
1

STORAGE CLASSES

INTRODUCTION

From C compiler’s point of view, a variable name identifies

some physical location within the computer memory,

where the string of bits representing the variable’s value is

stored. There are basically two kinds of locations in a

computer where such a value may be kept— Memory and

CPU registers. It is the variable’s storage class that

determines in which of these two locations the value is stored.

The use of the storage classes is that,

• We can have the idea of, the scope of the variable.

• The initial value of the variable, if the initial value is not assigned.

• Where the variable is stored.

• Life time of the variable.

There are four storage classes in C:

1. Automatic storage class

2. Register storage class

3. Static storage class

4. External storage class

Let us examine these storage classes one by one.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

2

TOPIC 1 AUTOMATIC STORAGE CLASS

The variable declared under this storage class has the features like,

 Storage is in memory.

 Default initial value is garbage value, if initial value is not assigned.

 The variable life time is, till the control remains within the block in which the

variable is defined.

main ()

{

auto int i, j ;

printf ("\n%d %d", i, j) ;

}

The output of the above program could be...

1211 221

It’s better to understand the life and scope of a variable clearly from the following

example program.

main ()
{

auto int i = 1;
{

{
{

printf ("\n%d ", i) ;
i++;

}
printf ("%d ", i) ;

}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

3

printf ("%d", i) ; i++;

}
 }

 The output of the above program is: 1 1 1

This is because, all printf () statements occur within the outermost block (a block is

all statements enclosed within a pair of braces) in which i has been defined. It

means the scope of i is local to the block in which it is defined. The moment the

control comes out of the block in which the variable store defined, the variable and

its value is irretrievably lost.

TOPIC 2 REGISTER STORAGE CLASS

The variable defined under this storage class has the features like,

 Storage---------------------------- CPU registers.

 Default initial value ------------------ garbage value.

 Scope ----------------------------------- local to the block in which it is defined.

 Life -- till the control remains within the block of

the variable which it is defined.

If a value stored in the CPU can be accessed quickly compared to the value stored in

memory. At times the variable can be used in the program number of times so in

this case for accessing the variable its better to declare the variable under the register

storage class.

Note:-

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

4

Use register storage class for only those variables that are being used very often in a

program. Reason is, there are very few CPU registers at our disposal and many of

them might be busy doing something else. Make careful utilization of the scarce

resources. A typical application of register storage class is loop counters, which get

used a number of times in a program.

Example:-

main()

{

register int i ;

for (i = 1 ; i <= 10 ; i++)

printf ("\n%d", i) ;

}

• This register storage class is used for the faster access of variables.

• Common use in counter.

• Register type declaration is not applicable for arrays,pointers and structures.

TOPIC 3 STATIC STORAGE CLASS

The features of variable defined to have a static storage class are,

 Storage ----------------------------------memory.

 Default initial value---------------zero.

 Scope --------------------------------local to the block in which it is defined.

 Life --------------------------------------value of the variable persists between two

function calls.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

5

Like auto variables, static variables are also local to the block in which they are

declared. The difference between them is that static variables don’t disappear when

the function is no longer active. Their values persist. If the control comes back to the

same function again the static variables have the same values they had last time

around.

In the above example, when variable I is auto, each time increment () is called it is

re-initialized to one. When the function terminates, I vanishes and its new value of 2

is lost. The result: no matter how many times we call increment (), I is initialized to

1 every time.

On the other hand, if I is static, it is initialized to 1 only once. It is never initialized

again. During the first call to increment (), I is incremented to 2. Because I is static,

Program -1 :-

main()

{

 Increment ();

 Increment ();

}

 Increment ();

{

 auto int I =1;

 printf (“%d”,I);

 I = I + 1;

}

Output :- 1 1

Program – 2:-

main()

{

 Increment ();

 Increment ();

}

 Increment ();

{

 static int I =1;

 printf (“%d”,i);

 I = I + 1;

}

Output :- 1 2

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

6

this value persists. The next time increment () is called, I is not re-initialized to 1; on

the contrary its old value 2 is still available. This current value of I (i.e. 2) gets

printed and then I = I + 1 adds 1 to I to get a value of 3. When increment () is

called the third time, the current value of i (i.e. 3) gets printed and once again i is

incremented. In short, if the storage class is static then the statement static int I = 1 is

executed only once, irrespective of how many times the same function is called.

Note:-Use static storage class only if you want the value of a variable to persist

between different function calls.

TOPIC 4 EXTERNAL STORAGE CLASS

 Storage: - memory.

 Life: - as long as the program execution comes to an end.

 Default value: - zero.

 Scope: - global.

External variables are declared outside all functions, yet are available to all

functions that care to use them.

Example:-

int i ;

main()
{

printf ("\ni = %d", i) ;
increment() ;
increment() ;
decrement() ;
decrement() ;

}
increment()
{

i = i + 1 ;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

7

printf ("\non incrementing i = %d", i) ;
}
decrement()
{

i = i - 1 ;
printf ("\non decrementing i = %d", i) ;

}

The output would be:

i = 0
On incrementing i = 1
On incrementing i = 2
On decrementing i = 1
On decrementing i = 0

The value of i is available to the functions increment () and decrement () since i has

been declared outside all functions.

Note: - The local variable that gets preference over the global variable.

Note:- Use extern storage class for only those variables that are being used by

almost all the functions in the program. This would avoid unnecessary passing of

these variables as arguments when making a function call. Declaring all the variables

as extern would amount to a lot of wastage of memory space because these variables

would remain active throughout the life of the program.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

