the curve y = f(x), then $y_1 - y_0, y_2 - y_1, ..., y_n - y_{n-1}$ is called as finite difference.

When the arguments are equally spaced i.e. $x_i - x_{i-1} = h \forall i$ then we can use one of the following differences.

- ► Forward differences
- Backward differences
- Central differences

Forward Difference

Let us consider $x_0, x_1, x_2, ..., x_n$ be given set of observations and let $y_0, y_1, y_2, ..., y_n$ are corresponding values of the curve y = f(x), then the Forward difference operator is denoted by Δ and is defined as $\Delta y_0 = y_1 - y_0$, $\Delta y_1 = y_2 - y_1, ..., \Delta y_{n-1} = y_n - y_{n-1}$. In this case $\Delta y_0, \Delta y_1, ..., \Delta y_n$ are called as First Forward differences of y. The difference of first forward differences will give us Second forward differences and it is denoted by Δ^2 and is defined as $\Delta^2 y_0 = \Delta(\Delta y_0)$

$$= \Delta(y_1 - y_0) = \Delta y_1 - \Delta y_0$$
$$= (y_2 - y_1) - (y_1 - y_0)$$
$$= y_2 - 2y_1 - y_0$$

Similarly, the difference of second forward differences will give us third forward difference and it is denoted by Δ^3 .

Forward difference table

	(())	First Forward	Second Forward	Third Forward	Fourth differences
x	y = f(x)	differences Δy	differences $\Delta^2 v$	differences $\Delta^3 v$	$\Delta^4 v$
			<u> </u>		2
xo	v_{0}				
	20	$\Delta y_0 = y_1 - y_0$			
X1	v_1		$\Lambda^2 a = \Lambda a = \Lambda a$		
<i>m</i> 1	91	A	$\Delta^- y_0 = \Delta y_1 - \Delta y_0$		
r	1/a	$\Delta y_1 = y_2 - y_1$		$\Delta^3 y_0 = \Delta^2 y_1 - \Delta^2 y_2$	
×2	<i>y</i> 2		$\Lambda^2_{\alpha\gamma} = \Lambda_{\alpha\gamma} = \Lambda_{\alpha\gamma}$. 4 . 2 . 2
		A ay — ay ay	$\Delta^- y_1 = \Delta y_2 - \Delta y_1$		$\Delta^4 y_0 = \Delta^5 y_1 - \Delta^5 y_0$
x_3	y_3	$\Delta y_2 = y_3 - y_2$		$\Delta^3 y_1 = \Delta^2 y_3 - \Delta^2 y_2$	
•	•		$\Lambda^2 $ \sim Λ \sim Λ \sim		
•	•		$\Delta^2 y_2 = \Delta y_3 - \Delta y_2$		
x_{n-1}	y_{n-1}	•			
x_n	y_n	$\Lambda_{22} = \Lambda_{22} = \Lambda_{22}$			
		$\Delta y_{n-1} - \Delta y_n - \Delta y_{n-1}$			

Note: If *h* is common difference in the values of *x* and y = f(x) be the given function then $\Delta f(x) = f(x + h) - f(x)$.

Backward Difference

Let us consider $x_0, x_1, x_2, ..., x_n$ be given set of observations and let $y_0, y_1, y_2, ..., y_n$ are corresponding values of the curve y = f(x), then the Backward difference operator is denoted by ∇ and is defined as $\nabla y_1 = y_1 - y_0$, $\nabla y_2 = y_2 - y_1, ..., \nabla y_n = y_n - y_{n-1}$.

In this case ∇y_0 , ∇y_1 , ..., ∇y_n are called as First Backward differences of y.

The difference of first Backward differences will give us Second Backward differences and it is denoted by ∇^2 and is defined as $\nabla^2 y_2 = \nabla(\nabla y_2)$

$$= \nabla (y_2 - y_1) = \nabla y_2 - \nabla y_1$$
$$= (y_2 - y_1) - (y_1 - y_0)$$
$$= y_2 - 2y_1 - y_0$$

Similarly, the difference of second backward differences will give us third backward difference and it is denoted by ∇^3 .

