
1

C-BASIC DATA TYPES

C BASIC DATA TYPES

Every variable and function in C programming has two

properties: type and storage class. Data types refer to an

extensive system used for declaring variables or functions

of different types. The type of a variable determines how

much space it occupies in storage and how the bit pattern

stored is interpreted. Storage class defines the scope

(visibility) and life time of variables and/or functions within a C Program. This

specifies precede the type that they modify.

The types in C can be classified as follows:

S.no Types Description

1 Basic types They are arithmetic types and consist of the two types:

(a) integer types and

 (b) Floating-point types.

2 Enumerated
types

They are again arithmetic types and they are used to define variables
that can only be assigned certain discrete integer values throughout the
program.

3 The type void

The type specifier void indicates that no value is available.

4 Derived
types

They include (a) Pointer types, (b) Array types, (c) Structure types, (d)
Union types and (e) Function types.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

2

TOPIC 1 INTEGER TYPE

Following table gives you detail about standard integer types with its storage sizes and
value ranges:

Type Storage

size

Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4

bytes

-32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

unsigned int 2 or 4

bytes

0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

To get the exact size of a type or a variable on a particular platform, you can use

the sizeof operator. The expressions sizeof (type) yields the storage size of the object

or type in bytes. Following is an example to get the size of int type on any machine:

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

3

Example program

#include<stdio.h>

#include<limits.h>

int main()

{

 printf("%d",sizeof(int));

 return 0;

}

When you compile the above program you get the output as, Storage size for int: 4

(1) Explanation related to range of an integer and the size of compiler

 We had seen earlier that the range of an Integer constant depends upon the

compiler. For a 16-bit compiler like Turbo C or Turbo C++ the range is –32768 to

32767. For a 32-bit compiler the range would be –2147483648 to +2147483647.

Here a 16-bit compiler means that when it compiles a C program it generates

machine language code that is targeted towards working on a 16-bit microprocessor

like Intel 8086/8088. As against this, a 32-bit compiler like VC++ generates machine

language code that is targeted towards a 32-bit microprocessor like Intel Pentium.

 Note that this does not mean that a program compiled using Turbo C would

not work on 32-bit processor. It would run successfully but at that time the 32-bit

processor would work as if it were a 16-bit processor. This happens because a 32-bit

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

4

processor provides support for programs compiled using 16-bit compilers. If this

backward compatibility support is not provided the 16-bit program would not run on it.

This is precisely what happens on the new Intel Itanium processors, which have withdrawn support

for 16-bit code.

Remember that out of the two/four bytes used to store an integer, the highest bit

(16
th

/32
nd

bit) is used to store the sign of the integer. This bit is 1 if the number is

negative and 0 if the number is positive.

(2) Signed integer and unsigned integer

 Sometimes, we know in advance that the value stored in a given integer

variable will always be positive—when it is being used to only count things, for

example. In such a case we can declare the variable to be unsigned, as in,

unsigned int num_students ;

With such a declaration, the range of permissible integer values (for a 16-bit OS) will

shift from the range -32768 to +32767 to the range 0 to 65535. Thus, declaring an

integer as unsigned almost doubles the size of the largest possible value that it can

otherwise take. This so happens because on declaring the integer as unsigned, the

left-most bit is now free and is not used to store the sign of the number. Note that an

unsigned integer still occupies two bytes. This is how an unsigned integer can be

declared:

unsigned int i ;

unsigned i ;

Like an unsigned int, there also exists a short unsigned int and a long unsigned int.

By default a short int is a signed short int and a long int is a signed long int.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

5

(3)Long int:-

 C offers a variation of the integer data type that provides what are called short

and long integer values. The intention of providing these variations is to provide

integers with different ranges wherever possible. Though not a rule, short and long

integers would usually occupy two and four bytes respectively. Each compiler can

decide appropriate sizes depending on the operating system and hardware for which

it is being written, subject to the following rules:

 shorts are at least 2 bytes big

 longs are at least 4 bytes big

 shorts are never bigger than ints

 ints are never bigger than longs

long variables which hold long integers are declared using the keyword long, as in,

long int i ;

long int abc ;

long integers cause the program to run a bit slower, but the range of values that we

can use is expanded tremendously. The value of a long integer typically can vary

from -2147483648 to +2147483647. More than this you should not need unless you

are taking a world census.

If there are such things as longs, symmetry requires shorts as well—integers that need

less space in memory and thus help speed up program execution. short integer

variables are declared as,

short int j ;

short int height ;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

6

C allows the abbreviation of short int to short and of long int to long. So the

declarations made above can be written as,

long i ;

long abc ;

short j ;

short height ;

Naturally, most C programmers prefer this short-cut.

Sometimes we come across situations where the constant is small enough to be an

int, but still we want to give it as much storage as a long. In such cases we add the

suffix ‘L’ or ‘l’ at the end of the number, as in 23L.

TOPIC 2 FLOATING POINT TYPES

(1) Float, double

A float occupies four bytes in memory and can range from -3.4e38 to +3.4e38. If this

is insufficient then C offers a double data type that occupies 8 bytes in memory and

has a range from -1.7e308 to +1.7e308. A variable of type double can be declared as,

double a, population;

If the situation demands usage of real numbers that lie even beyond the range

offered by double data type, then there exists a long double that can range from -

1.7e4932 to +1.7e4932. A long double occupies 10 bytes in memory.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

7

TOPICS 3 CHAR TYPES

(1) Signed char and unsigned char

Signed and unsigned chars, both occupying one byte each, but having different

ranges. To begin with it might appear strange as to how a char can have a sign.

Consider the statement

Char ch = ‘A’;

Here what gets stored in ch is the binary equivalent of the ASCII value of ‘A’ (i.e.

binary of 65). And if 65’s binary can be stored, then -54’s binary can also be stored

(in a signed char).

• A signed char is same as an ordinary char and has a range from -128 to +127.

• Unsigned char has a range from 0 to 255.

main ()

{

char ch = 291;

printf ("\n%d %c", ch, ch) ;

}

What output do you expect from this program? Possibly, 291 and the character

corresponding to it. Well, not really. Surprised? The reason is that ch has been

defined as a char, and a char cannot take a value bigger than +127. Hence when

value of ch exceeds +127, an appropriate value from the other side of the range is

picked up and stored in ch. This value in our case happens to be 35, hence 35 and

its corresponding character # gets printed out.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

