
QUEUE
What is a Queue?

 A queue is a data structure similar to stack; the
only difference is in the order of retrieving data. A
queue is a linear, sequential list of items that are
accessed in the order, First in First Out (FIFO) i.e.,
the first item inserted in a queue is also the first one to
be accessed, the second item inserted in a queue is also
the second one to be accessed. A queue is very similar
to the way we queue up at train reservation counter or
film tickets book counter etc.

Definition: A queue is an order list in which insertions are done at one end and
deletions are done at other end. Hence it is called as First In First Out or Last
In First Out.

Similar to stacks, two special names are given to operations that can be
performed on queue. Inserting an element into queue is called as Enqueue
(Write) and removing an element from queue is called Dequeue (Read). Trying
to enqueue an element to full queue is called overflow and trying dequeue an
element from empty queue is called underflow. The below example illustrates
the example of queue.

Operation Contents of the Queue
write(a)
write(b)
write(c)
read(returns a)
write(d)
read(returns b)
read(returns c)
write(e)

a
a b
a b c
b c
b c d
c d
d
d e

Figure1: Queue Operations

Elements
ready to
delete

Elements
ready to
insertFront Rear

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

As the figure depicts, the operations on a queue are FIFO. Also note that, when
one item is read from the queue it is destroyed automatically unlike other data
structures such as linked lists.

 In order to implement the write and read operations of a queue, two
pointers start and end are required. One pointer (start) points at the current start
of the queue, while the other pointer (end) points at the current end of the
queue. The insertions and deletions from queue, as shown in table, would have
the effects on the pointers as shown below figure.

Initial
Position

Write(a)

a b
Write(b)

Start

End

Write(c)

Read
(returns a)

Write (d)

a

Start

End

Start

End

a b c

Start

End

b c

End

Start

b c d

End

Start

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

 Figure2: pointer movements because of queue operations

Queue Operations

voidwrite(int data): Inserts an element at the end of the queue.

void read(): Removes and returns the element at the front of the queue.

void display(): Display the elements in the queue.

Implementation

 Similar to stacks there are many ways to implement queue operations and
below are the common methods.

• Simple array based implementation
• Circular array based implementation
• Linked lists implementation

1. Simple array based implementation

 As discussed above, in order to implement the write and read operations
of a queue, two pointers start and end are required. One pointer (start) points at
the current start of the queue. The other pointer (end) points at the current end
of the queue.

C Program:

/* Implement queue using an array*/
#define MAX 5 //define any number to limit your queue size
#include<stdio.h>
#include<conio.h>
#include<stdlib.h>

int queue[MAX];
intstart, end;//indicates the front and tail of the queue

c d
Read
(returns b)

Start

End

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

//insert an item to the queue
//While inserting an element we are adding element at end and incrementing the
end.
void write(int data)
{
 // before inserting an element into queue it checks queue full or not
 if(end>=MAX){
 printf("Queue overflow. We cant add more items\n");
 return;
 }
 else{

 queue[end]=data;
 end++;
 }
}
//Read and delete the first item from the queue

void read(){
 //before pop out an element from queue it checks for queue empty
 if(start==end){
 printf("Queue is underflow.");
 return;
 }
 printf("Item deleted from queue is:%d",queue[start]);
 start++;
}
// Display the elements in the queue
void display()
{
int i;
 //before displaying the elements it checks for queue empty or not
if(start==end){
 printf("\nQueue is empty.");
 return;
 }
else{
 printf("\nThe Queue elements are:");
 for(i=start;i<end;i++)
 {
 printf("%d",queue[i]);
 printf(" ");

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

 }
 }
}
// main starts here
void main()
{
intchoice,value;
 start=end=0;
printf("1.Insert");
printf("\n2.Delete");
printf("\n3.display");
 printf("\n4.Quit");
while(1)
 {
printf("\nEnter your choice for the operation: ");
scanf("%d",&choice);
switch(choice)
 {
 case 1:printf("\n Enter value to insert in to queue: ");
 scanf("%d",&value);
 write(value);
 display();
 break;
case 2: read();
 display();
 break;

case 3: display();

break;
 case 4:exit(0);

 }//switch ends here

 }//while ends here

}//main end here

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Output

2. Circu

Why ci

 A
deletion

t:

ular array

rcular arr

As in the
ns it is easy

y based im

rays

simple arr
y to get the

S

mplementa

ray based
e situation

Start

ation:

implemen
as shown b

ntation, aft
below.

ter the ins

End

sertions an

Elements
ready to
insert

nd

s

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

 As shown in figure the initial slots of the array are getting wasted. So,
simple array based implementation for queue is not efficient. To overcome this
problem we assume array as circular arrays. That means, we treat last element
and first elements are contiguous as shown below.

