
STACKS

1.1 What is a Stack?

 A stack is a simple linear data structure used for
storing data. In stack, the order in which the data arrives is
important. The pile of books is a good example of stack. We
usually pick the top most books from the pile. Similarly, the
top most one(i.e. the item which made the entry last) the
first one to be picked up/removed from the stack.

Definition

A stack is an ordered list in which a data insertion and
deletion are done at one end. Where, the end is called as top.
The last elements are inserted is the first one to be deleted.
Hence, it is called Last in First out (LIFO) or First in Last out (FIFO).

In general, the special names are given to the two operations that can be made to a
stack. Inserting an element to a stack is called as PUSH and when an element
removed from the stack is called as POP. Trying to pop out an element from empty
stack is called as under flow and trying to push an element into a full stack is called
as over flow.

From the above figures:

Fig1:

• The address location holding C element indicates the top of the stock or the
stack pointer points to this location holding C element.

• The address location holding A is the bottom or starting point of stack.
• Now data D is pushed in stack from bottom.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Fig 2:

• In the fig 1 after pushing D in to stack, the address location holding D becomes
the top the stock, meaning that the last added element indicates the top of the
stack and stack keeps growing on with the data pushing in to stack.

• In the next step, the element D is popped out of the stock.

Fig 3:

• In Fig 2, the element D is popped out, then stack pointer automatically points
to the last element address location i.e., C.

1.2 How stacks are used?

 Stacks are mostly used in computer applications. Their most notable usage is
in system software such as, compilers, operating systems etc. For example, when one
C function calls another function, and passes some parameters, those parameters are
passed using stack. Even, many compilers store local variables in stack.

1.3 Stack Operations:

Main Stack Operations:

• Void Push(int item): Inserts data onto stack
• Int Pop(): Removes and returns the last element from the stack.

Auxiliary Stack Operations:

• int Top(): This function returns the last inserted.
• void show(): Returns the number of elements stored in stack in stack.
• void is Empty(): Which returns whether stack empty or not.

1.4 Implementation

 There exists many ways to implement stack and the most commonly used methods
are:

1. Simple array based implementation
2. Based on Dynamic Memory Management Techniques:

• Using Linked list

 Example: Let’s see how the new items get added to the end of the stack, and also
how the elements get removed from there.

We assume that initially the stack is empty.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Operation Contents of the stack after the
operation

Push(A) A
Push(B) A B
Pop A
Push(C) A C
Push(D) A C D
Push(E) A C D E
Pop A C D
Pop A C
Pop A
Pop Empty

1.4.1 Simple Array Implementation

 The implementation of stack uses an array.

• Here we add elements from left to right.
• Use a variable Top to keep track of the index of the top element and it moves

up and down dynamically depending on push (inserting new item) and pop
(removes existing element) operations performed.

• Here we have to define size of an array. The array storing an element into
stack may become full.

 If we try to push a new element into full stack it displays stack overflow.
 If we try to pop an element from stack it displays stack underflow.

C Program:

/* Implement stack using an array*/
#define MAX 5 //define any number to limit your stack size
#include<stdio.h>
#include<conio.h>

int stack[MAX];
int top=0;//indicates the top of the stack
int stack_flag=0;//not empty

//insert an item to the stack
//While inserting an elemnt we are adding element and incrementing the top.
void push()
{
 int item;
 // Before pushing an element into stack it checks stack full or not
 if(top>=MAX){
 printf("Stack is overflow. we cant add more items\n");
 return;
 }
 else{
 printf("\nEnter an item to insert into stack: ");

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 scanf("%d",&item);
 stack[top]=item;
 top++;
 }
}

//Read and delete the top most item from the stack
//while reading weare decrementing the top and popping the element.
int pop()
{
 top--;
 //before pop out an elemnt from stack it checks for stack empty
 if(top<0){
 printf("Stack is underflow.");
 stack_flag=1;
 return;
 }

 return stack[top];
}
// Display the elemnts in the stack
void show()
{
 int i;
 //before displaying the elemnts it checks for stack empty or not
 if(top==0){
 printf("\nStack is empty.");
 return;
 }
 else{
 printf("\nThe Stack elements are:");
 for(i=0;i<top;i++)
 {
 printf("%d",stack[i]);
 printf(" ");
 }
 }
}
// main starts here
void main()
{
int choice, item;
 printf("1.Insert");
 printf("\n2.Delete");
 printf("\n3.show or display");
printf("\n4.Quit");
while(1)
 {
 printf("\nEnter your choice for the operation: ");
 scanf("%d",&choice);
switch(choice)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 {
case 1:

case 2:
item=po

 }
case 3:

 ca
return;
 }//

 }//wh

}//main

Output

push(
show
break

op();
if(sta

}
else{

}

show
break

ase 4:

switch end

hile ends he

n end here

t:

();
w();
k;

ck_flag==1
printf("N
stack_flag
top=0;
break;

printf("\n
show();
break;

w();
k;

s here

ere

1){
No items to d

g=0;

nThe token

delete\n");

 deleted is %

%d",item);

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Performance & Limitations

Performance

 Let be define the number of elements in the stack are n. The complexities for
each stack operations given as (for this type of implementation).

