Chapter-2

SETS

In Mathematics, Set theory was developed by George Cantor (1845-1918).
Set: A well defined collections of objects is called a Set.
Well defined means that
(i) All the objects in the Set should have a common feature or property and
(ii) It should be possible to decide whether any given objects belongs to the set or not.

We usually denote a set by capital letters and the elements of a set are represented by small letters.

Ex: Set of vowels in English language $\mathrm{V}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$
Set of even numbers $E=\{2,4,6,8, \ldots \ldots \ldots\}$
Set of odd numbers $O=\{1,3,5,7, \ldots \ldots \ldots \ldots\}$
Set of prime numbers $\mathrm{P}=\{2,3,5,7,11,13, \ldots .$.
Any element or object belonging to a set, then we use symbol ' ϵ ' (belongs to), if it is not belonging to it is denoted by the Symbol ' \notin '(does not belongs to)
Ex: In Natural numbers Set $\mathrm{N}, 1 \in \mathrm{~N}$ and $0 \notin \mathrm{~N}$

Roaster Form: All elements are written in order by separating commas and are enclosed with in curly brackets is called Roaster form. In the form elements should not repeated.

Ex: Set of prime numbers less than 13 is $p=\{2,3,5,7,11\}$

Set Builder Form: In set builder form, we use a symbol x (or any other symbol y, z etc.) for the element of the set. This is following by a colon (or a vertical line), after which we write the characteristic property possessed within curly brackets. Ex: $P=\{2,3,5,7,11\}$. This is the set of all prime numbers less than 13. It can be represented in the set builders form as
$P=\{x: x$ is a prime numbers less than 13$\}$

(Or)

$P=\{x / x$ is a prime number less than 13$\}$

Null Set: A set which does not contain any element is called the empty set or the null get or a void set .It is denoted by ϕ or $\}$
Ex: $A=\{x / 1<x<2, x$ is a natural numbers $\}$
$B=\left\{x / x^{2}-2=0\right.$ and x is a rational number $\}$
Finite Set: A set is called a finite set if it is possible to count the numbers of elements in it.

Ex: $A=\{x ; x \in N$ and $(x-1)(x-2)=0\}=\{1,2\}$
$B=\{x ; x$ is a day in a week $\}=\{$ SUN, MON, TUS, WED, THU, FRI, SAT $\}$

Infinite Set: A Set is called an infinite set if the number of cannot count the number of elements in it.

Ex: $\mathrm{A}=\{\mathrm{x} / \mathrm{x} \in \mathrm{N}$ and x is an odd number $\}$
$=\{1,3,5,7,9,11$ \qquad
$B=\{x / x$ is a point on a straight line $\}$
Cardinal Number: The number of elements in a Set is called the cardinal number of the set. If ' A ' is a set them $\mathrm{n}(\mathrm{A})$ represents cardinal number.

Ex: If $A=\{a, e, i, o, u\}$ then $n(A)=5$

If $B=\{x ; x$ is alter in the word INDIA $\}$
Then $n(B)=4$
$\mathrm{N}(\phi)=0$
Universal Set: Universal Set is denoted by ' μ ' or ' U ' generally, universal set represented by rectangle.

Sulbset: If every element of a set A is also an element of set B, then the set A is said to be a subset of set B. It is represented as $A \subset B$.

Ex: If $A=\{4,8,12\} ; B=\{2,4,6,8,10,12,14\}$ then
A is a subset of B (i.e. $A \subset B$)

- Every Set is a subset of itself $(A \subset A)$
- Empty Set is a subset of every set $(\phi \subset \mathrm{A})$
- If $A \subset B$ and $B \subset C$ then $A \subset C$ (Transitive property)

Equal Sets: Two sets A and B are said to be 'equal' if every elements in A belongs to B and every elements in B belongs to A. If A and B are equal sets, then we write $A=B$. Ex: The set of prime number less than $6, \mathrm{~A}=\{2,3,5\}$

The prime factors of $30, \mathrm{~B}=\{2,3,5\}$

Since the elements of A are the same as the elements of B, therefore, A and B are equal.

- $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A} \Leftrightarrow \mathrm{A}=\mathrm{B}$ (Ant symmetric property)

Venn Diagrams: Venn-Euler diagram or Simply Venn diagram is a way of representing the relationships between sets. These diagrams consist of rectangles and closed curves usually circles.

Ex:

Basic operations on Sets: We know that arithmetic has operation of addition, subtraction and multiplication of numbers. Similarly in Sets, we define the operation of Union, Intersection and difference of Sets.

