www.sakshieducation.com

QUEUE

What isa Queue?

A queue is a data structure similar to stack; the
only difference is in the order of retrieving data. A
gueue is a linear, sequentia list of items that are
accessed in the order, First in First Out (FIFO) i.e,
the first item inserted in a queue is aso the first one to
be accessed, the second item inserted in a queue is also
the second one to be accessed. A queue is very similar
to the way we queue up at train reservation counter or
film tickets book counter etc.

Lahari.B, Programn
Insights of Data

Definition: A gqueue is an order list in which insertions are done at one end and
deletions are done at other end. Hence it iscalled as First In First Out or Last
In First Out.

Similar to stacks, two special names. are given to operations that can be
performed on queue. Inserting an element into queue is caled as Enqueue
(Write) and removing an element from queue is called Dequeue (Read). Trying
to enqueue an element to full queue is called overflow and trying dequeue an
element from empty queue is called underflow. The below example illustrates
the example of queue.

NS o0 a

Operation Contents of the Queue
write(a) a

write(b) ab

write(c) abc

read(returns @) bc

write(d) bcd

read(returns b) cd

read(returns c) d

write(e) de

Figurel: Queue Operations

www.sakshieducation.com

www.sakshieducation.com

As the figure depicts, the operations on a queue are FIFO. Also note that, when
one item is read from the queue it is destroyed automatically unlike other data

structures such as linked lists.

In order to implement the write and read operations of a queue, two

pointers start and end are required. One pointer (start) points at the current start
of the queue, while the other pointer (end) points at the current end of the
gueue. The insertions and deletions from queue, as shown in table, would have
the effects on the pointers as shown below figure.

End

Start
End
Start
a
End
Start
a b
Start
a b
Start
b

End

End

)

www.sakshieq

uﬁi&n.c

Initial
Position

Write(a)

Write(b)

Write(c)

Read
(returns a)

Write (d)

www.sakshieducation.com

Start

Read
c d (returns b)

]

End

Figure2: pointer movements because of queue oper ations

Queue Operations
voidwrite(int data): Inserts an element at the end of the queue.
void read(): Removes and returns the element at the front of the queue.

void display(): Display the elementsin the queue.

| mplementation

Similar to stacks there are many ways to implement queue operations and
below are the common methods.

e Simple array based implementation
e Circular array based implementation

e Linked lists implementation
1. Simple array based.implementation

As discussed above, in order to implement the write and read operations
of a queue, two pointers start and end are required. One pointer (start) points at
the current start of the queue. The other pointer (end) points at the current end
of the queue.

C Program:

/. Implement queue using an array*/

#define MAX 5 //define any number to limit your queue size
#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

int queue[MAX];
intstart, end;//indicates the front and tail of the queue

www.sakshieducation.com

www.sakshieducation.com

/linsert an item to the queue

//Whileinserting an element we are adding element at end and incrementing the
end.

void write(int data)

{
Il before inserting an element into queue it checks queue full or not
if(end>=MAX){
printf(" Queue overflow. We cant add more items\n");
return;
}
else{
gueue]end]=data;
end++;
}
}
//Read and delete the first item from the queue
void read(){
//before pop out an element from gqueue.it checks for queue empty
if (start==end){
printf("Queue is underflow.");
return,
}
printf("Item deleted from queue is.%d" ,queue|start]);
Start++;
}
// Display the elements in the queue
void display()
{
inti;

//befare displaying the elements it checks for queue empty or not

if (start==end){
printf("\nQueue is empty.");
return;