Space complexity (For n push operations) O(n)

Time complexity of Push() O(1)
Time complexity of Pop() O(1)

Limitations: Here, the maximum size of the stack must be defined in prior to
implementation and it cannot be changed.

1.4.2Dynamic Memory Management techniques:

Linked List Implementation

 The other way of stack implementation is by using linked list. Here, push
operation is implemented by inserting element at the beginning of the list and pop
operation is implemented by deleting the node from the beginning (the head/ top).

*Here top node always points to beginning of the list.

/* C Program to Implement a Stack using Linked List */

#include<stdio.h>
#include<stdlib.h>

struct node
{
int item;
struct node *next;
}*top,*temp;

void push(int data);
void pop();
int Top();
voidisEmpty();
void show();
void DeleteStack();
void stack_count();
void CreateStack();

int count = 0;

void main()
{
int data, ch, e,n;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 printf("1 - Push\n");
 printf("2 - Pop\n");
 printf("3 - Top\n");
 printf("4 - Empty\n");
 printf("5 - Dipslay/Show\n");
 printf("6 - Stack Count\n");
 printf("7 - Destroy stack\n");
 printf("8 - Exit\n");

 CreateStack();

while (1)
 {
 printf("\n Enter choice : ");
 scanf("%d", &ch);

switch (ch)
 {
case 1:
 printf("Enter data to insert into stack : ");
 scanf("%d", &data);
 push(data);
break;
case 2:
 pop();
 break;
case 3:
if (top == NULL)
 printf("No elements in stack");
else
 {
 e = Top();
 printf("\n Top element : %d", e);
 }
break;
case 4:
isEmpty();
break;
case 5:
 show();
break;
case 6:
 stack_count();
break;
case 7:
 DeleteStack();
break;
 case 8:
 exit(0);
default :

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 printf(" Wrong choice, Please enter correct choice ");
break;
 }
 }
}

/* Create empty stack */
void CreateStack()
{
 top = NULL;
}

/* Count stack elements */
void stack_count()
{
 printf("\n No. of elements in stack : %d", count);
}

/* Push data into stack */
void push(int data)
{
if (top == NULL)
 {
 top =(struct node *)malloc(sizeof(struct node));
 top->next = NULL;
 top->item = data;
 }
else
 {
 temp =(struct node *)malloc(sizeof(struct node));
 temp->next = top;
 temp->item = data;
 top = temp;
 }
 count++;
}

/* Display stack elements */
void show()
{
struct node* p;
 p = top;

if (p == NULL)
 {
 printf("Stack is empty");
return;
 }

while (p != NULL)
 {

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 printf("%d ", p->item);
 p = p->next;
 }
 }

/* Pop Operation on stack */
void pop()
{
struct node* n;
 n = top;

if (n == NULL)
 {
 printf("\n Error : Trying to pop from empty stack");
 return;
 }
else
 n = n->next;
 printf("\n Popped value : %d", top->item);
 free(top);
 top = n;
 count--;

}

/* Return top element */
int Top()
{
return(top->item);
}

/* Check if stack is empty or not */
voidisEmpty()
{
if (top == NULL)
 printf("\n Stack is empty");
else
 printf("\n Stack is not empty with %d elements", count);
}

/* Destroy entire stack */
void DeleteStack()
{
struct node* t;
 t = top;

while (t != NULL)
 {
 t = top->next;
 free(top);
 top = t;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 t = t
 }
 free(t)
 top =

 printf
 count
}
Output

Perform

 L
each sta

Spa

Tim

Tim
Tim
Tim
Tim
Tim

t->next;

);
 NULL;

f("\n All sta
 = 0;

t:

mance

Let be defin
ck operatio

ace complex

me complex

me complex
me complex
me complex
me complex
me complex

ack element

ne the numb
ons given as

xity (For n

xity of Creat

xity of Push
xity of Pop(
xity of Top(
xity of isEm
xity of Delet

ts destroyed

ber of elem
s (for this ty

 push opera

teStack()

h()
)
)

mpty()
teStack()

d");

ments in the
ype of impl

ations) O(

O(

O(
O(
O(
O(
O(

e stack are n
ementation

(n)

(1)

(1)
(1)
(1)
(1)
(1)

n. The com
n).

mplexities foor

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Comparing Array Implementation and Linked List Implementation

Array Implementation:

• Operations take constant time.
• Any sequence of n operations (starting from empty stack) is “amortized” takes

time proportional to n.