Union of Sets: The union of A and B is the Set which contains all the elements of A and also the elements of B and the common element being taken only once. The symbol ' U ' is used to denote the union. Symbolically, we write $A \cup B$ and read as 'A' union 'B'.

$$
A \cup B=\{x / x \in A \text { or } x \in B\}
$$

Ex: $A=\{1,2,3,4,5\}: B=\{2,4,6,8,10\}$

Then $A \cup B=\{1,2,3,4,5,6,8,10\}$

- $A \cup B=A$
- $\mathrm{A} \cup \phi=\mathrm{A}=\phi \cup \mathrm{A}$ (identity property)
- $\mathrm{A} \cup \mu=\mu=\mu \cup \mathrm{A}$
- If $A \subset B$ then $A \cup B=B$
- $\quad \mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A} \quad$ (Commutative property)

Intersection of Sets: The intersection of A and B is the Set in which the elements that are common to both A and B. The Symbol ' \cap ' is used to denote the 'intersection'.

Symbolically we "A \cap B" and read as "A intersection B".
$A \cap B=\{x / x \in A$ and $x \in B\}$
Ex: $A=\{1,2,3,4,5\}$ and $B=\{2,4,6,8,10\}$

Then $\mathrm{A} \cap \mathrm{B}=\{2,4\}$

Represents $\mathrm{A} \cap \mathrm{B}$

- $\quad \mathrm{A} \cap \mathrm{B}=\mathrm{A}$
- $\mathrm{A} \cap \phi=\phi=\phi \cap \mathrm{A}$
- $\mathrm{A} \cap \mu=\mathrm{A}=\mu \cap \mathrm{A} \quad$ (identity property)
- If $\mathrm{A} \subset \mathrm{B}$ then $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$
- $\quad \mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A} \quad$ (Commutative property)

Disjoint Sets: If there are no common elements in A and B. Then the Sets are Known as disjoint sets.

If A, B are disjoint sets then $A \cap B=\phi$
If $\mathrm{A} \cap \mathrm{B}=\phi$ then $\mathrm{n}(\mathrm{A} \cap \mathrm{B})=0$

Ex: $A=\{1,3,5,7, \ldots \ldots \ldots\}: \quad B=\{2,4,6,8, \ldots$.
Here A and B have no common elements
\therefore A and B are called disjoint Sets.
i.e. $A \cap B=\phi$

μ

Difference of Sets: The difference of Sets A and B is the set of elements which belongs to A but do not belong to B. We denote the difference of A and B by A-B or simply " A minus B"
$A-B=\{x / x \in A$ and $x \notin B\}$
$B-A=\{x / x \in B$ and $x \notin A\}$

Ex: If $A=\{1,2,3,4,5\}$ and $B=\{4,5,6,7\}$ then

$$
\mathrm{A}-\mathrm{B}=\{1,2,3\}, \quad \mathrm{B}-\mathrm{A}=\{6,7\}
$$

represents ' $\mathrm{A}-\mathrm{B}$ '

represents $B-A$

- $\mathrm{A}-\mathrm{B} \neq \mathrm{B}-\mathrm{A}$
- $\mathrm{A}-\mathrm{B}, \mathrm{B}-\mathrm{A}$ and $\mathrm{A} \cap \mathrm{B}$ are disjoint Sets.
- $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
- If A, B are disjoint sets then $n(A \cup B)=n(A)+n(B)$

Essay type Questions

(1) Write the following sets in roster form. (Communication)
(i) $\quad A=\{x: x$ is a two digital natural number such that the sum of its digits is 8$\}$
(ii) $B=\left\{x: x\right.$ is a natural number and $\left.x^{2}<40\right\}$
(iii) $C=\{x$: x is a prime number which is a divisor of 60$\}$
(iv) $D=\left\{x: x\right.$ is an integers, $\left.x^{2}=4\right\}$

Solution: Set builder form:
(i). $A=\{x: x$ is a two digital natural number such that the sum of its digits is 8$\}$

Roster form:

$$
A=\{17,26,35,44,53,62,71,80\}
$$

(ii). Set builder form:

$$
B=\left\{x: x \text { is a natural number and } x^{2}<40\right\}
$$

Roster form:

$$
B=\{1,2,3,4,5,6\}
$$

(iii). Set builder form:

$$
C=\{x: x \text { is a prime number which is a divisor of } 60\}
$$

Roster form:

$$
C=\{2,3,5\}
$$

(iv). Set builder form:

$$
D=\left\{x: x \text { is an integers }, x^{2}=4\right\}
$$

Roster form:

$$
\mathrm{D}=\{-2,2\}
$$

(2). Write the following sets in the sets -builders form. (Communication)
(i) $A=\{1,2,3,4,5\}$
(ii) $\mathrm{B}=\{5,25,125,625\}$
(iii) $\mathrm{C}=\{1,2,3,6,7,14,21,42\}$
(iv) $\mathrm{D}=\{1,4,9, \ldots \ldots .100\}$