Backward difference table

x	y = f(x)	First Backward differences ∆y	Second Backward differences $\Delta^2 y$	Third Backward differences $\Delta^3 y$	Fourth differences $\Delta^4 y$
<i>x</i> ₀	${\mathcal Y}_0$	$\nabla y_1 = y_1 - y_0$			
<i>x</i> ₁	${\mathcal Y}_1$		$\nabla^2 y_2 = \nabla y_2 - \nabla y_1$		
<i>x</i> ₂	${\mathcal Y}_2$	$\nabla y_2 = y_2 - y_1$	$\nabla^2 y_3 = \nabla y_3 - \nabla y_2$	$\nabla^3 y_3 = \nabla^2 y_3 - \nabla^2 y_2$	$\nabla^4 u = \nabla^3 u = \nabla^3 u$
<i>x</i> ₃	<i>y</i> ₃	$\nabla y_3 = y_3 - y_2$		$\nabla^3 y_4 = \nabla^2 y_4 - \nabla^2 y_3$	$\mathbf{v} \mathbf{y}_4 = \mathbf{v} \mathbf{y}_4 = \mathbf{v} \mathbf{y}_3$
	•		$\nabla^2 y_4 = \nabla y_4 - \nabla y_3$		
x_{n-1}	y_{n-1}				
x _n	Уn	$\nabla y_n = \nabla y_n - \nabla y_{n-1}$			

Note: If *h* is common difference in the values of *x* and y = f(x) be the given function then $\nabla f(x + h) = f(x + h) - f(x)$.

Central differences

Let us consider $x_0, x_1, x_2, ..., x_n$ be given set of observations and let $y_0, y_1, y_2, ..., y_n$ are corresponding values of the curve y = f(x), then the Central difference operator is denoted by δ and is defined as

• If *n* is odd $: \delta^n y_{r-\frac{1}{2}} = \delta^{n-1} y_r - \delta^{n-1} y_{r-1}$, r = 1, 2, 3, ...

• If *n* is even $: \delta^n y_r = \delta^{n-1} y_{r+\frac{1}{2}} - \delta^{n-1} y_{r-\frac{1}{2}}, r = 1, 2, 3, ...$

and
$$\delta^0 y_r = y_r$$

The Central difference table is shown below

x	у	δy	$\delta^2 y$	$\delta^3 y$	$\delta^4 y$
<i>x</i> ₀	<i>Y</i> ₀	$\delta y_{rac{1}{2}}$	$\delta^2 v_1$		
<i>x</i> ₁	<i>y</i> ₁	$\delta y_{\frac{3}{2}}$	<i>7</i> 1	$\delta^3 y_{rac{3}{2}}$	
<i>x</i> ₂	<i>y</i> ₂	δν5	$\delta^2 y_2$	c2	$\delta^4 y_2$
<i>x</i> ₃	<i>y</i> ₃	$\frac{3}{2}$	$\delta^2 v_2$	$\delta^3 y_{\frac{5}{2}}$	
x_4	<i>y</i> ₄	$\delta y_{\frac{7}{2}}$	5 93		

Note: Let *h* be common difference in the values of *x* and y = f(x) be given function then $\delta f(x) = f\left(x + \frac{h}{2}\right) - f\left(x - \frac{h}{2}\right)$

Symbolic Relations and Separation of Symbols

Average Operator: The average operator μ is defined by the equation

$$uy_{r} = \frac{1}{2} \left(y_{r+\frac{1}{2}} + y_{r-\frac{1}{2}} \right)$$
(0r)

Let *h* is the common difference in the values of *x* and y = f(x) be the given function, then the average operator is denoted by μ and is defined as $\mu f(x) = \frac{f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right)}{2}$ Shift Operator: The Shift operator *E* is defined by the equation $Ey_r = y_{r+1}$ Similarly, $E^n y_r = y_{n+r}$

(0r)

Let *h* is the common difference in the values of *x* and y = f(x) be the given function, then the shift operator is denoted by *E* and is defined as Ef(x) = f(x + h)

Inverse Operator: The Inverse Operator E^{-1} is defined as $E^{-1}y_r = y_{r-1}$ In general, $E^{-n}y_r = y_{r-n}$

Properties

1) Prove that
$$E = 1 + \Delta$$

Sol: Consider R.H.S: $(1 + \Delta)y_n = y_n + \Delta y_n$
 $= y_n + (y_{n+1} - y_n)$
 $= y_{n+1}$
 $= E^1 y_n \quad (\because E^n y_r = y_{n+r})$
 $\therefore E = 1 + \Delta$