}

el se{
printf("\nThe Queue elements are:");
for(i=start;i<end;i++)
{
printf("%d",queueli]);
printf(" ");

www.sakshieducation.com

www.sakshieducation.com

}
}
/[l main starts here
void main()
{
intchoice,value;
start=end=0;
printf(" L.Insert");
printf("\n2.Delete");
printf("\n3.display");
printf("\n4.Quit");
while(1)
{
printf("\nEnter your choice for the operation: ");
scanf("%d",& choice);
switch(choice)
{
case 1.printf("\n Enter value to insert in to queue: *);
scanf("%d",& value);
write(value);
display();
break;
case 2: read();
display();
break;

case 3: display();
break;
case 4:exit(0);
}//switeh ends here

}//while ends here

}/[main end here

www.sakshieducation.com

Enter your choice
Enter value to in

The Queue element
Enter your choice

Enter value to in

The Queue element
Enter your choice

Enter value to in

The Queue element
Enter your choice

Enter value to in

The Queue element
Enter your choice

Enter value to in

The Queue element
Enter your choice

Enter value to in

Queue overflow. we

The Queue element
Enter your choice
Item deleted from
The Queue element
Enter your choice

The Queue element
Enter your choice

www.sakshieducation.com

for the operation: 1

ert in to gueue: 18

are:=-106
for the operation: 1

ert in to gueue: 28

are:18 20
for the operation: 1

ert in to gueue: 38

are:160 280 38
for the operation: 1

ert in to gueue: 48

are:l1d 280 38 44
for the operation: 1

58

are:1@ 28 38 44 584
for the operation: 1

ert in to gueue: 68
cant add more items

ert in to gueue:

are:18 268 28 48 5@
for the operation: 2
gueue is:1@

are:28 38 48 58
for the operation: 3

are:-260 38 48 58
for the operation: 4

2. Circular array based implementation:
Why circular arrays

As.in the smple array based implementation, after the insertions and
deletionsit is easy to get the situation as shown below.

Elements
T T ready to
Start End insert

www.sakshieducation.com

www.sakshieducation.com

As shown in figure the initial dots of the array are getting wasted. So,
simple array based implementation for queue is not efficient. To overcome this
problem we assume array as circular arrays. That means, we treat last element
and first elements are contiguous as shown below.

End

\\‘/

/ ‘ \\ Start

Figure: Circular Queue

C Program:

[**** Program to Implement Queue using circular Array ****/
#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#define SIZE 5

int queue[SIZE], end=-1, start=-1, item,
//Inserting an element into.queue
void write()

{

if((start==0 && end==SIZE-1) || (tart==end+1))

el sef

}

printf("\nQueueisfull.");

printf("\nPlease Enter the data to insert into Queue: ");
scanf("%d", &item);
if(end==SIZE-1)
end=0;
else
end++;
gueuelend]=item;

if(start==-1)

start=0;

www.sakshieducation.com

www.sakshieducation.com

}

//Reading an element from queue
void read()
{
if(start==-1)
printf(" Circular Queue is Empty\n");

el se{
printf("\nltem Deleted: %d\n", queue[start));
if (start==—end)
start=end=-1,
el se{

if(start==SIZE-1)
start=0;
ese
start++;

}
/IDisplay the all elementsin queue

void display(){
inti;
if(start==-1)
printf(" Circular Queue is Empty\n");

el se{
if(end < start){

for(i=start;i<=SIZE-1;i++){
printf("%d",queueli]);
printf(" ");

}

for(i=0;i<=end;i++){
printf("%d",queue[i]);
printf(" ");

}
el se{
for(i=start;i<=end;i++){
printf("%d",queueli]);
printf(" ");

www.sakshieducation.com

www.sakshieducation.com

}
printf("\n");
}
}
}
void main()
{
intch;
printf("\nl.)write\n2.)read\n3.)Display\n4.)Exit\n");
while(1){
printf("\nEnter your choice: ");
scanf("%d", &ch);
switch(ch){
case 1:
write();
display();
break;
case 2:
read();
display();
break;
case 3
display();
break;
case 4:
exit(0);
default:
printf("\n Invalid choice. Please enter correct
choice...\n");
}
getch();
¥
}
Output:

www.sakshieducation.com

www.sakshieducation.com

. >write

2. rread

3. >Display

4. >Exit

Enter your choice:

Please Enter the d Queune =
1R5]

Enter your choice:

Please Enter the d Queune =
1R5] 28

Enter your choice:

Pleasze Enter the d Queue =
1R5] 28 38

Enter your choice:

Item Deleted: 18
2a 38

Enter your choice:

Please Enter the d Queune =
2a 38 i8

Enter your choice:
2a 38 i8

Enter your choice:

Performance

Let n be the number of elementsin the queue.