Solution:

(i). Roster form:

$$
\mathrm{A}=\{1,2,3,4,5\}
$$

Set builder form

$$
A=\{x: x \text { is a natural number } x<6\}
$$

(ii). Roster form:

$$
B=\{5,25,125,625\}
$$

Set builder form:

$$
B=\{x: x \text { is a natural number and power of } 5, x<5\}
$$

(Or)

$$
B=\left\{5^{x}: x \in N, x \leq 4\right\}
$$

(iii). Roster form:

$$
C=\{1,2,3,6,7,14,21,42\}
$$

Set builder form:

$$
\mathrm{C}=\mathrm{x}: \mathrm{x} \text { is a natural number which divides } 42\}
$$

(iv). Roster form:
$D=\{1,4,9, \ldots \ldots .100\}$

Set builder form:
$D=\{x: x$ in Square of natural number and not greater than 10$\}$ (or) $=\left\{x^{2}: x \in N, x \leq 10\right\}$
(3). State which of the following Sets are finite or infinite. (Reasoning proof)
(i). $\quad\{x: x \in N$ and $(x-1)(x-2)=0\}$
(ii). $\{x: x \in N$ and $x<100\}$
(iii). $\{x: x$ is a straight line which is parallel to $X-A x i s\}$
(iv). The Set of circles passing through the origin (0,0)

Solution:

(i). $\{x: x \in N$ and $(x-1)(x-2)=0\}$ x can take the values 1 or 2 in the given case. The set is $\{1,2\}$, Hence it is finite.
(ii). $\{x: x \in N$ and $x<100\}$
$=\{1,2, \ldots . .100\}$, The number of elements in this Set are countable . Hence it is finite.
(iii). $\{\mathrm{x}: \mathrm{x}$ is a straight line which is parallel to $\mathrm{X}-\mathrm{Axis}\}$

Infinite straight lines are parallel to X - axis Hence, it is infinite Set (iv). The Set of circles passing through the origin $(0,0)$

Infinite circles are passing through the origin $(0,0)$ Hence it is infinite Set
(4). Let $A=\{3,4,5,6,7\}$, and $B=\{1,6,7,8,9\}$ Find
(i). $\mathrm{A} \cup \mathrm{B}$
(ii) $\mathbf{A} \cap \mathrm{B}$
(iii) $\mathbf{A}-\mathrm{B}$
(iv) B-A (Problem Solving)

Solution: Given $\quad A=\{3,4,5,6,7\}, \quad B=\{1,6,7,8,9\}$
(i) $\mathrm{A} \cup \mathrm{B}=\{3,4,5,6,7,8,8\}$
(ii) $\mathrm{A} \cap \mathrm{B}=\{6,7\}$
(iii) $\mathrm{A}-\mathrm{B}=\{3,4,5\}$
(iv) $\mathrm{B}-\mathrm{A}=\{1,8,9\}$
(5). (i) Illustrate $A \cup B$ in Venn - diagrams where

$$
A=\{1,2,3,4\} \text { and } B=\{2,4,6,8\}
$$

(ii) Illustrate in the Venn -diagrams where
$A=\{1,2,3\}$ and $B=\{3,4,5\} \quad$ (visualization \& representation)

Solution: (i) $\mathrm{A}=\{1,2,3,4\}$

$$
B=\{2,4,6,8\}
$$

$A \cup B=\{1,2,3,4,6,8)$
(iii) $\mathrm{A}=\{1,2,3\}$

$$
B=\{3,4,5\}
$$

$$
A \cap B=\{3\}
$$

(6). If $A=\{3,4,5,6,7\}, B=\{1,6,7,8,9\}$ then find $n(A), n(B), n(A \cap B)$ and $\mathbf{n}(\mathbf{A} \cup \mathrm{B})$. What do you observe? (Reasoning Proof)

Solution:

$$
\begin{array}{ll}
A=\{3,4,5,6,7\}, & n(A)=5 \\
B=\{1,6,7,8,9\} & n(B)=5
\end{array}
$$

$A \cup B=\{1,3,4,5,6,7,8,9\} \quad n(A \cup B)=8$

$$
A \cap B=\{6,7\} \quad n(A \cap B)=2
$$

We observer that $n(A \cup B)=n(A)+n(B)-n(A \cap B)$

$$
\begin{equation*}
\mathrm{n}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{n}(\mathrm{~A})+\mathrm{n}(\mathrm{~B})-\mathrm{n}(\mathrm{~A} \cup \mathrm{~B}) \tag{Or}
\end{equation*}
$$

