
1

DECISION MAKING

INTRODUCTION

Control instructions in c

Control instructions specify the various instructions in a

program are to be executed by the computer. Simply,

control instructions determine the flow of control in a

program.

There are four types of control instructions in C. They are:

(a) Sequence Control Instruction.

(b) Selection or Decision Control Instruction.

(c) Repetition or Loop Control Instruction.

(d) Case Control Instruction.

• The Sequence control instruction ensures that the instructions are executed in

the same order in which they appear in the program.

• Decision and Case control instructions allow the computer to take a decision

as to which instruction is to be executed next.

• The Loop control instruction helps computer to execute a group of

statements repeatedly.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

2

Decision Control Instruction

If you want to have a situation like set of instructions to be executed in one situation,

and an entirely different set of instructions to be executed in another situation. This

kind of situation is dealt in C programs using a decision control instruction. As

mentioned earlier, a decision control instruction can be implemented in C using:

• The if statement.

• The if-else statement.

• The conditional operators.

Topic 1 if statement

Syntax

if (condition)

{

 Statements;

}

If key word is used to implement the decision control statements, the general form

of the if statement is,

if(condition)

 execute statement ;

If statement is formed by using assignment and the relational operators. The result

of using these operators is always simply the observation of true or false.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

3

 We express a condition using C’s ‘relational’ operators. The relational

operators allow us to compare two values to see whether they are equal to each

other, unequal, or whether one is greater than the other.

The relational operators should be familiar to you except for the equality operator

== and the inequality operator! =. Note that = is used for assignment, whereas, == is

used for comparison of two quantities.

An example which demonstrates the if statement,

Example

main()
{
 int i;
 printf (“enter the value of variable I”);
 scanf(“%d”,&i);
 if(i<10)
 printf ("Welcome“) ;
}
On execution of this program, if you type a number less than 10, you get a message

on the screen through printf(). If you type some other number the program doesn’t

do anything.

Expression Is true if

X==Y X is equal to Y

X!=Y X is not equal Y

X < Y X less than Y

X >Y X greater than Y

X<=Y X is less than or equal to Y

X>=Y X is greater than or equal to Y

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

4

Flow chart

Figure 4.2.1:- Flow chart for the above example

START

Print enter a
number

Input a number

Is number

WELCOME

STOP

NO YES

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

5

Here the expression can be any valid expression including a relational expression.

We can even use arithmetic expressions in the if statement. For example all the

following if statements are valid

if (3 + 2 % 5)

printf ("This works") ;

if (a = 10)

printf ("Even this works") ;

if (-5)

printf ("Surprisingly even this works") ;

Note that in C a non-zero value is considered to be true, whereas a 0 is considered to

be false. In the first if, the expression evaluates to 5 and since 5 is non-zero it is

considered to be true. Hence the printf() gets executed.

In the second if, 10 gets assigned to a so the if is now reduced to if (a) or if (10).

Since 10 is non-zero, it is true hence again printf() goes to work.

In the third if, -5 is a non-zero number, hence true. So again printf() goes to work.

In place of -5 even if a float like 3.14 were used it would be considered to be true. So

the issue is not whether the number is integer or float, or whether it is positive or

negative. Issue is whether it is zero or non-zero.

Multiple statements within if

Do you think that there can be multiple statements within if statement?

Yes, there is a chance of having multiple statements within if statement. In this case

the statements are placed within a pair of braces.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

6

Example: - Incrementing i variable value.

main()

{ //start of main program

 int i; //declaration of i variable

 printf(“enter the value of i”);

 scanf(“%d”,&i); //input the i value

 if(i>0) //if condition

 { //start of if condition

 i = i +1; //incrementing the i value

 printf(“the i value after incrementing is %d”,i); //printing the i

value as output

 } //end of if condition

} // end of the program

Observe that here the two statements to be executed on satisfaction of the condition

have been enclosed within a pair of braces. If a pair of braces is not used then the C

compiler assumes that the programmer wants only the immediately next statement

after the if to be executed on satisfaction of the condition. In other words we can say

that the default scope of the if statement is the immediately next statement after it.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

7

Topic 2 if – else Statement

Syntax

if(condition)

{

 True statements;

}

else

{

 False statements;

}

‘If’ statement by itself will execute a single statement, or a group of statements, when

the expression following if evaluates to true. It does nothing when the expression

evaluates to false. Can we execute one group of statements if the expression

evaluates to true and another group of statements if the expression evaluates to false?