3) Prove that $\Delta = E \nabla = \nabla E$

Sol: Case (i) Consider $(E\nabla)y_n$

2) Prove that $\nabla = 1 - E^{-1}$ Sol: Consider L.H.S: $\nabla y_n = y_n - y_{n-1}$ $= y_n - E^{-1}y_n$ $= (1 - E^{-1})y_n$ $\therefore \nabla = 1 - E^{-1}$

$$(E\nabla)y_n = E(\nabla y_n)$$

$$= E(y_n - y_{n-1})$$

$$= Ey_n - Ey_{n-1}$$

$$= y_{n+1} - y_n$$

$$= \Delta y_n$$

$$\therefore \Delta = E\nabla$$

$$(E\nabla)y_n = \nabla(Ey_n)$$

$$= \nabla(Ey_n)$$

$$= \nabla(Ey_n)$$

$$= \nabla(Ey_n)$$

Hence from these cases, we can conclude that $\Delta = E \nabla = \nabla E$

4) Prove that $(1 + \Delta)(1 - \nabla) = 1$ Sol: Consider $(1 + \Delta)(1 - \nabla)y_n = (1 + \Delta)(y_n - \nabla y_n)$ $= (1 + \Delta)(y_n - \{y_n - y_{n-1}\})$ $= (1 + \Delta)y_{n-1}$

$$= (y_{n-1} + \{y_n - y_{n-1}\})$$

$$= y_n$$
Hence $(1 + \Delta)(1 - \nabla) = 1$
5) Prove that $\Delta = \nabla(1 - \nabla)^{-1}$ (Hint: Consider $\Delta(1 - \nabla)$)
6) Prove that $\Delta = \nabla(1 - \nabla)^{-1}$ (Hint: Consider $\Delta(1 - \nabla)$)
6) Prove that $\Delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
Sol: We know that $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$

$$= (E^{\frac{1}{2}} - E^{-\frac{1}{2}})y_r$$
Hence the result $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
Sol: We know that $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
Sol: We know that $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$

$$= (E^{\frac{1}{2}} - E^{-\frac{1}{2}})y_r$$
Hence the result $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
Sol: We know that $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
Sol: We know that $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
Sol: We know that $\delta = E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
Hence proved that $\mu = \frac{1}{2}(E^{\frac{1}{2}} - E^{-\frac{1}{2}})$

$$f(E^{\frac{1}{2}} - E^{-\frac{1}{2}})^2$$
L.H.S $\Rightarrow 1 + \frac{1}{4}\delta^2 = 1 + \frac{1}{4}(E^1 + E^{-1} - 2)$

$$= \frac{1}{4}(E^1 + E^{-1} + 2) = \mu^2$$
Hence the result
Relation between the operator D and E
Here Operator $D = \frac{d}{dx}$
We know that $Ef(x) = f(x + h)$

Expanding using Taylor's series , we get

$$Ef(x) = f(x) + \frac{h}{1!}f'(x) + \frac{h^2}{2!}f''(x) + \dots$$
$$= [1 + hD + h^2D^2 + \dots]f(x)$$
$$= e^{hD}f(x)$$
$$\Rightarrow E = e^{hD}$$

Newton's Forward Interpolation Formula

Statement: If $x_0, x_1, x_2, ..., x_n$ are given set of observations with common difference h and let $y_0, y_1, y_2, ..., y_n$ are their corresponding values, where y = f(x) be the given function then $f(x) = y_0 + p \Delta y_0 + \frac{p (p-1)}{2!} \Delta^2 y_0 + \frac{p (p-1)(p-2)}{3!} \Delta^3 y_0 + ... + \frac{p (p-1)(p-2)...(p-(n-1))}{n!} \Delta^n y_0$ where $p = \frac{x - x_0}{h}$ *Proof:* Let us assume an n^{th} degree polynomial

$$f(x) = A_0 + A_1(x - x_0) + A_2(x - x_0)(x - x_1) + \dots + A_n (x - x_0)(x - x_1) \dots (x - x_{n-1}) \dots (i)$$