(Or)

$$
\mathrm{n}(\mathrm{~A} \cup \mathrm{~B})+\mathrm{n}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{n}(\mathrm{~A})+\mathrm{n}(\mathrm{~B})
$$

(7). If $A=\{x: x$ is a natural number $\}$
$B=\{x: x$ is a even natural number $\}$
$C=\{x: x$ is a odd natural number $\}$
$D=\{x: x$ is a prime number $\} \quad$ Find $A \cap B, A \cap C, \quad A \cap D, B \cap C$, $\mathrm{B} \cap \mathrm{D}, \mathrm{C} \cap \mathrm{D} \quad$ (Problem solving)

Solution: $A=\{x: x$ is a natural number $\}$

$$
=\{1,2,3,4, \ldots \ldots . .\}
$$

$$
\begin{aligned}
\mathrm{B} & =\{x: x \text { is a even natural number }\} \\
& =\{2,4,6, \ldots \ldots \ldots \ldots\} \\
\mathrm{C} & =\{\mathrm{x}: \mathrm{x} \text { is a odd natural number }\} \\
& =\{1,3,5,7, \ldots \ldots \ldots .\} \\
\mathrm{D} & =\{x: x \text { is a prime number }\} \\
& =\{2,3,5,7,11,13, \ldots \ldots \ldots\}
\end{aligned}
$$

$A \cap B=\{1,2,3,4, \ldots \ldots \ldots.\} \cap\{2,4,6, \ldots \ldots\}=.\{2,4,6, \ldots \ldots \ldots\}=B$
$A \cap C=\{1,2,3,4, \ldots \ldots ..\} \cap\{1,3,5,7, \ldots .\}=.\{1,3,5,7, \ldots \ldots\}=C$
$A \cap D=\{1,2,3,4, \ldots \ldots.\} \cap\{2,3,5,7,11,13, \ldots \ldots \ldots\}=.\{2,3,5,7, \ldots \ldots\}=D$
$B \cap C=\{2,4,6, \ldots \ldots \ldots\} \cap\{1,3,5,7, \ldots \ldots \ldots\}=\{ \}=\phi$

B and C are disjoint Sets
$B \cap D=\{2,4,6, \ldots \ldots ..\} \cap\{2,3,5,7,11,13, \ldots \ldots\}=\{2\}$
$\mathrm{C} \cap \mathrm{D}=\{1,3,5,7, \ldots.\} \cap\{2,3,5,11,13, \ldots \ldots \ldots\}=\{3,5,7,11,13, \ldots \ldots\}$
(8) . Using examples to show that $A-B, B-A$ and $A \cap B$ are mutually disjoint Sets .

(Reasoning proof)

Solution:

$$
\begin{aligned}
& \text { Let } A=\{1,2,3,4,5\}, \quad B=\{4,5,6,7\} \\
& A \cap B=\{4,5\}
\end{aligned}
$$

$$
\begin{gathered}
A-B=\{1,2,3\} \\
B-A=\{6,7\}
\end{gathered}
$$

We observe that the Sets $\mathrm{A} \cap \mathrm{B}, \mathrm{A}-\mathrm{B}, \mathrm{B}-\mathrm{A}$ are mutually disjoint Sets.

Short Answer Questions

(1) Match roster forms with the Set builder form. (Connection)
(1) $\{2,3\}$
(a) $\{\mathrm{x}: \mathrm{x}$ is a positive integer and is a divisor of 18$\}$
(2) $\{0\}$
(b) $\left\{x: x\right.$ is an integer and $\left.x^{2}-9=0\right\}$
(3) $\{1,2,3,6,9,18\}$
(c) $\{x: x$ is an integer and $x+1=1\}$
(4) $\{3,-3\}$
(d) $\{x: x$ is prime number and advisor of 6$\}$
Answers: (1) d
(2) c (3) a
(4) b
(2) State which of the following Sets are empty and which are not? (Reasoning proof)
(i) $A=\left\{x: x^{2}=4\right.$ and $\left.3 x=9\right\}$
(ii) Sets of even prime numbers
(iii) $B=\left\{x: \quad x^{2}-2=0\right.$ and x is a rational number $\}$
(iv) Set of odd numbers divisible by 2

Solution:

(i) $A=\left\{x: x^{2}=4\right.$ and $\left.3 x=9\right\}$

Solution of $x^{2}=4$ are $x= \pm 2$ and $3 x=9$ is $x=3$
There is no real number satisfies both equation $x^{2}=4$ and $3 x=4$
$\therefore A=\left\{x: x^{2}=4\right.$ and $\left.3 x=9\right\}$ is an empty Set.
(ii) Sets of even prime numbers

2 is a only even prime number
\therefore Hence given Set is not empty set.
(iii).

$$
B=\left\{x: x^{2}-2=0 \text { and } x \text { is a rational number }\right\}
$$

The solution of $x^{2}-2=0$ is $x= \pm \sqrt{2}$, but
$-\sqrt{2}, \sqrt{2}$ are not rational numbers.
$\therefore B=\left\{x: x^{2}-2=0\right.$ and x is a rational number $\}$ is an empty set.
(iv). Set of odd numbers divisible by 2

Set of odd number $=\{1,3,5,7 \ldots \ldots .$.
Odd number are not divisible by 2
\therefore Given Set is an empty Set.
(3) Let A be the Set of prime numbers less than 6 and P the Set of prime factors of $\mathbf{3 0}$. Check if A and P are equal . (Reasoning Proof)

Solution: The Set of Prime number less than 6, A $=\{2,3,5\}$
The Prime factors of $30, \mathrm{P}=\{2,3,5\}$
Since the element of A are the same as the elements of $\mathrm{P}, \quad \therefore \mathrm{A}$ and P are equal.
(4) List all the subsets of the Set $A=\{1,4,9,16\}$ (Communication)

Solution: We know that empty set (ϕ) and itself (A) are the subsets of every set.
\therefore All the subsets of the set $\mathrm{A}=\{1,4,9,16\}$

Are $\phi,\{1\},\{4\},\{9\},\{16\}$

$$
\begin{gathered}
\{1,4\},\{1,9\},\{1,16\},\{4,9\},\{4,16\},\{9,16\} \\
\text { www.sakshieducation.com }
\end{gathered}
$$

$$
\{1,4,9\},\{1,4,16\},\{1,9,16\},\{4,9,16\} \text { and }\{1,4,9,16\}
$$

Total number of subsets of the set $\mathrm{A}=\{1,4,9,16\}$ are 16
Note: If $n(A)=n$ then the total number of Subsets are 2^{n}

Here for $A=\{1,4,9,16\}, \quad n(A)=4$
\therefore Total number of subsets of $A=2^{4}=16$
(5) If $A=\{1,2,34\} ; B=\{1,2,3,4,5,6,7,8\}$ then find $A \cup B, A \cap B$. What do you notice about the results? (Problem solving)
Solution: Given $\mathrm{A}=\{1,2,3,4\}$

$$
\mathrm{B}=\{1,2,3,4,5,6,7,8\}
$$

$A \cup B=\{1,2,3,4\} \cup\{1,2,3,4,5,6,7,8\}=\{1,2,3,4,5,6,7,8\}=B$
$\mathrm{A} \cap \mathrm{B}=\{1,2,3,4\} \cap\{1,2,3,4,5,6,7,8\}=\{1,2,3,4\}=\mathrm{A}$
We observe that if $\mathrm{A} \subset \mathrm{B}$ then $\mathrm{A} \cup \mathrm{B}=\mathrm{B}, \mathrm{A} \cap \mathrm{B}=\mathrm{A}$
(6) If $\mathrm{A}=\{2,3,5\}$, find $\mathrm{A} \cup \phi, \phi \cup \mathrm{A}$ and $\mathrm{A} \cap \phi, \phi \cap \mathrm{A}$ and compare.

(Problem Solving)

Solution: Given $A=\{2,3,5\}, \quad \phi=\{ \}$

$$
\begin{aligned}
& A \cup \phi=\{2,3,5\} \cup\{ \}=\{2,3,5\}=A \\
& \phi \cup A=\{\quad\} \cup\{2,3,5\}=\{2,3,5\}=A \\
& \therefore A \cup \phi=\phi \cup A=\phi
\end{aligned}
$$

$$
A \cap \phi=\{2,3,5\} \cap\{ \}=\{ \}=\phi
$$

$$
\begin{aligned}
\phi \cap \mathrm{A} & =\{ \} \cap\{2,3,5\}=\{ \}=\phi \\
\therefore & \mathrm{A} \cap \phi=\phi \cap \mathrm{A}=\mathrm{A} \cap \mathrm{~B}
\end{aligned}
$$

(7) If $A=\{2,4,6,8,10\}, B=\{3,6,9,12,15\}$ then find $A-B$ and $B-A$. Are they equal? Are they disjoint Sets. (Problem solving)