Of course! This is what the purpose of the else is statement that is demonstrated in

the following example:

Example

#include <stdio.h>

int main ()

{

 /* local variable definition */

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

8

 int a = 100;

 /* check the boolean condition */

 if(a < 20)

 {

 /* if condition is true then print the following */

 printf("a is less than 20\n");

 }

 else

 {

 /* if condition is false then print the following */

 printf("a is not less than 20\n");

 }

 printf ("value of a is : %d\n", a);

 return 0;

}

Output :-

a is not less than 20;

value of a is : 100

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

9

Topic 3 Nested if-else

If we write an entire if-else construct within either the body of the if statement or the

body of an else statement. This is called ‘nesting’ of ifs.

Syntax

if(condition)

{

 if(condition)

 {

 Statements;

 }

 else

 {

 statements;

 }

}

else

{

 statements;

}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

10

In above syntax, the condition is checked first. If it is true, then the program control

flow goes inside the braces and again checks the next condition. If it is true then it

executes the block of statements associated with it else executes else part.

Example

#include <stdio.h>

#include <conio.h>

void main()

{

 int no;

 clrscr();

 printf ("\n Enter Number :");

 scanf ("%d",&no);

 if(no>0)

 {

 printf ("\n\n Number is greater than 0 !");

 }

 else

 {

 if(no==0)

 {

 printf("\n\n It is 0 !");

 }

 else

 {

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

11

 printf("Number is less than 0 !");

 }

 }

 getch();

}

Forms of if statements

a. if(condition)

Statement;

b. if (condition)

 {

 Statement1;

 Statement2;

 -

 -

 Statement n;

 }

c. If (condition)

{

 Do this;

}

else

{

 Do this

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

12

}

d. if (condition) {

do this ;

and this ;

}

else

{

do this ;

and this ;

}

e. if (condition) do this ;

else

{

if (condition)

do this ;

else

{

do this ;

and this ;

}

}

f. if (condition)

{

if (condition)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

13

do this ;

else

{

do this ;

and this ;

}

}

else

do this ;

Note: - Keyword break is not syntactical part of if-else statement. So we cannot use break

keyword in if-else statement. This keyword can be use in case of loop or switch case statement.

Note: - It is bad programming practice to write constant as a condition in if clause.

Hence compiler will show a warning message: Condition is always true. Since

condition is always true, so else clause will never execute. Program control cannot

reach at else part. So compiler will show another warning message: Unreachable

code.

Note: - In case of if – if else – if else … Statement if first if clause is true the compiler

will never check rest of the if else clause and so on.

Topic 4 Conditional Operators

Introduction

Ternary operators come under the conditional operators. : and? Together forms

the ternary operator are ternary operators. It is called ternary operators because it

takes three arguments. These conditional operators evaluate an expression. So if it is

true it returns a result 1 and else if it is false then returns result 2.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

14

Syntax:-

 Condition? result1: result2;

Example

10==5? 11: 12 // returns 12, since 10 not equal to 5.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

15

CASE CONTROL STRUCTURE

Decisions using switch

Introduction

What is a switch in c language actually?

The control statement that allows us to make a decision from the number of choices

is called a switch.

• There are three keyword “switch, case and default” makes up the control

statement.

Syntax:-

switch (integer expression)

{

case constant 1 :

do this ;

case constant 2 :

do this ;

case constant 3 :

do this ;

default :

do this ;

}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

16

• The integer expression following the keyword switch is any C expression that

will yield an integer value. It could be an integer constant like 1, 2 or 3, or an

expression that evaluates to an integer.
• The keyword case is followed by an integer or a character constant. Each

constant in each case must be different from all the others.
• Do this statements are simple valid statements.

What happens when switch programs runs?

1. The expression followed by the switch keyword is evaluated.

2. The value that gives from the result of the evaluated expression is then

matched ,one by one, against the constant values that follow the case key

word.

3. When a match is found, the program executes the statements following

that case, and all subsequent case and default statements as well.

4. If no match is found with any of the case statements, only the statements

following the default are executed.

Example

main()

{

int i = 2 ;

switch (i)

{

case 1 :

printf ("I am in case 1 \n") ;

case 2 :

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

17

printf ("I am in case 2 \n") ;

case 3 :

printf ("I am in case 3 \n") ;

default :

printf ("I am in default \n") ;

}

}

The output of this program would be:

I am in case 2

I am in case 3

 I am in default

The program prints case 2 and 3 and the default case. Well, yes. We said the switch

executes the case where a match is found and all the subsequent cases and the

default as well.

If you want that only case 2 should get executed, it is up to you to get out of the

switch then and there by using a break statement.

Topic 2 Switch – Break

Switch executes the case where a match is found and all the subsequent cases and

the default as well. If you want that only case 2 should get executed, it is up to you to

get out of the switch then and there by using a break statement. The following

example shows how this is done.