Substitute $x = x_0$ in (i), we get $f(x_0) = A_0 \implies y_0 = A_0$

Substitute $x = x_1$ in (i), we get $f(x_1) = A_0 + A_1(x_1 - x_0) \implies y_1 = y_0 + A_1h$

$$\implies A_1 = \frac{y_1 - y_0}{h} = \frac{\Delta y_0}{h}$$

Substitute $x = x_2$ in (i), we get $f(x_2) = A_0 + A_1(x_2 - x_0) + A_2(x_2 - x_0)(x_2 - x_1)$

$$\Rightarrow y_2 = y_0 + A_1(2h) + A_2(2h)(h)$$

$$\Rightarrow y_2 = y_0 + 2h\left(\frac{\Delta y_0}{h}\right) + 2h^2 A$$
$$\Rightarrow A_2 = \frac{1}{2h^2} \Delta^2 y_0$$

Similarly, we get $A_n = \frac{1}{nh^2} \Delta^n y_0$

Substituting these values in (i), we get

$$f(x) = y_0 + (x - x_0)\frac{1}{h}\Delta y_0 + (x - x_0)(x - x_1)\frac{1}{2h^2}\Delta^2 y_0 + \dots + (x - x_0)(x - x_1)\dots(x - x_{n-1})\frac{1}{nh^2}\Delta^n y_0$$
----(ii)

But given
$$p = \frac{x-x_0}{h}$$

 $\Rightarrow x - x_0 = ph \Rightarrow x = x_0 + h$
 $\Rightarrow x - x_1 = x - (x_0 + h)$
 $= (x - x_0) - h$
 $= ph - h = (p - 1)h$
Similarly, $x - x_2 = (p - 2)h$,
 \vdots
 $x - x_{n-1} = (p - (n - 1))h$
Substituting in the Equation (ii), we get
 $f(x) = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + ... + \frac{p(p-1)(p-2)...(p-(n-1))}{n!} \Delta^n y_0$

Newton's Backward Interpolation Formula

Statement: If $x_0, x_1, x_2, ..., x_n$ are given set of observations with common difference h and let $y_0, y_1, y_2, ..., y_n$ are their corresponding values, where y = f(x) be the given function then $f(x) = y_n + p \nabla y_n + \frac{p (p+1)}{2!} \nabla^2 y_n + \frac{p (p+1)(p+2)}{3!} \nabla^3 y_0 + ... + \frac{p (p+1)(p+2)...(p+(n-1))}{n!} \nabla^n y_0$ where $p = \frac{x - x_0}{h}$

Proof: Let us assume an n^{th} degree polynomial

$$f(x) = A_0 + A_1(x - x_n) + A_2(x - x_n)(x - x_{n-1}) + \dots + A_n (x - x_n)(x - x_{n-1}) \dots (x - x_1)$$

--> (i)

Substitute $x = x_n$ in (i), we get $f(x_n) = A_0 \implies y_n = A_0$ Substitute $x = x_{n-1}$ in (i), we get $f(x_{n-1}) = A_0 + A_1(x_{n-1} - x_n) \implies y_{n-1} = y_n - A_1h$ $\implies A_1 = \frac{y_n - y_{n-1}}{h} = \frac{\nabla y_0}{h}$

Substitute $x = x_{n-2}$ in (i), we get $f(x_{n-2}) = A_0 + A_1(x_{n-2} - x_n) + A_2(x_{n-2} - x_n)(x_{n-2} - x_{n-1})$

$$\Rightarrow y_{n-2} = y_n + A_1(-2h) + A_2(-2h)(-h)$$
$$\Rightarrow y_{n-2} = y_n - 2h\left(\frac{\nabla y_n}{h}\right) + 2h^2 A_2$$
$$\Rightarrow A_2 = \frac{1}{2h^2} \nabla^2 y_n$$

Similarly, we get $A_n = \frac{1}{nh^2} \nabla^n y_n$ Substituting these values in (i), we get

$$f(x) = y_n + (x - x_n) \frac{1}{h} \nabla y_n + (x - x_n)(x - x_{n-1}) \frac{1}{2h^2} \nabla^2 y_n + \dots + (x - x_n)(x - x_{n-1}) \dots (x - x_1) \frac{1}{nh^2} \nabla^n y_n \quad \dots \quad (\text{ii})$$