Space Complexity (For n Enqueue operations). - | O(n)
Time Complexity for write() 0(1)
Time Complexity for read() 0(1)
Time Complexity for display() 0(1)
Limitations

The maximum size of the queue must be defined in advance and can’t be
changed later.

2. Linked List Implementation
The other way of implementing queue is by using linked lists similar to
stack. Create two pointers front and rear points to front and end of nodes in
list.
C program:
#include<stdio.h>
#include<stdlib.h>

/IGlobal declaration
struct node

{

www.sakshieducation.com

www.sakshieducation.com

int data;
struct node * next;
}*front,* rear,* temp,* temp1;

[* Enqueing the queue */
void write(int 1)
{
if (rear == NULL)
{
rear = (struct node *)malloc(1* sizeof (struct node));
rear->next = NULL;

rear->data=1;
front = rear;

}
else

{

temp=(struct node *)malloc(1* sizeof (struct node));
rear->next = temp;

temp->data=1;

temp->next = NULL;

rear = temp;

}

}
[* Dequeing the queue */
voidread q()
{

templ = front;//assign temp1l to front

//checks queueempty or not

if (templ == NULL)

{
printf("\n Trying to read elements from empty queue");
return;

}
elsaif (templ->next '= NULL)

{
templ = templ->next;
printf("\n Dequed value : %d", front->data);

free(front);
front = temp1;

}

else

{

www.sakshieducation.com

www.sakshieducation.com

printf("\n Dequed value : %d", front->data);
free(front);
front = NULL;
rear = NULL;
}

}

/* Displaying the queue elements */
void display()
{
templ = front;
//checks queue empty or not
if ((templ==NULL) && (rear == NULL))

{
printf("Queue is empty");
return;
}
while (templ != rear)
{

printf("%d ", templ->data);
templ = templ->next;
}

if (templ == rear)

printf("%d", templ->data);

}

//main starts here

void main()

{

int item, ch, €;
front=rear=NULL;

printf("\n 1 - Insert");
printf("\n 2 - Delete");
printf("\n 6 - Display");
printf("\n 5 - Exit");
while (1)
{

printf("\n Enter the user choice to perform operation: ");

scanf("%d", &ch);
switch (ch)
{

case 1.

www.sakshieducation.com

www.sakshieducation.com

printf("Enter data to insert into queue:);
scanf("%d", &item);
write(item);
printf(" The queelemnts are:\n");
display();
break;
case 2:
read_q();
printf(" The queelemnts are:\n");
display();
break;
case 3
printf("\nThequeelemnts are:\n");
display();
break;
case 4.
exit(0);
default:
printf("Wrong choice, Please enter correct choice ");
break;

— Insert
— Delete

perform operation:
gueue:= 18

perform operation:
qUELLE = a

perform operation:
Qqueue =
Enter the user i perform operation:
Degued value = elemnts are:
a 3a
Enter the user i perform operation:
Degued value = elemnts are:
5]

Enter the user 1 perform operation:

The gue elemnts
30

Enter the user i perform operation:

www.sakshieducation.com

www.sakshieducation.com

Performance:

Space Complexity (For n Enqueue operations) | O(n)
Time Complexity for write() O(1) (average)
Time Complexity for read q() O(1)
Time Complexity for display() 0(1)

Queue Applications

Queues, mostly are used when events don't have to be processed

immediately but are processed in First In First Out manner. These are typically

used in operating systems, simulations and also useful in following areas:

. Operating systems often maintain a queue of processes that are ready to

execute or that are waiting for a particular event to occur.

« When a resource is shared between multiple consumers. Examples

include CPU scheduling, Disk Scheduling.

. When dataistransferred asynchronously between two processes (data not

necessarily received at same rate as sent). Examples include 1O Buffers,

pipes, file 1O, etc.

www.sakshieducation.com