Linked List Implementation:

• Every operations take constant time O(1).
• Grows and shrinks gracefully.
• Every operation uses extra space and time to deal with reference.

1.5 Applications

Following are some of the important applications, where stack plays an important
role.

• Infix-to-postfix conversion
• Implementation of function calls (including recursion)
• To evaluate postfix expression
• Syntax Parsing
• Backtracking
• Runtime Memory Management

Let’s consider an arithmetic expression a+b*c. Here, the addition operation is not
evaluated first, because the operations are evaluated in the order of their precedence
in the expression. Before evaluating an expression, the entire expression examined to
determine whether there is any operator with higher precedence. After examining the
expression, back tracking is done to evaluate the first operator to obtain the result.
The back tracking operation can be best implemented by the stack operations.

The various stack oriented notations are:

• Infix
• Prefix
• Postfix

Infix:

 An ordinary mathematical expression is called infix notation. When using an
expression as an infix type notation, the operands are placed between the operands.
To represent an expression in infix notation, we use parenthesis to specify the order
in which the operands to be performed. Otherwise, the precedence rules will be
followed to eliminate ambiguous result of the expression.

Example: (A+B)+(C-D)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Prefix:

 In this type of notation, the operators are placed before the operands in a
mathematical expression. This type of can also called as polish notation.

Example: The prefix notation for A+B+C-D expression is ++AB-CD.

Postfix:

 This is also known as Reverse Polish Notation (RPN). In this type of notation,
the operators are placed after the operands, i.e. the operators are preceded by the
operands.

Example: The postfix notation for A+B+C-D expression is AB+CD-+.

• The advantage of using prefix and postfix notations in a mathematical
expression is that to avoid the use of parenthesis and operator precedence
rules completely.

• Time taken to evaluate a postfix and prefix expression is O(n), where n is the
number of elements in an array.

Infix Prefix Postfix
A+B +AB AB+
A+B-C -+AB AB+C-
(A+B)*C-D -*+ABCD AB+C*D-

Conversion from Infix to Prefix/Postfix Notations

 In infix expressions, the operator precedence is implicit unless we use
parenthesis. Before the infix to prefix or postfix conversion algorithm we have to
define the operator precedence inside the algorithm. The table below shows the
precedence and their order of evaluation among the operators.

Token Operator Precedence
(Priority)

Associatively
(order of
evaluation)

()
[]
->

.

function call
array element
member selection via
pointer
member selection via
object name

17 left- to- right

-- ++

Postfix decrement,
Increment

16 left- to- right

-- ++

!
~

Prefix decrement,
Increment
logical not
bitwise complement

15 right-to-left

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

- +
&*
sizeof

unary minus or plus
address or indirection
size (in bytes)

(type) cast (convert value to
temporary of type)

14 right-to-left

* / % Multiplication/ division/
modulus

13 left- to- right

+ - Binary add or subtract 12 left- to- right
<<>> Bitwise shift left, shift

right
11 left- to- right

>>=
<<=

relational 10 left- to- right

== != equality 9 left- to- right
& bitwise and 8 left- to- right
^ bitwise exclusive or 7 left- to- right
| bitwise or 6 left- to- right
&& logical and 5 left- to- right
|| logical or 4 left- to- right
?: conditional 3 right-to-left
=
+= -+

*= /=

%= &=

^= |=

<<= >>=

Assignment
addition/subtraction
assignment
multiplication/division
assignment
modulus/bitwise AND
assignment
bitwise
exclusive/inclusive OR
assignment
Bitwise shift left/right
assignment

2 right-to-left

, Comma (separate
expressions)

1 left- to- right

1.6 Problems on Stack:

Problem1: Discuss the Infix to prefix notation Algorithm?

The below algorithm is used to convert infix expression to prefix expression.