Figure: Circular Queue

C Program:

/**** Program to Implement Queue using circular Array ****/
#include<stdio.h>
#include<stdlib.h>
#include<conio.h>
#define SIZE 5

int queue[SIZE], end=-1, start=-1, item;
//Inserting an element into queue
void write()
{
 if((start==0 && end==SIZE-1) || (start==end+1))
 printf("\nQueue is full.");
 else{
 printf("\nPlease Enter the data to insert into Queue: ");
 scanf("%d", &item);
 if(end==SIZE-1)
 end=0;
 else
 end++;
 queue[end]=item;
 }
 if(start==-1)
 start=0;

End

Start

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

}
//Reading an element from queue
void read()
{
 if(start==-1)
 printf("Circular Queue is Empty\n");

 else{
 printf("\nItem Deleted: %d\n", queue[start]);
 if(start==end)
 start=end=-1;
 else{
 if(start==SIZE-1)
 start=0;
 else
 start++;
 }
 }

}
//Display the all elements in queue

void display(){
 int i;
 if(start==-1)
 printf("Circular Queue is Empty\n");

 else{
 if(end < start){
 for(i=start;i<=SIZE-1;i++){
 printf("%d",queue[i]);
 printf(" ");
 }
 for(i=0;i<=end;i++){
 printf("%d",queue[i]);
 printf(" ");
 }
 }
 else{
 for(i=start;i<=end;i++){
 printf("%d",queue[i]);
 printf(" ");

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

 }
 printf("\n");
 }
 }
}
void main()
{
 intch;
 printf("\n1.)write\n2.)read\n3.)Display\n4.)Exit\n");
 while(1){

 printf("\nEnter your choice: ");
 scanf("%d", &ch);

 switch(ch){
 case 1:
 write();
 display();
 break;
 case 2:
 read();
 display();
 break;
 case 3:
 display();
 break;
 case 4:
 exit(0);

 default:
 printf("\n Invalid choice. Please enter correct
choice...\n");
 }
 getch();
 }

}

Output:

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Perform

Let n be

Space C
Time C
Time C
Time C

Limitat

 T
changed

2. Link
 T
stack
list.

C progr

#includ
#includ
//Globa
struct no
{

mance

e the numb

Complexity
omplexity
omplexity
omplexity

tions

The maxim
d later.

ked List Im
The other w
. Create tw

ram:

e<stdio.h>
e<stdlib.h>
l declaratio
ode

ber of elem

y (For n En
for write()
for read()
for display

mum size of

mplement
way of imp
wo pointer

>
>
on

ments in the

nqueue ope
)

y()

f the queue

ation
plementing
rs front and

e queue.

erations)

e must be d

g queue is
d rear poin

O(n)
O(1)
O(1)
O(1)

defined in a

by using
nts to fron

advance an

linked list
t and end

nd can’t be

ts similar t
of nodes i

e

to
in

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

int data;
struct node *next;
}*front,*rear,*temp,*temp1;

/* Enqueing the queue */
void write(int i)
{
if (rear == NULL)
 {
rear = (struct node *)malloc(1*sizeof(struct node));
rear->next = NULL;
rear->data = i;
front = rear;
 }
else
 {
temp=(struct node *)malloc(1*sizeof(struct node));
rear->next = temp;
temp->data = i;
temp->next = NULL;
rear = temp;
 }

}
/* Dequeing the queue */
voidread_q()
{
 temp1 = front;//assign temp1 to front
 //checks queue empty or not
if (temp1 == NULL)
 {
printf("\n Trying to read elements from empty queue");
return;
 }
elseif (temp1->next != NULL)
 {
 temp1 = temp1->next;
printf("\n Dequed value : %d", front->data);
free(front);
front = temp1;
 }
else
 {

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

printf("\n Dequed value : %d", front->data);
free(front);
front = NULL;
rear = NULL;
 }

}

/* Displaying the queue elements */
void display()
{
 temp1 = front;
 //checks queue empty or not
if ((temp1 == NULL) && (rear == NULL))
 {
printf("Queue is empty");
return;
 }
 while (temp1 != rear)
 {
printf("%d ", temp1->data);
 temp1 = temp1->next;
 }
if (temp1 == rear)
printf("%d", temp1->data);
}
//main starts here
void main()
{
int item, ch, e;
 front=rear=NULL;

printf("\n 1 - Insert");
printf("\n 2 - Delete");
printf("\n 6 - Display");
 printf("\n 5 - Exit");
while (1)
 {
printf("\n Enter the user choice to perform operation: ");
scanf("%d", &ch);
switch (ch)
 {
 case 1:

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

 p
 sc

 c

 c

 d

 c
 ex
default:

 b
 }
 }
}

Output

printf("Ente
canf("%d"

write
printf
displ
break

ase 2:
read_
printf
displ
break

ase 3:
printf

display();
break

ase 4:
xit(0);

printf
break;

t:

er data to in
, &item);

e(item);
f("The que
ay();
k;

_q();
f("The que
ay();
k;

f("\nThequ

k;

f("Wrong c

nsert into q

eelemnts ar

eelemnts ar

ueelemnts a

choice, Ple

queue: ");

re:\n");

re:\n");

are:\n");

ease enter ccorrect chooice ");

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

Performance:
Space Complexity (For n Enqueue operations) O(n)
Time Complexity for write() O(1) (average)
Time Complexity for read_q() O(1)
Time Complexity for display() O(1)

Queue Applications

 Queues, mostly are used when events don’t have to be processed

immediately but are processed in First In First Out manner. These are typically

used in operating systems, simulations and also useful in following areas:

• Operating systems often maintain a queue of processes that are ready to

execute or that are waiting for a particular event to occur.

• When a resource is shared between multiple consumers. Examples

include CPU scheduling, Disk Scheduling.

• When data is transferred asynchronously between two processes (data not

necessarily received at same rate as sent). Examples include IO Buffers,

pipes, file IO, etc.

www.sa
ks

hie
du

ca
tio

n.c
om

www.sakshieducation.com

www.sakshieducation.com

