www.sakshieducation.com

Circular Linked List

A circular linked list is a linked list in which tail element next
pointer points to head element. While traversing the circular linked list we
should be careful because circular linked lists don’t have end where asin
singly linked lists and doubly linked lists the end of lists are indicated with
null value. Unlike linked lists, the circular linked lists can be used to add
dataitems at any point without starting from the beginning point.

Head

The type declaration for acircular linked list is as follows:
struct CLL{

int data;

struct CLL *next;
|

In the circular linked lists, we access the el ements using the head node (similar to singular linked
lists.).

CLL Operations

1. Inserting a New Node at Front of a CLL: After inserting anew node at front of thelist, we
just need to update the pointers.

e Create anew node initialy its next pointer points to itself.

Head

data

New Node

www.sakshieducation.com

www.sakshieducation.com

e Update the next pointer of new node with head node. Traverse thelist till reach tail node
(Thiswill stop at which the node points to previous node in the list).

T

Head

Data

New Node

e Update the tail node that points to the previous nade to new node and also make the new

node as head.
A 4+——>| B —'%[C +——>| D i
———
]
—> Data |
A &
Head New Node

Void insertatFront(structCLLNode* head){
StructCLLNode * temp;
StructCL L Node * newNode=(structCL L Node*)mall oc(si zeof (structCL L Node*));
if('newNode){
printf(* Memory Error”);

return;

www.sakshieducation.com

www.sakshieducation.com

}

printf(“\nEnter data to insert into list:");
scanf(*%d” ,& newNode->data);

newNode->next=newNode;

temp=head,;
if(head==NULL)

head=newNode;
else{

while(temp->next! =head){
temp=temp->next;

}

newNode->next=head,;

current->next=newNode;

head=newNode;

}

2. Inserting a New Nodeat end of a CLL: Inserting a new node at the front of the list and the
end of list is same, the only difference is we just need to update the pointers.

e Create anew node initialy its next pointer points to itself.

Head

Data

New Node

www.sakshieducation.com

www.sakshieducation.com

e Update the next pointer of new node with head node. Traverse thelist till reach tail node
(Thiswill stop at which, the node points to previous node in the list).

A 4> B 4 s C —> D ——
Head v
Data '
New Node

e Update the next pointer of previous node and make it point the new node.

- -

— A ——| B 4+ —fc 0D =
Head
>~ Data —
New Node

Void insertatEnd(structCLLNode* head){
StructCL LNode * temp;
StructCL L Node * newNode=(structCL L Node*)mall oc(s zeof (structCLL Node*));
if('newNode){
printf(“Memory Error”);

return;

www.sakshieducation.com

www.sakshieducation.com

printf(“\nEnter datato insert into list:”);
scanf(“%d” ,& newNode->data);
newNode->next=newNode;
temp=head,;
if(head==NULL)
head=newNode;
else{
while(temp->next!=head){
temp=temp->next;
}
newNode->next=head;

current->next=newNode;

}

3. Deleting the first nodein the list: The first node can be deleted by simply replacing the next
field of the tail node with the next field of first or head node. Then copy the head node into
temporary node and update the head node to point to the next filed of head and release the
memory the temporary node.

e Traverse the list until the tail node points to previous node (The node that has to be
deleted)

R o

.\

1 B +— ¢ +— D - -

Head

e Create the temp node and copy the node to be deleted (head) into the temp and update the
next pointer of tail with the next pointer of the head.

www.sakshieducation.com

www.sakshieducation.com

A —> B +—> C ——> D
T
Head e
e Update the head and free the temp.
A L 3 1| c oo

T T

temp Head

Void DeleteatFront(structCLLNode* head){
StructCL LNode *temp;
StructCLLNode *p;
p=temp=head,;
if(head==NULL)

printf(“ List if empty\n”);
else{
while(p->next! =head){
p=p->next;
}
p->next=head->next;
head=head->next;

free(temp);

www.sakshieducation.com

www.sakshieducation.com

temp=NULL;
return;

}

4. Deleting the last node in the list: The last node can be deleted by simply replacing the next
field of the tail previous node with the head node. Copy the tail node into the temporary node
and rel ease the memory the temporary node.

e Traversethelist until find tail node and tail previous node

Head Tail previous node Tail node

e Create a temp node and copy the tail node into temp and update the next pointer of tail
previous node that points to head with the temp node pointer.

Head

e Deélete the temp node.

! ! (.

tail
Tail previous node temp

Head

www.sakshieducation.com

www.sakshieducation.com

Void DeleteatEnd(structCLLNode* head){
StructCLLNode * temp;
StructCLLNode *p;
temp=head,;
if(head==NULL)

printf(“List if empty\n”);

else{
while(temp->next! =head){
p=temp;
temp=temp->next;
}
p->next=head;
free(temp);
temp=NULL;
return;
}

}

5. Display Elementsin List: Let us assume that the list is accessed by its head node. Since all
nodes are arranged in circular fashion, the tail node next pointer points to the head node. To
display the elementsin the list to traverse the list until reach the head node.

Head

www.sakshieducation.com

www.sakshieducation.com

Void displatList(structCLL Node* head){
structCLLNode* p;
p=head;
if(head==NULL){

printf(“List iSEmpty\n”);

}

while(p!=head){
printf(“->%d” ,p->data);
p=p->next;

}

www.sakshieducation.com