Algorithm:

1. First, create an empty stack and reverse the given input string.

2. For each character t in the input stream, if the input t is an operand, then
place it in the output buffer.

3. If the input t is an operator, push t into the stack.

4. If the operator in a stack has equal or higher precedence than input operator t,
then pop the operator present in stack and add it to output buffer.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

5. If the input is a right brace (close brace), push it into the stack.

6. If the input is a left brace (open brace), pop elements in stack one by one until
we encounter left brace. Discard braces while writing to output buffer.

After completion of all mentioned above steps reverse the data in output buffer and
the result will be prefix notation of given expression.

Example: Convert given infix expression (a+b)*(c-d) into prefix expression.

Given infix expression: (a+b)*(c-d)

Step1: Reverse the given expression:) d-c(*)b+a(

Step2: Input:)

Input is a right brace, so place it into a stack.

 Output:

Input:d

 d is an operand place it into stack

 Output: d

Input:-

Operator place it into a stack

 Output: d

Input: c
Place the operand c into output buffer.

)

)

‐

)

‐

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 Output: dc

Input: (
Pop all – and)

 Output: dc-
Input: *
Push the operator into stack

 Output: dc-
Input:)
Push the operator into stack

 Output: dc-
Input: b
Place the operand in the output buffer

 Output: dc-b
Input: +
Push the operator into stack

)

‐

)

*

)

*

)

*

)

+

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 Output: dc-b
Input: a
Place the operand in the output buffer

 Output: dc-ba

Input: (
Pop all operators till)

 Output: dc-ba+

No more inputs to parse, pop all remaining elements in stack.

Output: dc-ba+*

Reverse the output string:*+ba-cd

Prefix Notation: +*ab-cd

Problem2: Evaluate prefix expression using stack.

Stacks can also be used to evaluate a prefix notation. The following steps are
considered to evaluate a prefix expression.

• Reverse the given input string
• For each character in string, if the character is operand push it into stack.
• If the character is operator, then the pop the first two operands in the stack

and evaluate using this operator then place the result into the stack.

Example: +/63*-432

Reverse the given input string: 234-*36/+

3

2

4

1

2

2 2

3 3

6

2

2

2 4

*

)

*

+

*

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Problem 3: Discuss the Infix to postfix notation Algorithm?
Before discussing the conversion algorithm we should know some important
properties.

1. Let’s consider an infix expression a+b*c and its postfix equivalent abc*+. Here
notice that between infix and postfix the order of operands is unchanged i.e. a
b c in both cases. But, the order of operators * and + is effected in the two
expressions.

2. So, only one stack is enough to convert an infix to postfix expression. The
stack we are going to used change the order of operators from infix to postfix.
The stack we use will only contain operators and the open parenthesis symbol
‘(’. Postfix expression don’t contain parentheses. We shall not output the
parentheses in the postfix output.

Algorithm:

1. Create an empty stack
2. For each character in a given input string, if the input is an operand, then

place it into the output buffer.
3. If the input is an operator, push it into the stack.
4. If the operator in stack has equal or higher precedence than input operator,

then pop the operator present in stack and add it to output buffer.
5. If the input is an left (open) brace, push it into the stack
6. If the input is a right (close) brace, pop elements in stack one by one until we

encounter close brace. Discard braces while writing to output buffer.

Example: Convert given infix expression (a+b)*(c-d) into postfix expression.

Given infix expression: (a+b)*(c-d)

Step2: Input: (

 Input is a left brace, so place it into a stack.

 Output:

Input:a

a is an operand place it into stack

(

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 Output: a

Input:+

Operator place it into a stack

 Output: a

Input: b
Place the operand c into output buffer.

 Output: ab

Input:)
Pop all + and)

 Output: ab+
Input: *
Push the operator into stack

 Output: ab+
Input: (
Push the operator into stack

(

+

(

+

(

*

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

 Output: ab+
Input: c
Place the operand in the output buffer

 Output: ab+c
Input: -
Push the operator into stack

 Output: ab+c
Input: d
Place the operand in the output buffer

 Output: ab+cd

Input:)
Pop all operators till (

 Output: ab+cd-

No more inputs to parse pop all remaining elements in stack.

Output: ab+cd-*

(

*

(

*

(

*

‐

(

*

‐

*

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

Postfix Notation: ab+cd-*

Problem2: Evaluate prefix expression using stack.

Stacks can also be used to evaluate a postfix notation. The following steps are
considered to evaluate a postfix expression.

For each character in string, if the character is operand push it into stack.

If the character is operator, then the pop the first two operands in the stack and
evaluate using this operator then place the result into the stack.

Example: evaluate postfix expression 68+92-/

6

8

6

14 14

9 9

2

14

7

14 2

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