Solution: Given $\mathrm{A}=\{2,4,6,8,10\}, \mathrm{B}=\{3,6,9,12,15\}$
$A-B=\{2,4,8,10\}$,
$\mathrm{B}-\mathrm{A}=\{3,6,9,12,15\}$
We observer that $\mathrm{A}-\mathrm{B} \neq \mathrm{B}-\mathrm{A}$ and $\mathrm{A}-\mathrm{B}, \mathrm{B}-\mathrm{A}$ are disjoint Sets.
(8) Illustrate A-B and B-A in Venn - diagrams.
where $A=\{\mathbf{1 , 2 , 3}, 4,5,6\}$ and $B=\{2,4,6,8,10\}$
(Visualization \&Representation)
Solution: Given $A=\{1,2,3,4,5,6\} ; \quad B=\{2,4,6,8,10\}$

$$
\mathrm{A}-\mathrm{B}=\{1,3,5\}, \mathrm{B}-\mathrm{A}=\{8,10\}
$$

The Venn diagram of $\mathrm{A}-\mathrm{B}$

$$
\mathrm{A}-\mathrm{B}=\{1,2,3\}
$$

The Venn diagram of $\mathrm{B}-\mathrm{A}$

$$
B-A=\{8,10\}
$$

Very Short Answer Questions

(1) Give example for a set (communication)

Solution: $A=\{2,3,5,7,11\}=\{x: x$ is a prime number less than 13$\}$

(2) Given example for an infinite and finite set (communication)

Solution: $A=\{x: x$ is a multiple of 7$\}$

$$
=\{7,14,21,28, \ldots \ldots \ldots\}
$$

$B=\{x: x$ is a multiple of 4 between 17 and 61 which are divisible by 7$\}$

$$
=\{28,56\} \text { is a finite set }
$$

(3) Given example for an empty set and a non - empty set

Solution: $A=\{x: 1<x<2, x$ is a natural number $\}=\{\quad\}$ is an empty set.

$$
B=\{x: x \in N, x<5 \text { and } x>7\}=\{1,2,3,4,8,9, \ldots \ldots \ldots\}
$$

Is a non-empty set.
(4) Show that the sets A and B are equal.
$A=\{x: x$ is a letter in the word "ASSASSINATION" $\}$
$B=\{x: x$ is a letter in the word "STATION" $\} \quad$ (Reasoning proof)

Solution: In roster form A and B can be written as

$$
\begin{aligned}
& A=\{A, S, I, N, T, O\} \\
& B=\{A, S, I, N, T, O\}
\end{aligned}
$$

So , the elements of A and B are same
$\therefore \mathrm{A}, \mathrm{B}$ are equal Sets.
(5) $A=\{$ quadrilaterals $\}, B=\{$ Square, rectangle, trapezium, rhombus $\}$

State whether $\mathbf{A} \subset \mathbf{B}$ or $\mathbf{B} \subset A$. Justify your answer.
Solution: Given $\mathrm{A}=\{$ quadrilaterals $\}$

$$
B=\{\text { Square }, \text { rectangle, trapezium, rhombus }\}
$$

All quadrilaterals need not be square or rectangle or trapezium or rhombus.
Hence $\mathrm{A} \not \subset \mathrm{B}$
Square, rectangle ,trapezium and rhombus are quadrilaterals.
Hence $\mathbf{B} \subset \mathbf{A}$.
(6) If $A=\{5,6,7,8\}$ and $B=\{7,8,9,10\}$ then find $n(A \cap B)$ and $n(A \cup B)$ (Problem solving)

Solution : Given $A=\{5,6,7,8\}$
$B=\{7,8,9,10\}$

$$
\begin{gathered}
\mathrm{A} \cap \mathrm{~B}=\{7,8\} \\
\mathrm{n}(\mathrm{~A} \cap \mathrm{~B})=2
\end{gathered} \begin{aligned}
& \mathrm{A} \cup \mathrm{~B}=\{5,6,7,8,9,10\} \\
& \mathrm{n}(\mathrm{~A} \cup \mathrm{~B})=6
\end{aligned}
$$

(7) If $A=\{1,2,3,4\} ; B=\{1,2,3,5,6\}$ then find $A \cap B$ and $B \cap A$. Are they equal? (Problem Solving)

Solution: Given $\mathrm{A}=\{1,2,3,4\}$

$$
B=\{1,2,3,5,6\}
$$

$\mathrm{A} \cap \mathrm{B}=\{1,2,3,4\} \cap\{1,2,3,5,6\}=\{1,2,3\}$
$\mathrm{B} \cap \mathrm{A}=\{1,2,3,5,6\} \cap\{1,2,3,4\}=\{1,2,3\}$
We observe that $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
(8). Write the set builder form of $A \cup B, A \cap B$ and $A-B$ (communication)

Solution:

$$
\begin{aligned}
& A \cup B=\{x: x \in A \text { or } x \in B\} \\
& A \cap B=\{x: x \in A \text { and } x \in B\} \\
& A-B=\{x: x \in A \text { and } x \notin B\}
\end{aligned}
$$

(9). Give example for disjoint sets. (Communication)

Solution:
The Set of even number and the Set of odd number are disjoint sets, Note: If $\mathrm{A} \cap \mathrm{B}=\phi$ then A, B are disjoint sets.