But given $p = \frac{x - x_n}{h}$ $\Rightarrow x - x_n = ph \Rightarrow x = x_n + h$ $\Rightarrow x - x_{n-1} = x - (x_n - h)$ $= (x - x_n) + h$ = ph + h = (p + 1)hSimilarly, $x - x_{n-2} = (p + 2)h$, \vdots

 $x - x_1 = (p + (n - 1))h$ Substituting in the Equation (ii), we get

$$f(x) = y_n + p \nabla y_n + \frac{p(p+1)}{2!} \Delta^2 y_n + \frac{p(p+1)(p+2)}{3!} \Delta^3 y_n + \dots + \frac{p(p+1)(p+2)\dots(p+(n-1))}{n!} \Delta^n y_n$$

Gauss forward central difference formula

Statement: If ..., x_{-2} , x_{-1} , x_0 , x_1 , x_2 , ... are given set of observations with common difference hand let ..., y_{-2} , y_{-1} , y_0 , y_1 , y_2 , ... are their corresponding values, where y = f(x) be the given function then $y_p = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_{-1} + \frac{p(p-1)(p+1)}{3!} \Delta^3 y_{-1} + \frac{p(p-1)(p+1)(p-2)}{4!} \Delta^4 y_{-2} + \dots$ where $p = \frac{x - x_0}{h}$.

Proof:

x	У	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
:	:				
<i>x</i> ₋₂	\mathcal{Y}_{-2}	Δv_{-2}			
x_{-1}	\mathcal{Y}_{-1}	—y —z	$\Delta^2 y_{-2}$		
x_0	\mathcal{Y}_0	Δy_{-1}	A2	$\Delta^3 y_{-2}$	$\Delta^4 \nu$ a
x_1	y_1	Δy_0	$\Delta^{-}y_{-1}$	$\Delta^3 y_{-1}$	× -)-2
<i>x</i> ₂	y_2	Δν.	$\Delta^2 y_0$		
:	:	-9-1			

Let us assume a polynomial equation by using the arrow marks shown in the above table.
Let
$$y_p = y_0 + G_1 \Delta y_0 + G_2 \Delta^2 y_{-1} + G_3 \Delta^3 y_{-1} + G_4 \Delta^4 y_{-2} + \dots \cdots (1)$$

where G_0, G_1, G_2, \dots are unknowns
 $y_p = y_{p+0} = E^p y_0 = (1 + \Delta)^p y_0 \quad (\because E = 1 + \Delta)$
 $\Rightarrow y_p = (1 + p_{C_1}\Delta + p_{C_2}\Delta^2 + p_{C_3}\Delta^3 + \dots + p_{C_p}\Delta^p) y_0$
 $\Rightarrow y_p = y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \dots \cdots (2)$
Now, $y_{-1} = y_{-1+0} = E^{-1} y_0 = (1 + \Delta)^{-1} y_0$
 $= (1 - \Delta + \Delta^2 - \Delta^3 + \dots) y_0$
 $\Rightarrow y_{-1} = y_0 - \Delta y_0 + \Delta^2 y_0 - \dots$
Therefore, $\Delta^2 y_{-1} = \Delta^2 y_0 - \Delta^3 y_0 + \dots \cdots (3)$
and $\Delta^3 y_{-1} = \Delta^3 y_0 - \Delta^4 y_0 + \dots \cdots (4)$

mial a

Substituting 2, 3, 4 in 1, we get

$$y_0 + p \,\Delta y_0 + \frac{p \,(p-1)}{2!} \Delta^2 y_0 + \frac{p \,(p-1)(p-2)}{3!} \,\Delta^3 y_0 + \dots = y_0 + G_1 \,\Delta y_0 + G_2 (\Delta^2 y_0 - \Delta^3 y_0 + \dots) + G_3 (\Delta^3 y_0 - \Delta^4 y_0 + \dots) + \dots$$

Comparing corresponding coefficients, we get

$$G_1 = p, G_2 = \frac{p(p-1)}{2!}, -G_2 + G_3 = \frac{p(p-1)(p-2)}{3!} \implies G_3 = \frac{p(p-1)(p+1)}{3!}$$

Similarly, $G_4 = \frac{p(p-1)(p+1)(p-2)}{4!}$

Substituting all these values of G_0 , G_1 , G_2 , ... in (1), we get

4!