Note

There is no need for a break statement after the default, since the control comes out

of the switch anyway.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

18

main()

{

int i = 2 ;

switch (i) //switch selection statement

{

case 1 :

printf ("I am in case 1 \n") ;

break ;

case 2 :

printf ("I am in case 2 \n") ;

break ;

case 3 :

printf ("I am in case 3 \n") ;

break ;

default:

printf ("I am in default \n") ;

}

}

The output of this program would be:

I am in case 2

Note 1

The earlier program that used switch may give you the wrong impression that you

can use only cases arranged in ascending order, 1, 2, 3 and default. You can in fact

put the cases in any order you please. Here is an example of scrambled case order:

main() {

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

19

int i = 22 ; //declaration and initialization of i variable

switch (i)

{

case 121 :

printf ("I am in case 121 \n") ;

break ;

case 7 :

printf ("I am in case 7 \n") ;

break ;

case 22 :

printf ("I am in case 22 \n") ;

break ;

default :

printf ("I am in default \n") ;

}

}

The output of this program would be:

I am in case 22

Note 2

You are also allowed to use char values in case and switch as shown in the following

program:

main()

{

char c = 'x' ;

switch (c)

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

20

{

case 'v' :

printf ("I am in case v \n") ;

break ;

case 'a' :

printf ("I am in case a \n") ;

break ;

case 'x' :

printf ("I am in case x \n") ;

break ;

default :

printf ("I am in default \n") ;

}

}

The output of this program would be:

I am in case x

In fact here when we use ‘v’, ‘a’, ‘x’ they are actually replaced by the ASCII

values (118, 97, and 120) of these character constants.

Note 3

At times we may want to execute a common set of statements for multiple cases.

How this can be done is shown in the following example.

main()

{

char ch ;

printf ("Enter any of the alphabet a, b, or c ") ;

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

21

scanf ("%c", &ch) ;

switch (ch)

{

case 'a' :

case 'A' :

printf ("a as in ashar") ;

break ;

case 'b' :

case 'B' :

printf ("b as in brain") ;

break ;

case 'c' :

case 'C' :

printf ("c as in cookie") ;

break ;

default :

printf ("wish you knew what are alphabets") ;

}

}

Here, we are making use of the fact that once a case is satisfied the control

simply falls through the case till it doesn’t encounter a break statement. That is

why if an alphabet a is entered the case ‘a’ is satisfied and since there are no

statements to be executed in this case the control automatically reaches the next

case i.e. case ‘A’ and executes all the statements in this case.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

22

Note 4

Even if there are multiple statements to be executed in each case there is no need to

enclose them within a pair of braces (unlike if, and else).

Note 5

Every statement in a switch must belong to some case or the other. If a statement

doesn’t belong to any case the compiler won’t report an error. However, the

statement would never get executed. For example, in the following program the

printf() never goes to work.

main ()

{

int i, j ;

printf ("Enter value of i") ;

scanf ("%d”, &i) ;

switch (i)

{

printf ("Hello") ;

case 1 :

j = 10 ;

break ;

case 2 :

j = 20 ;

break ;

}

}

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

23

Note 6

If we have no default case, then the program simply falls through the entire

switch and continues with the next instruction (if any,) that follows the closing

brace of switch.

Disadvantage of SWITCH over IF statement

The disadvantage of switch is that one cannot have a case in a switch which looks

like:

Case i <= 20:

All that we can have after the case is an int constant or a char constant or an

expression that evaluates to one of these constants. Even a float is not allowed.

Advantage of SWITCH over IF statement

The advantage of switch over if is that it leads to a more structured program and the

level of indentation is manageable, more so if there are multiple statements within each case

of a switch.

Note 7:-

We can check the value of any expression in a switch. Thus the following switch

statements are legal.

switch (i + j * k)

switch (23 + 45 % 4 * k)

switch (a < 4 && b > 7)

Expressions can also be used in cases provided they are constant expressions.

Thus case 3 + 7 is correct, however, case a + b is incorrect.

Note 8:-

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

24

The break statement when used in a switch takes the control outside the switch.

However, use of continue will not take the control to the beginning of switch as one

is likely to believe.

Note 9:-

The switch statement is very useful while writing menu driven programs.

There are something’s that you cannot do with the switch (disadvantages

of switch)

• A float expression cannot be tested using a switch.

• Cases can never have variable expressions (for example it is wrong to say case

a +3 :) .

• Multiple cases cannot use same expressions.

A switch with 10 cases would work faster than an equivalent if-else ladder.

A switch with 2 cases would work slower than if-else ladder.

www.sakshieducation.com

www.sakshieducation.com

www.sa
ks

hie
du

ca
tio

n.c
om