Object Type Question

(1) The symbol for a universal Set \qquad
(A) $\quad \mu$
(B) ϕ
(C) \subset
(D) \cap
(2) If $A=\{a, b, c\}$, the number of subsets of A is \qquad
(A) 3
(B) 6
(C) 8
(D) 12
(3) Which of the following sets are equal \qquad
(A) $\mathrm{A}=\{1,-1\}, \mathrm{B}=\left\{1^{2},(-1)^{2}\right\}$
(B) $\mathrm{A}=\{0, \mathrm{a}\}, \mathrm{B}=\{\mathrm{b}, 0\}$
(C) $\mathrm{A}=\{2,4,6\}, \mathrm{B}=\{1,3,5\}$
(D) $\mathrm{A}=\{1,4,9\}, \mathrm{B}=\left\{1^{1}, 2^{2}, 3^{2}\right\}$
(4) Which of the following Set is not null Set?
(A) $\{\mathrm{x}: 1<\mathrm{x}<2, \mathrm{x}$ is a natural number $\}$
(B) $\left\{\mathrm{x}: \mathrm{x}^{2}-2=0\right.$ and $\left.\mathrm{x} \in \mathrm{Q}\right\}$
(C) $\left\{\mathrm{x}: \mathrm{x}^{2}=4, \mathrm{x}\right.$ is odd $\}$
(D) $\{\mathrm{x}: \mathrm{x}$ is a prime number divisible by 2$\}$
(5) which of the following Set is not infinite? \qquad
(A) $\{1,2,3$, 100\}
(B) $\left\{x: x^{2}\right.$ is positive,$\left.x \in z\right\}$
(c) $\{\mathrm{x}: \mathrm{x} \in \mathrm{n}, \mathrm{x}$ is prime $\}$
(D) $\{3,5,7,9$ \qquad
(6) Which of the following set is not finite
(A) $\{x: x \in N, x<5$ and $x>7\}$
(B) $\{x: x$ is even prime $\}$
(C) $\{\mathrm{x}: \mathrm{x}$ is a factor of 42$\}$
(D) $\{x: x$ is a multiple of $3, x<40\}$
(7) The set builder form of $A \cap B$ is \qquad
(A) $\{x: x \in A$ and $x \notin B\}$
(B) $\{x: x \in A$ or $x \in B\}$
(C) $\{x: x \in A$ and $x \in B\}$
(D) $\{x: x \in B$ and $x \notin A\}$
(8) For ever set $\mathrm{A}, \mathrm{A} \cap \phi=$ \qquad
(A) A
(B) ϕ
(C) μ
(D) 0
(9). Two Sets A and B are said to be disjoint if \qquad
(A) $\mathrm{A}-\mathrm{B}=\phi$
(B) $\mathrm{A} \cup \mathrm{B}=\phi$
(C) $\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
(D) $\mathrm{A} \cap \mathrm{B}=\phi$
(10) The Shaded region in the adjacent figure is \qquad
(A) $\mathrm{A}-\mathrm{B}(\mathrm{B}) \mathrm{B}-\mathrm{A}$
(C) $\mathrm{A} \cap \mathrm{B}$
(D) $\mathrm{A} \cup \mathrm{B}$