$$y_p = y_0 + p \,\Delta y_0 + \frac{p \,(p-1)}{2!} \Delta^2 y_{-1} + \frac{p \,(p-1)(p+1)}{3!} \Delta^3 y_{-1} + \frac{p \,(p-1)(p+1) \,(p-2)}{4!} \Delta^4 y_{-2} + \dots$$

Gauss backward central difference formula

Statement: If ..., x_{-2} , x_{-1} , x_0 , x_1 , x_2 , ... are given set of observations with common difference h and let ..., y_{-2} , y_{-1} , y_0 , y_1 , y_2 , ... are their corresponding values, where y = f(x) be the given function then

Let us assume a polynomial equation by using the arrow marks shown in the above table.

Let
$$y_p = y_0 + G_1 \Delta y_{-1} + G_2 \Delta^2 y_{-1} + G_3 \Delta^3 y_{-2} + G_4 \Delta^4 y_{-2} + \dots \dots (1)$$

where G_0, G_1, G_2, \dots are unknowns
 $y_p = y_{p+0} = E^p y_0 = (1 + \Delta)^p y_0 \quad (\because E = 1 + \Delta)$
 $\Rightarrow y_p = (1 + p_{c_1}\Delta + p_{c_2}\Delta^2 + p_{c_3}\Delta^3 + \dots + p_{c_p}\Delta^p) y_0$
 $\Rightarrow y_p = y_0 + p \Delta y_0 + \frac{p (p-1)}{2!} \Delta^2 y_0 + \frac{p (p-1)(p-2)}{3!} \Delta^3 y_0 + \dots \dots \dots (2)$
Now, $y_{-1} = y_{-1+0} = E^{-1} y_0 = (1 + \Delta)^{-1} y_0$
 $= (1 - \Delta + \Delta^2 - \Delta^3 + \dots) y_0$
 $\Rightarrow y_{-1} = y_0 - \Delta y_0 + \Delta^2 y_0 - \dots$

Therefore, $\Delta y_{-1} = \Delta y_0 - \Delta^2 y_0 + \Delta^3 y_0 - \dots \cdots (3)$ $\Delta^2 y_{-1} = \Delta^2 y_0 - \Delta^3 y_0 + \dots \cdots (4)$ Also $y_{-2} = y_{-2+0} = E^{-2} y_0 = (1 + \Delta)^{-2} y_0$ $= (1 - 2\Delta + 3\Delta^2 - 4\Delta^3 + \dots) y_0$ $\Rightarrow y_{-2} = y_0 - 2\Delta y_0 + 3\Delta^2 y_0 - \dots$ Now, $\Delta^3 y_{-2} = \Delta^3 y_0 - 2\Delta^4 y_0 + \dots \cdots (5)$ Substituting 2, 3, 4, 5 in 1, we get $y_0 + p \Delta y_0 + \frac{p(p-1)}{2!} \Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!} \Delta^3 y_0 + \dots = y_0 + G_1 (\Delta y_0 - \Delta^2 y_0 + \Delta^3 y_0 - \dots) + G_2 (\Delta^2 y_0 - \Delta^3 y_0 - \Delta^4 y_0 - \dots) + G_3 (\Delta^3 y_0 - 2\Delta^4 y_0 + \dots) + \dots$ Comparing corresponding coefficients, we get $G_1 = p, -G_1 + G_2 = \frac{p(p-1)}{2!} \Rightarrow G_2 = \frac{p(p+1)}{2!}$ Also, $G_1 - G_2 + G_3 = \frac{p(p-1)(p-2)}{3!} \Rightarrow G_3 = \frac{p(p+1)(p-1)}{3!}$ Similarly, $G_4 = \frac{p(p+1)(p-1)(p+2)}{4!}, \dots$ Substituting all these values of G_0, G_1, G_2, \dots in (1), we get $y_p = y_0 + p \Delta y_{-1} + \frac{p(p+1)}{2!} \Delta^2 y_{-1} + \frac{p(p+1)(p-1)}{3!} \Delta^3 y_{-2} + \frac{p(p+1)(p-1)(p+2)}{4!} \Delta^4 y_{-2} + \dots, p = \frac{x-x_0}{h}$

Stirling's Formulae

Statement: If ..., x_{-2} , x_{-1} , x_0 , x_1 , x_2 , ... are given set of observations with common difference h and let ..., y_{-2} , y_{-1} , y_0 , y_1 , y_2 , ... are their corresponding values, where y = f(x) be the given function then

$$y_p = y_0 + p\left(\frac{\Delta y_0 + \Delta y_{-1}}{2}\right) + \frac{p^2}{2!} \Delta^2 y_{-1} + \frac{p(p^2 - 1)}{3!} \left(\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2}\right) + \frac{p^2(p^2 - 1)}{4!} \Delta^4 y_{-2} + \dots \text{ where } p = \frac{x - x_0}{h}$$

Proof: Stirling's Formula will be obtained by taking the average of Gauss forward difference formula and Gauss Backward difference formula.

We know that, from Gauss forward difference formula

$$y_p = y_0 + p \,\Delta y_0 + \frac{p \,(p-1)}{2!} \Delta^2 y_{-1} + \frac{p \,(p-1)(p+1)}{3!} \Delta^3 y_{-1} + \frac{p \,(p-1)(p+1) \,(p-2)}{4!} \Delta^4 y_{-2} + \dots \dots > (1)$$

Also, from Gauss backward difference formula

$$y_p = y_0 + p \,\Delta y_{-1} + \frac{p \,(p+1)}{2!} \Delta^2 y_{-1} + \frac{p \,(p+1)(p-1)}{3!} \Delta^3 y_{-2} + \frac{p \,(p+1)(p-1) \,(p+2)}{4!} \Delta^4 y_{-2} + \dots \dots > (2)$$

Now, Stirling's Formula = $\frac{1}{2}$ (Gauss forward formula + Gauss backward formula)

$$\therefore y_p = y_0 + p\left(\frac{\Delta y_0 + \Delta y_{-1}}{2}\right) + \frac{p^2}{2!} \Delta^2 y_{-1} + \frac{p(p^2 - 1)}{3!} \left(\frac{\Delta^3 y_{-1} + \Delta^3 y_{-2}}{2}\right) + \frac{p^2(p^2 - 1)}{4!} \Delta^4 y_{-2} + \dots$$

Lagrange's Interpolation Formula

Statement: If $x_0, x_1, x_2, ..., x_n$ are given set of observations which are need not be equally spaced and let $y_0, y_1, y_2, ..., y_n$ are their corresponding values, where y = f(x) be the given function then $f(x) = \frac{(x-x_1)(x-x_2)...(x-x_n)}{(x_0-x_1)(x_0-x_2)...(x_0-x_n)} y_0 + \frac{(x-x_0)(x-x_2)...(x-x_n)}{(x_1-x_0)(x_1-x_2)...(x_1-x_n)} y_1 + \cdots + \frac{(x-x_0)(x-x_1)...(x-x_{n-1})}{(x_n-x_0)(x_n-x_1)...(x_n-x_{n-1})} y_n$ Proof: Let us assume an n^{th} degree polynomial of the form

$$f(x) = A_0(x - x_1)(x - x_2) \dots (x - x_n) + A_1(x - x_0)(x - x_2) \dots (x - x_n) + \dots + A_n(x - x_0)(x - x_1) \dots (x - x_{n-1})$$
---- (1)

Substitute $x = x_0$, we get $f(x_0) = A_0(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)$

$$\Rightarrow y_0 = A_0(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)$$

$$\implies A_0 = \frac{y_0}{(x_0 - x_1)(x_0 - x_2)\dots(x_0 - x_n)}$$

Again, $x = x_1$, we get $f(x_1) = A_1(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)$

$$\Rightarrow y_1 = A_1(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)$$

$$\Rightarrow A_1 = \frac{y_1}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)}$$

Proceeding like this, finally we get, $A_n = \frac{y_n}{(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1})}$

Substituting these values in the Equation (1), we get

=

$$f(x) = \frac{(x - x_1)(x - x_2) \dots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \dots (x_0 - x_n)} y_0 + \frac{(x - x_0)(x - x_2) \dots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \dots (x_1 - x_n)} y_1 + \dots \frac{(x - x_0)(x - x_1) \dots (x - x_{n-1})}{(x_n - x_0)(x_n - x_1) \dots (x_n - x_{n-1})} y_n$$

Note: This Lagrange's formula is used for both equally spaced and unequally spaced arguments.

* * *