(11) $A=\{x: x$ is a circle in a give plane $\}$ is
(A) Null Set
(B) Finite Set
(C) Infinite Set
(D) Universal Set
(12) $n(A \cup B)=$ \qquad
(A) $n(A)+n(B)$
(B) $\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
(C) $n(A)-n(B)$
(D) $\quad \mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})+\mathrm{n}(\mathrm{A} \cap \mathrm{B})$
(13) If \mathbf{A} is subset of \mathbf{B}, then $\mathbf{A}-\mathbf{B}=$
(A) ϕ
(B) A
(C) B
(D) $\mathrm{A} \cap \mathrm{B}$
(14) If $A=\{1,2,3,4,5\}$ then the cardinal number of A is \qquad
(A) 2^{5}
(B) 5
(C) 4
(D) 5^{2}
(15) $A=\{2,4,6,8,10\}, \quad B=\{1,2,3,4,5\}$ then $B-A=\ldots$ \qquad
(A) $\{6,8,10\}$
(B) $\{1,3,5\}$
(C) $\{2,4\}$
(D) All the above
(16) Which Statement is true
(A) $\mathrm{A}-\mathrm{B}, \mathrm{B}-\mathrm{A}$ are disjoint sets
(B) $\mathrm{A}-\mathrm{B}, \mathrm{A} \cap \mathrm{B}$ are disjoint sets
(C) $\mathrm{A} \cap \mathrm{B} \quad \mathrm{B}-\mathrm{A}$ are disjoint sets
(D) All the above
(17) $\mathbf{A} \subset \mathbf{B}$ then $\mathrm{A} \cap \mathrm{B}=$ \qquad
(A) A
(B) B
(C) ϕ
(D) $\mathrm{A} \cup \mathrm{B}$
(18) $A \subset B$ then $A \cup B=$ \qquad
(A) A
(B) B
(C) ϕ
(D) $\mathrm{A} \cap \mathrm{B}$
(19) The shaded region in the adjacent figure represents \qquad
(A) $\mathrm{A}-\mathrm{B}$
(B) $\mathrm{B}-\mathrm{A}$
(C) $A \cap B$
(D) $\mathrm{A} \cup \mathrm{B}$

(20) From the figure \qquad
(A) $\mathrm{A}-\mathrm{B}=\{1,2$,
(B) $\mathrm{A} \cap \mathrm{B}=\{3\}$
(C) $\quad \mathrm{B}-\mathrm{A}=\{4,5\}$
(D) All the above

Key:
1.A
2. C
3. D
4. D
5. A
6. A
7. C
8. B
9. D 10. C
11. C
12. B
13. A
14. B
15. B
16. D
17. A
18. B
19. A
20. D

Fill in the Blanks

(1) The Symbol for null set $=\varnothing$
(2) Roster form of $\{\mathrm{x}: \mathrm{x} \in \mathrm{N}, 9 \leq \mathrm{x} \leq 16\}$ is $=\{\mathbf{9}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 4}, \mathbf{1 5}, 16\}$
(3) If $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{A}$ then $\underline{\mathbf{A}=\boldsymbol{B}}$
(4) If $\mathrm{A} \subset \mathrm{B}$ and $\mathrm{B} \subset \mathrm{C}$ then $=\underline{\mathrm{A} \subset \mathbf{C}}$
(5) $\mathrm{A} \cup \phi=\underline{\mathrm{A}}$
(6) The Set theory was developed by $=$ George cantor
(7) If $n(A)=7, n(B)=8, n(A \cap B)=5$ then $n(A \cup B)=\underline{10}$
(8) A set is a Well defined collection of objects.
(9) Every set is Subset of itself.
(10) The number of elements in a set is called the cardinal number of the set.
(11) $\mathrm{A}=\{2,4,6, \ldots \ldots \ldots, \mathrm{~B}=\{1,3,5, \ldots \ldots \ldots\}$ then $\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\underline{0}$
(12) A and B are disjoint sets then $\mathrm{A}-\mathrm{B}=\underline{\mathrm{A}}$
(13) If $\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cap \mathrm{B}$ then $\underline{\mathbf{A}=\boldsymbol{B}}$
(14) $A=\left\{x: x^{2}=4\right.$ and $\left.3 x=9\right\}$ is a null set
(15) $A=\{2,5,6,8\}$ and $B=\{5,7,9,1\}$ then $A \cup B=\{1,2,5,6,7,8,9\}$.
(16) If $\mathrm{A} \subset \mathrm{B}, \mathrm{n}(\mathrm{A})=3, \mathrm{n}(\mathrm{B})=5$, then $\mathrm{n}(\mathrm{A} \cap \mathrm{B})=\underline{3}$
(17) If $\mathrm{A} \subset \mathrm{B}, \mathrm{n}(\mathrm{A})=3, \mathrm{n}(\mathrm{B})=5$, then $\mathrm{n}(\mathrm{A} \cup \mathrm{B})=\underline{5}$
(18) A, B are disjoint sets then $(\mathrm{A}-\mathrm{B}) \cap(\mathrm{B}-\mathrm{A})=\phi$
(19) $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{2,4,6,8\}$ then $\mathrm{B}-\mathrm{A}=\{\underline{\{6,8}\}$
(20) Set builder form of $A \cup B$ is $=\{x: x \in A$ or $x \in B\}$

